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1. INTRODUCTION

This paper considers the problem of double implementation of constrained

Walrasian allocations in Nash and strong Nash equilibria using a \mar-

ket type" feasible and continuous mechanism for pure exchange economies

when coalition patterns, preferences, and endowments are unknown to the

designer. The important reasons for preferring double implementation over

Nash implementation and strong Nash implementation are two-fold: (1)

The double implementation covers the case where in some coalitions agents
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may cooperate and in others they may not, and such information is un-

known to the designer. (2) This combining solution concept, which char-

acterizes agents' strategic behavior, may yield a state that is easy to reach

and hard to leave.

There are numerous papers on implementation of (constrained) Wal-

rasian allocations in various solution concepts in implementation literature,

including Hong (1995), Hurwicz (1972, 1979), Hurwicz, Maskin, and Postle-

waite (1995), Nakamura (1990), Peleg (1996), Postlewaite and Wettstein

(1989), Schmeidler (1980), Suh (1994), Tian (1989, 1990, 1992), and Tian

and Li (1995). Most of these papers, however, only considered implemen-

tation of Walrasian allocations by using a Nash equilibrium as a solution

concept to describe individuals' self-interested behavior. Nash equilibrium

is a strictly noncooperative notion and is only concerned with single indi-

vidual deviations at which no one can be improved by a unilateral deviation

from a prescribed strategy pro�le. No cooperation among agents is allowed.

Although a Nash equilibrium may be easy to reach, it may not be stable in

the sense that there may exist a group of agents who can be improved by

forming a coalition. Thus it is natural to adopt strong Nash equilibrium

which allows possible cooperation (coalitions) among agents. However,

while a strong Nash equilibrium may result in a more stable equilibrium

outcome, it requires more information about communication network and

other agents' characteristics in order to eliminate those outcome that can

upset by coalitionary action. Thus, in order to have a solution concept

combining the properties of Nash and strong Nash equilibria, it is desirable

to construct a mechanism which doubly implements a social choice rule by

Nash and strong Nash equilibria so that its equilibrium outcomes are not

only easy to reach, but also hard to leave. By double implementation it

also covers the situation where agents in some coalitions will cooperate and

in some other coalitions will not. Thus the designer does not need to know

which coalitions are permissible and consequently it allows the possibility

for agents to manipulate coalition patterns.

Schmeidler (1980) was the �rst to consider double implementation of

(constrained) Walrasian allocations in Nash and strong Nash equilibria.

However, Schmeidler's mechanism has two properties one may consider

undesirable. One is that his outcome function is not individually feasible:

out of equilibria, some outcome allocations may not be in the consumption

set; although at equilibrium, they are necessarily in the consumption set.

The other is that the outcome function is not continuous: small changes in

an agent's strategy choice may lead to large jumps in the resulting alloca-

tions (so it is not robust with respect to some misspeci�cations). In fact,

there does not exist any feasible mechanism which Nash-implements the

Walrasian correspondence because the correspondence violates Maskin's

monotonicity condition when a boundary equilibrium allocations occur.
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However, it is possible to design a mechanism which doubly implements

a slightly larger set than Walrasian allocations, namely, constrained Wal-

rasian allocations which are Pareto-eÆcient and individually rational (cf.

Tian (1988)). Maskin (1979) has proved that the social choice correspon-

dence which selects all Pareto-eÆcient and individual allocations are doubly

implementable in Nash and strong Nash equilibria.

Suh (1994) provided a necessary and suÆcient condition for a social

choice correspondence to be doubly implementable in Nash and strong

Nash equilibrium on a restricted domain of economic environments. By

applying this characterization result, Suh (1994) investigated the double

implementation of (constrained) Walrasian allocations in Nash and strong

Nash equilibria. However, due to the general nature of the social choice

rules under consideration, the implementing mechanisms turn out to be

quite complex. Characterization results show what is possible for the imple-

mentation of a social choice rule (correspondence), but not what is realistic.

Thus, like most characterization results in the literature, Suh's mechanism

is not continuous and has a large message space of in�nite dimension.

