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1. INTRODUCTION

There is a rich literature on semiparametric estimation of panel data
models. However, to our knowledge, no one has proposed a consistent esti-
mation method for a dynamic partially linear panel data model with fixed
effects. In this paper we show that one can use the series method to con-
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sistently estimate a semiparametric panel model with fixed effects. We use
the standard approach of taking the first difference to eliminate the fixed
effects. This results in a semiparametric additive model with the restric-
tion that the two additive functions have the same functional form. Series
estimation methods are more convenient than kernel methods under cer-
tain type of restrictions (such as additivity or shape-preserving estimation,
see Dechevsky and Penez (1997)). It is also computationally convenient
because the results can be summarized by relatively few coefficients.

Recently semiparametric estimation of additive models and additive par-
tially linear models have received much attention, see Linton and Nielsen
(1995), Newey (1994), Fan and Li (1996), Fan et al. (1998) and Li (2000),
to mention a few. The additive regression model partially avoids the ‘curse
of dimensionality’ problem which may circumvent the estimation of a fully
nonparametric regression model. Linton and Nielsen (1995), Newey (1994),
and Tojstheim and Auestad (1994) propose to estimate additive models us-
ing the kernel marginal integration method. Li (2000), on the other hand,
uses the series method to estimate an additive partially l inear model.

Li (2000) considered only the independent data case, while this paper
considers panel data with correlated observations. The model in Li (2000)
does not allow for endogenous variables (or a lagged dependent variable)
among the regressors, while this paper allows for endogenous regressors.
We establish the root N normality result for the estimator of the paramet-
ric component, and show that the unknown function can be consistently
estimated at the standard nonparametric rate.

The paper is organized as follows. In Section 2, we consider the estima-
tion of a static partially linear semiparametric panel data model with fixed
effects. In Section 3, we consider a dynamic model with a lagged dependent
variable. Section 4 concludes the paper. The proofs of the main results are
given in the Appendix.

2. STATIC MODEL AND RESULTS

Consider the following partially linear semiparametric panel data model

yit = x′itγ + g(zit) + uit, i = 1, ..., N ; t = 1, ..., T (1)

with one-way error component disturbances uit = µi + νit, xit and zit

are of dimensions k1 × 1 and k2 × 1, respectively, and the µi’s are fixed
effects, νit are assumed to be i.i.d. (0, σ2

ν). Throughout the paper, zit’s are
strictly exogenous variables, xit is assumed to be exogenous in this section.
However, in Section 3 we will allow xit to be correlated with the error term
νit. The asymptotic theory in this paper assumes a finite value of T while
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letting the number of individuals N approach infinity. This is the typical
micro panel data case.

First differencing (1) to eliminate the fixed effects, we get

yit − yi,t−1 = (xit − xi,t−1)γ + [g(zit)− g(zi,t−1)] + uit − ui,t−1 (2)

or

Yit = Xitγ + G(zit, zi,t−1) + Uit (3)

where Yit = yit−yi,t−1, Xit = xit−xi,t−1, G(zit, zi,t−1) = g(zit)−g(zi,t−1),
and Uit = νit − νi,t−1. In matrix-vector form, we have

Y = Xγ + G + U (4)

where Y is a NT × 1 vector with typical element Yit, and X, G and U are
similarly defined. To keep our notation consistent, let Zit = zit and Z is
an NT × 1 vector with typical element Zit.

Li and Stengos (1996) considered the estimation of γ of the above panel
data model using the kernel instrumental variable method. There are sev-
eral drawbacks of the method proposed by Li and Stengos (1996). First, in
order to eliminate the unknown function G(zit, zi,t−1) = g(zit)− g(zi,t−1),
they suggest estimating E(Yit|Zit, Zi,t−1) and E(Xit|Zit, Zi,t−1) by the
nonparametric kernel method. This suffers from the ‘curse of dimension-
ality’ because (zit, zi,t−1) has a higher dimension than that of zit, i.e., it
ignores the additive structure of model (2). Secondly, although their pro-
posed method can estimate G(zit, zi,t−1), they did not propose a method
to estimate the original unknown function g(zit). The problem with Li
and Stengos’ (1996) method is that they ignore the additive structure of
G(zit, zi,t−1) = g(zit)− g(zi,t−1). In this paper we propose a series method
for estimating model (2) that does not suffer the above mentioned draw-
backs. Although one can also use the kernel marginal integration method
to estimate the additive function g(zit), the asymptotic theory involved
in using the kernel method to estimate an additive partially linear model
is quite involved, see Fan, Härdle and Mammen (1998) and Fan and Li
(1996). Neither Fan, Härdle and Mammen (1998) nor Fan and Li (1996)
considered the case of different additive functions to contain overlapping
variables. Sperlich et al. (1999) considered the problem of using the ker-
nel method to estimate an additive model with second order interaction
terms, but their model does not have a parametric linear component. To
our knowledge, there is no asymptotic theory developed for estimating an
additive partially linear model by kernel method that allows interaction
terms in the additive functions.

Below we introduce some definitions and assumptions.
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Definition 2.1. A function ξ(zit, zi,t−1) is said to belong to an additive
class of functions G (ξ ∈ G) if ξ(zit, zi,t−1) = g(zit)− g(zi,t−1), g(·) is twice
differentiable in the interior of its support S, which is a compact subset of
Rk2 , and E[g2(z)] < ∞.

We use series pK(z) of dimension K × 1 to approximate g(z). The ap-
proximation function pK(z) has the following properties: (i) pK(z) ∈ G; (ii)
as K grows, there is a linear combination of pK(z) that can approximate
any g ∈ G arbitrarily well in mean square error. Therefore, pK(z) ap-
proximates g(z) and pK(zit, zi,t−1) ≡ (pK(zit) − pK(zi,t−1)) approximates
G(zit, zi,t−1) = g(zit)− g(zi,t−1):

pK(zit, zi,t−1) =


p1(zit)− p1(zi,t−1)
p2(zit)− p2(zi,t−1)

...
pK(zit)− pK(zi,t−1)

 . (5)

Define pK
it = pK(zit, zi,t−1), and P = (pK

11, p
K
12, ..., p

K
1T , pK

21, ..., p
K
NT )′. P is

of dimension NT ×K.
For any scalar or vector function W (z), we use the notation of EG(W (z))

to denote the projection of W (z) onto the additive functional space G
(under the L2-norm). That is, EG(W (z)) is an element that belongs to G
(has an additive structure) and it is the closest function to W (z) among
all the functions in G. More specifically, we have

E{[W (zit)− EG(W (zit))][W (zit)− EG(W (zit))]′}
= inf

ξ∈G
E{[W (zit)− ξ(zit)][W (zit)− ξ(zit)]′}, (6)

where the infimum is in the sense that

E{[W (zit)− EG(W (zit))][W (zit)− EG(W (zit))]′}
≤ E{[W (zit)− ξ(zit)][W (zit)− ξ(zit)]′} (7)

for all ξ ∈ G, where for square matrices A and B, A ≤ B means that A−B
is negative semidefinite.

Define θ(z) = E(X|Z = z). We will use h(z) to denote the projection of
θ(z) onto G, i.e., h(z) = EG(θ(z)). Note that the series method proposed
in this paper can deal with the case where zit and zi,t−1 have overlap-
ping variables. For example, zit can have current and lagged exogenous
variables.

Assumption 2.1. (i) We assume that (Yit, Xit, Zit)’s are independent
across individuals, i.e., (Yi, Xi, Zi) are independent and identically dis-
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tributed as (Y1, X1, Z1), where Yi = (Yi1, ..., YiT )′ and Xi and Zi are sim-
ilarly defined; (ii) The support of (X1, Z1) is a compact subset of Rk1+k2 ;
(iii) θ(z) and var(Y1|X1 = x,Z1 = z) are both bounded functions on the
support of (X1, Z1).