Recently, Peleg (1996) gave a feasible and continuous mechanism which

doubly implements constrained Walrasian allocations. But a main draw-

back of his mechanism is that it is not a pure mechanism in the sense

that a preference relation is arti�cially introduced for individuals to rank

announced prices. In other words, his implementation result is obtained

not based on the original preferences de�ned on the allocation space but

based on the re-de�ned preferences on the outcome/message space which

consists of allocations and price determinations (see equation (3.8) in Pe-

leg (1996)). In Peleg's approach, an individual is not only a player, but

also an inside auctioneer. Unlike the traditional auctioneer de�ned in the

literature, the auctioneers de�ned in Peleg (1996) not only announce and

adjust prices, but also are assigned a preference relation on the level of

prices announced. In an incentive mechanism design, the preferences of

agents should be given, not be assigned, otherwise any social choice rule

may be implementable in any equilibrium solution concept by signing a

preference for some components of messages announced by agents. In our

opinion, the designer cannot vary an agent's preference behavior since it is

in fact determined by the agent himself. Thus, it still leaves a question of

whether there is a pure mechanism which is feasible and continuous, and

further it doubly implements the constrained Walrasian correspondence in

Nash and strong Nash equilibria.

A similar situation prevailed with regard to double implementation of

the Lindahl correspondence in Nash and strong Nash equilibria until Tian

(2000) presented a pure continuous and feasible mechanism which doubly

implements the Lindahl correspondence in Nash and strong Nash equilibria.
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This paper will answer this question aÆrmatively by giving a pure fea-

sible and continuous mechanism which doubly implements the constrained

Walrasian correspondence. Our implementation result is obtained with-

out changing individuals' preferences and thus improves on the mechanism

proposed in Peleg (1996) without having to introduce arti�cial preference

relations for individuals on the outcome space. In addition, our mechanism

works not only for three or more agents, but also for a two-agent world.

While most mechanisms need to distinguish the case of two agents from

that of three or more agents, this paper gives a uni�ed mechanism which

is irrespective of the number of agents. Further, our implementation re-

sult holds on a very large domain of economic environments, including some

non-neoclassical economic environments. Only the strict monotonicity con-

dition is assumed in our feasible and continuous mechanism and thus no

continuity and convexity assumptions on preferences are needed, and fur-

ther, preferences may be nontotal or nontransitive. Finally, our mechanism

is simple and natural. It is a type of \market game" and thus it is similar to

the Walras rule: the strategies of the mechanism are \prices" and \quan-

tities", and agents' consumption is chosen from their budget sets. The

\natural" mechanism design provides at least a partial response to a com-

mon concern about much of the implementation literature, namely that the

implementing mechanisms are highly unrealistic and impossible for a real

player to use. Besides, we allow preferences of agents to be discontinuous

and nontotal-nontransitive.

The remainder of the paper is organized as follows. Section 2 presents

notions, de�nitions, and solution concepts which will be used in the pa-

per. Section 3 presents a feasible and continuous mechanism which doubly

implements the constrained Walrasian correspondence. Section 4 proves

the equivalence among Nash allocations, strong Nash allocations, and con-

strained Walrasian allocations. Finally, some concluding remarks are given

in Section 5.

2. NOTATION AND DEFINITIONS

2.1. Economic Environments

We consider a class of pure exchange economies where there are n (n � 2)

agents who consume L private goods. Denote by N = f1; 2; : : : ; ng the set

of agents. Each agent's characteristic is denoted by ei = (�wi; Pi), where

�wi 2 R
L
+ is agent i's initial endowment and Pi is the strict (irre
exive)

preference de�ned on R
L
+ which is strictly monotonically increasing may be

nontotal or nontransitive.