Assumption 2.2. (i) For every K there is a nonsingular matrix B such
that for PK(z) = B pk(z): the smallest eigenvalue of E[PK(Zit)PK(Zit)′]
is bounded away from zero uniformly in K; (ii) There is a sequence of
constants ζ0(K) satisfying supz∈S

∥∥PK(z)
∥∥ ≤ ζ0(K) and K = K(N) such

that (ζ0(K))2K/N → 0 as N →∞.

Assumption 2.3. (i) For f = g or f = h(s) (s = 1, ..., k1), there exist
some δ(> 0), βf = βf (K), supz∈Z |f(z)−PK(z)βf | = O(K−δ) as K →∞;
(ii)

√
NK−δ → 0 and N →∞.

Assumption 2.1 is quite standard in the additive models. Assumption 2.2
ensures that P ′P is asymptotically nonsingular. Newey (1997) gives some
primitive conditions for power series and splines such that assumptions 2.2
and 2.3 hold.

Let M = P (P ′P )−P ′, where (.)− denotes any symmetric generalized
inverse. Define Ã = MA = PβA where βA = (P ′P )−P ′A. Then premulti-
plying (4) by M leads to

Ỹ = X̃γ + G̃ + Ũ . (8)

Subtracting (8) from (4) gives

Y − Ỹ = (X − X̃)γ + G− G̃ + U − Ũ . (9)

We estimate γ by least squares regression of Y − Ỹ on X − X̃:

γ̂ = [(X − X̃)′(X − X̃)]−(X − X̃)′(Y − Ỹ ). (10)

Plug (9) into (10), we have

γ̂ = [(X − X̃)′(X − X̃)]−(X − X̃)′(Y − Ỹ )
= γ + [(X − X̃)′(X − X̃)]−(X − X̃)′(G− G̃ + U − Ũ). (11)

g(z) is estimated by ĝ(z) = pK(z)′β̂ where β̂ is given by

β̂ = (P ′P )−P ′(Y −Xγ̂). (12)
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Theorem 2.1. Define εit = Xit − h(Zit), where h(Zit) = EG(θ(Zit)) is

defined above. Assume that Φ
def
= 1

T

∑T
t=1 E(εitε

′
it) is positive definite, then

we have (i)
√

N(γ̂ − γ) → N(0,Σ) in distribution, where Σ = Φ−1ΩΦ−1,
Ω = 1

T

∑
t E[σ2

u(Xit, Zit)εitε
′
it] and σ2

u(Xit, Zit) = E(U2
it|Xit = x, Zit =

z); (ii) A consistent estimator of Σ is given by Σ̂ = Φ̂−1Ω̂Φ̂−1, where
Φ̂ = (NT )−1

∑
i

∑
t(Xit − X̃it)(Xit − X̃it)′, Ω̂ = (NT )−1

∑
i

∑
t Û2

it(Xit −
X̃it)(Xit − X̃it)′, Ûit = Yit −X ′

itγ̂ − Ĝ(Zit).

The proof is given in the appendix.
Theorem 2.1 establishes the

√
N -consistency and asymptotic normality

of γ̂. The next theorem establishes the consistency for the nonparametric
component estimator.

Theorem 2.2. Under assumptions 1–3, we have
(i) supz∈S |ĝ(z)− g(z)| = Op(ζ0(K))(

√
K/

√
N + K−δ);

(ii) N−1(ĝ(z)− g(z))2 = Op(K/N + K−2δ);
(iii)

∫
(ĝ(z)− g(z))2dF (z) = Op(K/N + K−2δ), where F (.) is the cumu-

lative distribution function of Z.

3. INSTRUMENT VARIABLE ESTIMATION OF A PANEL
DATA MODEL

In this section we allow the partially linear panel data model in (2) to
have variables in the parametric component that may be correlated with
the error term. We still assume that the nonparametric component is a
function of exogenous variables. A special case of this model is a dynamic
panel data model with a lagged dependent variable as one of the regressors
in xit. In this case, model (2) reduces to a dynamic panel data model

yit = γ0yi,t−1 + γ′1x
−
it + g(zit) + uit. (13)

where x−it is xit excluding yi,t−1.
As in Section 2, taking first difference of equation (2) leads to equation

(10). Now instead of using OLS-type semiparametric estimator as given
in (11), we use an instrumental variable (IV) semiparametric estimation
method. We assume that there exists a set of instrument variables Wit ∈
Rk3 with k3 ≥ k1, such that E(Uit|Wit) = 0 and Cov(Wit, Xit) 6= 0.

Hence we can estimate γ by the following IV method (recall that Ã
def
=

P (P ′P )−P ′A):

γ̂IV = [(W − W̃ )′(X − X̃)]−1(W − W̃ )′(Y − Ỹ )
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= γ + [(W − W̃ )′(X − X̃)]−1(W − W̃ )′[(G− G̃) + (U − Ũ)].(14)

The nonparametric part g(z) can be estimated by ĝ(z) = pK(z)′β̂IV where
β̂IV is given by

β̂IV = (P ′P )−P ′(Y −Xγ̂IV ). (15)

We have the following theorem for the IV estimators:

Theorem 3.1. Define εit = Wit − EG(Wit), τit = Xit − EG(Xit), and

assume that Ψ
def
= 1

T

∑T
t=1 E(εitτ

′
it) is positive definite, we have

(i)
√

N(γ̂IV −γ) → N(0,Υ) in distribution, where Υ = Ψ−1ΛΨ−1, Λ =
1
T

∑
t E[σ2

u(Wit, Zit)εitε
′
it] and σ2

u(Wit, Zit) = E(U2
it|Wit = w,Zit = z);

(ii) A consistent estimator of Υ is given by Υ̂ = Ψ̂−1Λ̂Ψ̂−1, where
Ψ̂ = (NT )−1

∑
i

∑
t(Wit−W̃it)(Xit− X̃it)′, Λ̂ = (NT )−1

∑
i

∑
t Û2

it(Wit−
W̃it)(Wit − W̃it)′, and Ûit = Yit −Xitγ̂IV − Ĝ(Zit).

The proof of Theorem 3.1 is similar to the proof of Theorem 2.1, a sketchy
proof is given in the Appendix.

In this section we have established the asymptotic results for a partially
linear panel data model with fixed effects and with possible endogeneity
in the regressors. These results are an extension of those in Section 2. If
all the regressors in (1) are exogenous, we can simply let the instrument
variable W be X itself, and the results are the same as that in Section
2. The model discussed in this Section encompasses an important model -
the dynamic panel data model with lagged dependent variables among the
regressors, see Baltagi (1995) for a discussion of parametric estimation of
this model.

4. CONCLUSION

In this paper we consider the problem of estimating a partially linear
semiparametric (dynamic) panel data model with fixed effects. We extend
the results in Li (2000) to a dynamic panel data model which allows for de-
pendent observations and the presence of lagged dependent variables among
the regressors. Using the series method, we establish the root N normality
result for the estimator of the parametric component, and we show that the
unknown function can be consistently estimated at the standard nonpara-
metric rate. These results are of special interest to applications in micro
level panel data.
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APPENDIX A
Proof of Lemmas:

First we prove some lemmas which will be utilized in the proofs of the-
orems.

We use 1 to denote an indicator function that takes value one if (P ′P )
is invertible and zero otherwise. Whenever we have (P ′P )−1, it should be
understood as 1(P ′P )−1 and since Prob(1 = 1) → 1 almost surely, we will
often omit the indicator function 1.

We define SA,B = n−1A′B = n−1
∑

i AiB
′
i. Also, we define SA = SA,A.