An economy is the full vector e = (e1; : : : ; en) and the set of all such

economies is denoted by E.
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2.2. The Constrained Walrasian Allocations

An allocation x
� = (x�1; x

�
2; : : : ; x

�
n) 2 R

nL
+ is a constrained Walrasian

allocation for an economy e if there is a price vector p� 2 R
L
+ such that

(1) p� � x�i � p
� � �wi for all i 2 N ,

(2) for all i 2 N , there does not exist xi 2 R
L
+ such that

(2.a) xi Pi x
�
i ;

(2.b) p
� � xi � p

� � �wi;

(2.c) xi �
Pn

j=1 �wj ,

(3)
Pn

j=1 xj �
Pn

j=1 �wj .

Denote by Wc(e) the set of all such allocations.

Note that a constrained Walrasian allocation di�ers from a Walrasian

allocation only in a way that each agent maximizes his preferences not

only subject to his budget constraint, but also subject to total endow-

ments available to the economy. It can be easily shown that every ordinary

Walrasian allocation (competitive equilibrium allocation) is a constrained

Walrasian allocation and every interior constrained Walrasian allocation is

a Walrasian allocation (cf. Tian (1988)).

An allocation x is Pareto-eÆcient with respect to strict preference pro�le

P = (P1; : : : ; Pn) if it is feasible (i.e., x 2 R
nL
+ and

Pn

j=1 xj �
Pn

j=1 �wj)

and there does not exist another feasible allocation x
0 such that x0i Pi xi

for all i 2 N .

An allocation x is individually rational with respect to P if it is not true

that �wi Pi xi for all i 2 N .

It can be easily shown that every constrained Walrasian allocation is

Pareto-eÆcient and individually rational.

An coalition C is a non-empty subset of N .

A group of agents (a coalition) C � N is said to block an allocation x if

there exists some allocation (x0; y0) such that

(i)
P

i2C x
0
i �
P

i2C �wi,

(ii) x0iPixi for all i 2 C.

A feasible allocation x is said to be in the core of e if there does not exist

any coalition C that can improve upon x.

Note that an allocation cannot be improved upon by N if and only if it is

Pareto eÆcient, and an allocation cannot be improved upon by any single

person if and only if it is individually rational. Also every constrained

Walrasian allocation is in the core of e.

2.3. Mechanism
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Let Mi denote the i-th message (strategy) domain. Its elements are

written as mi and called messages. Let M =
Qn

i=1Mi denote the message

(strategy) space. Let X : M ! Z denote the outcome function, or more

explicitly, Xi(m) is the i-th agent's outcome at m. A mechanism consists

of hM;Xi, which is de�ned on E. A message m� = (m�
1; : : : ;m

�
n) 2M is a

Nash equilibrium (NE) of the mechanism hM;Xi for an economy e 2 E if

for all i 2 N and mi 2Mi, it is not true that

Xi(mi;m
�

�i) Pi Xi(m
�); (1)

where (mi;m
�
�i) = (m�

1; : : : ;m
�
i�1;mi;m

�
i+1; : : : ;m

�
n). The outcomeX(m�)

is then called a Nash (equilibrium) allocation. Denote by VM;X(e) the set

of all such Nash equilibria and by NM;X(e) the set of all such Nash (equi-

librium) allocations.

A mechanism hM;Xi Nash-implements the constrained Walrasian cor-

respondence Wc on E if for all e 2 E, NM;X(e) =Wc(e).

A message m� = (m�
1; : : : ;m

�
n) 2 M is said to be a strong Nash equi-

librium of the mechanism hM;Xi for an economy e 2 E if there does not

exist any coalition C and mC 2
Q
i2CMi such that for all i 2 C,

Xi(mC ;m
�

�C) Pi Xi(m
�): (2)

X(m�) is then called a strong Nash (equilibrium) allocation of the mecha-

nism for the economy e. Denote by SVM;X(e) the set of all such strong Nash

equilibria and by SNM;X(e) the set of all such strong Nash (equilibrium)

allocations.

The mechanism hM;hi is said to doubly implement the constrained Wal-

rasian correspondence Wc on E, if, for all e 2 E, SNM;N (e) = NM;X(e) =

Wc(e).