Lemma A.1. Q̂− I = Op(ζ0(K)
√

K/
√

N), where Q̂ = P ′P/(NT ).

Proof. See the proof of Theorem 1 in Newey (1997, pp. 161–162).

Lemma A.2.
∥∥∥β̃f − βf

∥∥∥ = Op(K−δ), where β̃f = (P ′P )−P ′f , βf satis-
fies assumption (2.3), for f = g or f = h(s) (s = 1, ..., r).

Proof. We have

1
∥∥∥β̃f − βf

∥∥∥ def
= 1

∥∥(P ′P )−P ′(f − Pβf )
∥∥

= 1{(f − Pβf )′P (P ′P )−1(P ′P/(NT ))−1P ′(f − Pβf )/(NT )}1/2

= 1Op(1){(f − Pβf )′P (P ′P )−1P ′(f − Pβf )/(NT )}1/2

≤ Op(1){(f − Pβf )′(f − Pβf )/(NT )}1/2 = Op(K−δ) (A.1)

by lemma A.1, assumption 2.3 and the fact that P (P ′P )−1P ′ is idempo-
tent. So

∥∥∥β̃f − βf

∥∥∥ = Op(K−δ) since Prob(1 = 1) → 1.

Lemma A.3. P ′η/(NT ) = Op(ζ0(K)/
√

N) = op(1).

Proof. Note that E(Pitηit) = 0 since pK(.) ∈ G and η(.) ⊥ G. Define
Pi = (P ′

i1, ..., P
′
iT )′ and ηi = (ηi1, ..., ηiT )′. In this case

E ‖P ′η/(NT )‖2 = (NT )−2E(η′PP ′η) = (NT )−2E{(
∑

i
η′iPi)(

∑
j
P ′

jηj)}

= (NT )−2E(
∑

i

∑
j
η′iPiP

′
jηj)

= (NT )−2{E(
∑

i
η′iPiP

′
iηi) + E(

∑
i

∑
j 6=i

η′iPiP
′
jηj)

= (NT )−2
∑

i
E(η′iPiP

′
iηi) + 0 = N−1T−2E(tr(PiP

′
iηiη

′
i))
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= N−1T−2tr(E(PiP
′
iηiη

′
i))

≤ N−1T−2C tr(E(PiP
′
i )) = N−1T−2C

T∑
t=1

K∑
l=1

E(P 2
it,l)

≤ N−1T−1C(ζ0(K))2 = O((ζ2
0 (K))2/N)

by assumption 2.2. Hence P ′η/(NT ) = Op(ζ0(K)/
√

N) = op(1).

Lemma A.4. Sf−f̃ = Op(K−2δ) = op(N−1/2), where f = G or f = h.

Proof. Note that f̃ ≡ P β̃f , so that

Sf−f̃ = N−1
∥∥∥f − f̃

∥∥∥2

≤ N−1{‖f − Pβf‖2 +
∥∥∥P (βf − β̃f )

∥∥∥2

= N−1 ‖f − Pβf‖2 + T (βf − β̃f )′{P ′P/(NT )}(βf − β̃f )
= O(K−2δ) + Op(K−2δ)
= Op(K−2δ)

by assumption 2.3, lemmas A.1 and A.2.

Lemma A.5. (i) Sã = Op(K/N), for a = U or v; (ii) Sη̃ = op(1).

Proof. (i) Similar to the proof of Theorem 1 in Newey (1997), for a = v,
we have

E(Sṽ|Z) = (NT )−1E{v′P (P ′P )−1P ′v|Z} = (NT )−1tr[P (P ′P )−1P ′E(vv′|Z)]
≤ (NT )−1C tr[P (P ′P )−1P ′]
= O(K/N),

which implies Sṽ = Op(K/N). It is similar for a = u.
(ii) Sη̃ = (NT )−1η̃′η̃ = (η′P/(NT ))(P ′P/(NT ))−1(P ′η/(NT )) = Op(ζ2

0 (K)K/N)
= op(1) by lemmas A.1 and A.3.