A mechanism hM;Xi is feasible if for all m 2M , X(m) 2 R
nL
+ and

nX
j=1

Xj(m) �

nX
j=1

�wj: (3)

3. A FEASIBLE AND CONTINUOUS MECHANISM

In this section, we present a simple feasible and continuous mechanism

which doubly implements the constrained Walrasian correspondence on E.

For each i 2 N , let the message domain of agent i be of the form

Mi = (0; �wi]��L
++ � R

nL
; (4)

where �L
++ = f(p 2 R

L
++ :

PL

l=1 p
l = 1g.
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A generic element of Mi is mi = (wi; pi; xi1; :::; xin) whose components

have the following interpretations. The component wi denotes a profession

of agent i's endowment, the inequality 0 < wi � �wi means that the agent

cannot overstate his own endowment; on the other hand, the endowment

can be understated, but the claimed endowment wi must be positive. Note

that, although the true endowment is the upper bound of the reported

endowment, the designer does not need to know this upper bound. This

is because whenever an agent claims an endowment of a certain amount,

the designer can ask him to exhibit it (one may, for instance, imagine that

the rules of the game require that the agent `put on the table' the reported

amount wi). The component pi is the price vector proposed by agent i and

is used as a price vector of agent i � 1, where i � 1 is read to be n when

i = 1. The component xij is interpreted as the contribution that agent i is

willing to make to agent j (a negative xij means agent i wants to get �xij
amount of goods from agent j).

De�ne agent i's price vector pi :M ! R
L
++ by

pi(m) = pi+1; (5)

where n + 1 is to be read as 1. Note that although pi(�) is a function

of proposed price vector announced by agent i + 1, for simplicity, we can

write p(�) as a function of m without loss of generality. Also it may be

remarked that the construction of pi(m) is much simpler than the one

used in Postlewaite and Wettstein (1989) and Tian (1992), in which it is

determined by proposed price vector of all individuals, while ours is only

involved one person's proposed price.

De�ne a feasible correspondence B :M !! R
nL
+ by

B(m) = fx 2 R
nL
+ :

nX
i=1

xi �

nX
i=1

wi &

pi(m) � xi �
1

1 + kpi � pi(m)k
pi(m) � wi 8 i 2 Ng; (6)

which is clearly nonempty compact convex (by the total resource con-

straints) for all m 2 M . We will show the following lemma in the Ap-

pendix.

Lemma 1. B(�) is continuous on M .

Let ~xj =
Pn

i=1 xij which is the sum of contributions that agents are

willing to make to agent j and ~x = (~x1; ~x2; :::; ~xn) .
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The outcome function X: M ! R
nL
+ is given by

X(m) = fy 2 R
nL
+ : min

y2B(m)
ky � ~xkg; (7)

which is the closest to ~x. Then X is single-valued and continuous on M . 1

Also, since X(m) 2 R
nL
+ and

nX
i=1

Xi(m) �

nX
i=1

�wi (8)

for all m 2M , the mechanism is feasible and continuous.

Remark 3.1. Note that the above mechanism does not depends on

the number of agents. Thus it is a uni�ed mechanism which works for

two-agent economies as well as for economies with three or more agents.

For two-agents economies, only feasible and continuous mechanism which

Nash implements the constrained Walrasian correspondence was given by

Nakamura (1990). Here we give an even simpler feasible and continuous

mechanism which implements the constrained Walrasian correspondence

not only in Nash equilibrium, but also in strong Nash equilibrium.

4. RESULTS

The remainder of this paper is devoted to the proof of equivalence among

Nash allocations, strong Nash allocations, and constrained Walrasian al-

locations. Proposition 4.1 below proves that every Nash allocation is a

constrained Walrasian allocation. Proposition 4.2 below proves that every

constrained Walrasian allocation is a Nash allocation. Proposition 4.3 be-

low proves that every Nash equilibrium is a strong Nash equilibrium. To

show these results, we �rst prove the following lemmas.

Lemma 2. If m� 2 VM;X(e), then p
�
1 = p

�
2 = : : : = p

�
n, and thus

p1(m
�) = p2(m

�) = : : : = pn(m
�) = p

� for some p� 2 �L
++.

Proof. Suppose, by way of contradiction, that p�i 6= p
�
i+1 (i.e., p�i 6=

pi(m
�)) for some i 2 N . Then pi(m

�) � Xi(m
�) � 1

1+kp�
i
�pi(m�)k

pi(m
�) �

w
�
i < pi(m

�) � w�
i , and thus there is xi 2 R

L
+ such that pi(m

�) � xi �

pi(m
�) � w�

i and xi Pi Xi(m
�) by strict monotonicity of preferences. Now

1This is because X is an upper semi-continuous correspondence by Berge's Maximum
Theorem (see Debreu (1959), p.19]) and single-valued (see Mas-Colell (1985), p.28]).
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if agent i chooses pi = pi(m
�), xii = xi �

P
t6=i x

�
ti, xij = �

P
t6=i x

�
tj for

j 6= i, and keeps w�
i unchanged, then (0; : : : ; 0; xi; 0; : : : ; 0) 2 B(mi;m

�
�i),

and thus Xi(mi;m
�
�i) = xi. Therefore, Xi(mi;m

�
�i) Pi Xi(m

�). This

contradicts X(m�) 2 NM;X(e). Thus we must have p�1 = p
�
2 = : : : = p

�
n,

and therefore p1(m
�) = p2(m

�) = : : : = pn(m
�) = p

� for some p� 2 �L
+.

Lemma 3. If m� 2 NM;X(e), then w
�
i = �wi for all i 2 N .

Proof. Suppose, by way of contradiction, that w�
i 6= �wi for some i 2 N .

Then pi(m
�)�Xi(m

�) � pi(m
�)�w�

i < pi(m
�)��wi, and thus there is xi 2 R

L
+

such that pi(m
�) �xi � pi(m

�) ��wi and xi Pi Xi(m
�) by strict monotonicity

of preferences. Now if agent i chooses wi = �wi, xii = xi �
P

t6=i x
�
ti, xij =

�
P

t6=i x
�
tj for j 6= i, and keeps p�i unchanged, then (0; : : : ; 0; xi; 0; : : : ; 0) 2

B(mi;m
�
�i), and thus Xi(mi;m

�
�i) = xi. Hence, Xi(mi;m

�
�i) Pi Xi(m

�).

This contradicts X(m�) 2 NM;X(e) and thus w�
i = �wi for all i 2 N .

Lemma 4. If X(m�) 2 NM;X(e), then pi(m
�) �Xi(m

�) = pi(m
�) � �wi.

Proof. Suppose, by way of contradiction, that pi(m
�)�Xi(m

�) < pi(m
�)�

�wi for some i 2 N . Then there is xi 2 R
L
+ such that pi(m

�)�xi � pi(m
�)��wi

and xi Pi Xi(m
�) by strict monotonicity of preferences. Now if agent i

chooses xii = xi �
P

t6=i x
�
ti, xij = �

P
t 6=i x

�
tj for j 6= i, and keeps p�i

and w
�
i unchanged, then (0; : : : ; 0; xi; 0; : : : ; 0) 2 B(mi;m

�
�i), and thus

Xi(mi;m
�
�i) = xi. Hence, Xi(mi;m

�
�i) Pi Xi(m

�). This contradicts

X(m�) 2 NM;X(e).

Proposition 1. If the mechanism hM;Xi de�ned above has a Nash

equilibrium m
� for e 2 E, then X(m�) is a constrained Walrasian allocation

with p
� as a competitive equilibrium price vector, i.e., NM;X(e) � Wc(e)

for all e 2 E.

Proof. Let m� be a Nash equilibrium. Then X(m�) is a Nash equilib-

rium allocation. We wish to show that X(m�) is a constrained Walrasian

allocation. By Lemmas 4.1-4.3, p1(m
�) = : : : = pn(m

�) = p
� for some

p
� 2 �L

+, w
�
i = �wi, and p(m�) � Xi(m

�) = p(m�) � �wi for all i 2 N .

Also, by the construction of the mechanism, we know that X(m�) 2 R
nL
+

and
Pn

j=1Xj(m
�) �

Pn

j=1 �wj . So we only need to show that each indi-

vidual is maximizing his/her preferences. Suppose, by way of contradic-

tion, that for some agent i, there exists some ~xi 2 R
L
+ such that ~xi �Pn

j=1 �wj , p(m
�) � ~xi � p(m�) � �wi, and ~xi Pi Xi(m

�). Let xii = ~xi �P
t6=i x

�
ti, xij = �

P
t6=i x

�
tj for j 6= i, and keep p�i and w

�
i unchanged, then

(0; : : : ; 0; ~xi; 0; : : : ; 0) 2 B(mi;m
�
�i), and thus Xi(mi;m

�
�i) = ~xi. There-
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fore, we have Xi(mi;m
�
�i) Pi Xi(m

�). This contradicts X(m�) 2 NM;X(e).

So X(m�) is a constrained Walrasian allocation.

Proposition 2. If x� = (x�1; x
�
2; :::; x

�
n) is a constrained Walrasian allo-

cation with a competitive equilibrium price vector p� 2 �L
+ for e 2 E, then

there exists a Nash equilibrium m
� of the mechanism hM;Xi de�ned above

such that Xi(m
�) = x

�
i , pi(m

�) = p�, for all i 2 N , i.e., Wc(e) � NM;X(e)

for all e 2 E.

Proof. Since preferences satisfy the strict monotonicity condition and x�

is a constrained Walrasian allocation, we must have p� 2 �L
++,
Pn

j=1 x
�
j �Pn

j=1 �wj and p
� � x�i = p

� � �wi for i 2 N . Now for each i 2 N , let m�
i =

(p�; x�i1; :::; x
�
in), where x

�
ii = x

�
i and x

�
ij = 0 for j 6= i.

Then x
� is an outcome with p

� as a price vector, i.e., Xi(m
�) = x

�
i for

all i 2 N , and pi(m
�) = p

�. We show that m� yields this allocation as

a Nash allocation. In fact, agent i cannot change pi(m
�) by changing his

proposed price (i.e., pi(mi;m
�
�i) = pi(m

�) for all mi 2Mi). Announcing a

di�erent message mi by agent i may yield an allocation X(mi;m
�
�i) such

that Xi(mi;m
�
�i) 2 R

L
+ and

p(m�) �Xi(mi;m
�

�i) � p(m�) � �wi: (9)

Now suppose, by way of contradiction, that m� is not a Nash equilib-

rium. Then there are i 2 N and mi such that Xi(mi;m
�
�i) Pi Xi(m

�).

Since Xi(mi;m
�
�i) �

Pn

i=1 �wi, we must have, by the de�nition of the con-

strained Walrasian allocation, p(m�) �Xi(mi;m
�
�i) > p(m�) � �wi. But this

contradicts the budget constraint (9). Thus we have shown that agent i

cannot improve his/her utility by changing his/her own message while the
others' messages remain �xed for all i 2 N . Hence x� is a Nash alloca-

tion.

Proposition 3. Every Nash equilibrium m
� of the mechanism de�ned

above is a strong Nash equilibrium, that is, NM;X(e) � SNM;X(e).

Proof. Let m� be a Nash equilibrium. By Proposition 4.1, we know

that X(m�) is a constrained Walrasian allocation with p(m�) as a price

vector. Then X(m�) is Pareto optimal and thus the coalition N cannot be

improved upon by any m 2M . Now for any coalition C with ; 6= C 6= N ,

choose i 2 C such that i + 1 62 C. Then no strategy played by C can

change the budget set of i since pi(m) is determined by pi+1. Furthermore,

because X(m�) 2Wc(e), it is the preference maximizing consumption with

respect to the budget set of i, and thus C cannot improve upon X(m�).
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Since every strong Nash equilibrium is clearly a Nash equilibrium, then

by combining Propositions 4.1-4.3, we have the following theorem.

Theorem 1. For the class of exchange economies E, there exists a fea-

sible and continuous mechanism which doubly implements the constrained

Walrasian correspondence. That is, NM;X(e) = SNM;X(e) =Wc(e) for all

e 2 E.

5. CONCLUDING REMARKS

This paper gives a simple, feasible, and continuous mechanism which

doubly implements the constrained Walrasian correspondence in Nash and

strong Nash equilibrium for economies without total, transitive, continu-

ous, and convex preferences when coalition patterns, preferences and en-

dowments are unknown to the designer. The implementation result is ob-

tained without changing individuals' preferences and thus it improves the

mechanism proposed in Peleg (1996) without assigning arti�cial preference

relations for individuals on outcome space. In addition, unlike most mech-

anisms proposed in the literature, it gives a uni�ed mechanism which is

irrespective of the number of agents.

It may be remarked that the implementation of the constrained Wal-

rasian allocations does not lose much generality, compared to implementing

any other social choice correspondence which guarantees Pareto-eÆciency

and individual rationality. A slightly modi�ed version of Theorems 1 and 2

of Hurwicz (1979a) states that for any mechanism, if all of its Nash alloca-

tions for a given environment are Pareto-eÆcient and individually rational,

then every constrained Walrasian allocation is a Nash allocation, and every

interior Nash allocation is a constrained Walrasian allocation. Thus, the

implementation of the constrained Walrasian correspondence at most loses

some possible boundary Pareto-eÆcient and individually rational alloca-

tions.

Also note that, by the construction of the mechanism, one can see that

the mechanism constructed in the paper only yields weakly balanced allo-

cations in the sense that equation (8) may not hold with equality for all

messages; although at equilibrium, it necessarily holds in equality. How-

ever, since the above mechanism is a uni�ed mechanism which deals with

both cases of two-agent economies and economies with three or more agents,

a result given by Kwan and Nakamura (1987) showed that it is impossible

to �nd another mechanism which Nash implements constrained Walrasian

allocations by a balanced feasible and continuous mechanism that works
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for two-agent economic environments.2 Consequently, it is impossible to

have a mechanism which doubly implements the constrained Walrasian

correspondence in Nash and strong Nash equilibria by a balanced feasible

and continuous mechanism that also works for two-agent economic environ-

ments. An open question is whether or not there exists a balanced feasible

and continuous mechanism which doubly implements the constrained Wal-

rasian correspondence in Nash and strong Nash equilibrium for economies

with three or more agents.

Though this paper only considers double implementation of the con-

strained Walrasian correspondence in Nash and strong Nash equilibria, we

think some of the techniques developed in the paper can be applied to dou-

bly implement other social choice rules which results in Pareto eÆcient and

individually rational allocations in Nash and strong Nash equilibrium.

APPENDIX

Proof of Theorem 1: It is clear that B(�) has closed graph by the conti-

nuity of pi(�). Since the range space of the correspondence B(�) is bounded

by the total endowments
Pn

i=1 wi, it is compact. Thus, B(�) is upper hemi-

continuous on M . So we only need to show that B(m) is also lower hemi-

continuous at every m 2 M . Let m 2 M , x = (x1; : : : ; xn) 2 B(m), and

let fmkg be a sequence such that mk ! m, where mk = (mk
1 ; : : : ;m

k
n)

and m
k
i = (wki ; p

k
i ; z

k
i1; : : : ; z

k
in). We want to prove that there is a se-

quence fxkg such that xk ! x, and, for all k, xk 2 B(mk), i.e., xk =

(x1k; : : : ; xnk) 2 R
nL
+ , pi(mk) �xik �

1

1+kpk
i
�pi(mk)k

pi(mk) �w
k
i for all i 2 N ,

and
P

i2N xik 5
P

i2N w
k
i . We �rst prove that there is a sequence fx̂kg

such that x̂k ! x, and, for all k, x̂k 2 R
nL
+ and pi(mk)�x̂ik �

pi(mk)�w
k

i

1+kpk
i
�pi(mk)k

for all i 2 N . For each i 2 N , two cases will be considered.

Case 1. pi(m) � xi <
pi(m)�wi

1+kpi�pi(m)k
. Hence, for all k larger than a certain

integer k0, we have pi(mk) � xi <
pi(mk)�w

k

i

1+kpk
i
�pi(mk)k

by noting that pi(�) is

continuous. Let x̂ik = xi for all k > k
0 and x̂ik = 0 for k � k

0. Then, we

have pi(mk) � x̂ik <
pi(mk)�w

k

i

1+kpk
i
�pi(mk)k

.

Case 2. pi(m) � xi =
pi(m)�wi

1+kpi�pi(m)k
. Note that, since pi(m) > 0 and

wi > 0 for all i, we must have xi > 0. Let !i =
pi(m)�wi

1+kpi�pi(m)k
and !ik =

2For economies with three or more agents, however, it is possible to �nd a mechanism
which Nash implements the constrained Walrasian allocation by a balanced feasible and
continuous mechanism. Tian (1992) gave such a mechanism.
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pi(mk)�w
k

i

1+kpk
i
�pi(mk)k

. De�ne x̂ik as follows:

x̂ik =

� !ik
pi(mk)�xi

xi; if !ik
pi(mk)�xi

� 1;

xi; otherwise.

Then x̂ik � xi, and pi(mk) � x̂ik �
pi(mk)�w

k

i

1+kpk
i
�pi(mk)k

. Also, since !ik
pi(mk)�xi

!
!i

pi(m)�xi
= 1, we have x̂ik ! xi. Thus, in both cases, there is a sequence

fx̂kg such that x̂k ! x, and, for all k, x̂k 2 R
nL
+ and pi(mk) � x̂ik �

pi(mk)�w
k

i

1+kpk
i
�pi(mk)k

for all i 2 N .

We now show that there is a sequence f�xkg such that �xk ! x, and, for

all k, �xk 2 R
nL
+ and

P
i2N �xik �

P
i2N w

k
i . For each l = 1; : : : ; L, two

cases will be considered.

Case 1.
P

i2N x
l
i <

P
i2N w

l
i. Hence, for all k larger than a certain

integer k0, we have
P

i2N x
l
i <
P

i2N w
lk
i . For each i 2 N , let �xlik = x

l
i for

all k > k
0 and x̂lik = 0 for k � k

0. Then, we have
P

i2N x
l
ik <

P
i2N w

lk
i .

Case 2.
P

i2N x
l
i =
P

i2N w
l
i. Note that, since wi > 0 for all i, we must

have
P

i2N
x
l
i > 0. For each i 2 N , de�ne �xlik as follows:

�xlik =

( P
i2N

wlk

iP
i2N xl

i

xi; if
P

i2N
wlk

iP
i2N xl

i

� 1;

x
l
i; otherwise.

Then x̂
l
ik � x

l
i, and

P
i2N �xlik �

P
i2N w

lk
i . Also, since

P
i2N

wlk

iP
i2N xl

i

!
P

i2N w
lk

iP
i2N

xl
i

= 1, we have x̂lik ! x
l
i. Thus, in both cases, there is a sequence

fx̂kg such that x̂k ! x, and, for all k, x̂k 2 R
nL
+ and

P
i2N x

k
i �
P

i2N w
k
i .

Here x̂k = (x̂1k; : : : ; x̂
L
k ).

Finally, let x0k = min(�xk; x̂k) with x
0

ik = min(�xik; x̂ik) for i = 1; : : : ; n.

Then x
0

k ! x since �xk ! x and x̂k ! x. Also, for every k larger than a

certain integer �k, we have x0k � 0,
P

i2N x
0

ik �
P

i2N w
k
i because x0k � �xk

and
P

i2N �xik �
P

i2N w
k
i , and pi(mk) � x

0

ik �
pi(mk)�w

k

i

1+kpk
i
�pi(mk)k

for all i 2 N

by noting that x0ik � x̂ik. Let xk = x
0

k for all k > �k and xk = 0 for k 5 �k.

Then, xk ! x, and xk 2 B(mk) for all k. Therefore, the sequence fxkg

has all the desired properties. So Bx(m) is lower hemi-continuous at every

m 2M .
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