Lemma A.6. For any T × T matrix A = (ats) in which elements are
bounded |ats| ≤ M < ∞, there is a constant C such that CIT − A is
positive definite.

Proof. Let C = M̄T for some M̄ > M (recall T is a fixed value). Then
for any vector x 6= 0,

x′(CIT −A)x = Cx′x− x′Ax = M̄T
T∑

t=1

x2
t −

T∑
t=1

T∑
s=1

atsxtxs
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≥ M̄T
T∑

t=1

x2
t −

M

2

T∑
t=1

T∑
s=1

(x2
t + x2

s) > 0.

Proof of Theorem 2.1:
Recall that θ(Zit) = E(Xit|Zit), vit = Xit − θ(Zit), εit = Xit − h(Zit),

and ηi = θ(Zit)− h(Zit) where h(z) = EG(θ(z)).
We will use the following short-hand notations: θit = θ(Zit), git = g(Zit),

hit = h(Zit). Hence, vit = Xit − θit, εit = Xit − hit, and ηit = θit − hit.
θ is the NT × k1 matrix with typical element θit. h, G, η, ε, v, and U are
similarly defined.

From the definitions, we have X = η + v + h and X̃ = η̃ + ṽ + h̃.
Subtracting these two equalities yields

X − X̃ = η − η̃ + v − ṽ + h− h̃. (A.2)

Note that if S−1

X−X̃
exists, then from (9) and (10), we have

√
N(γ̂ − γ) = S−1

X−X̃

√
NSX−X̃,G−G̃+U−Ũ . (A.3)

We need to show the followings: (i) SX−X̃ = Φ+op(1), (ii) SX−X̃,G−G̃ =
op(N−1/2), (iii) SX−X̃,Ũ = op(N−1/2), and (iv)

√
NSX−X̃,U → N(0,Ω) in

distribution.
(i) Proof of SX−X̃ = Φ + op(1).

From (A.2) we have SX−X̃ = S(η+v)+(h−h̃)−η̃−ṽ = Sη+v + S(h−h̃)−η̃−ṽ +
2S(η+v),(h−h̃)−η̃−ṽ.

First, we have

Sη+v = (NT )−1
∑
i,t

(ηit + vit)(ηit + vit)′ = (NT )−1
∑

i

∑
t

εitε
′
it

= N−1
∑

i

(T−1
∑

t

εitε
′
it) = Φ + op(1)

by virtue of a law of large numbers.
Second, S(h−h̃)−η̃−ṽ ≤ 2S(h−h̃) + 4Sη̃ + 4Sṽ = op(1) by lemmas A.4 and

A.5.
Finally, S(η+v),(h−h̃)−η̃−ṽ ≤ (Sη+vS(h−h̃)−η̃−ṽ)1/2 = [Op(1)op(1)]1/2 =

op(1) by the above results.
(ii) Proof of SX−X̃,G−G̃ = op(N−1/2).

By equation (A.2), we have

SX−X̃,G−G̃ = Sη−η̃+v−ṽ+h−h̃,G−G̃
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= Sη+v,G−G̃ + Sh−h̃,G−G̃ − Sṽ,G−G̃ − Sη̃,G−G̃. (A.4)

For these four terms, we have
(1) Sη+v,G−G̃ ≤ {Sη+vSG−G̃}1/2 = Op(K−δ) by lemma A.4 and Sη+v =

Op(1).
(2) Sh−h̃,G−G̃ ≤ {Sh−h̃SG−G̃}1/2 = Op(K−2δ) by lemma A.4.
(3) Sṽ,G−G̃ ≤ {SṽSG−G̃}1/2 = op(1)Op(K−δ) by lemmas A.4 and A.5.
(4) Sη̃,G−G̃ ≤ {Sη̃SG−G̃}1/2 = op(1)Op(K−δ) by lemmas A.4 and A.5.

(iii) Proof of SX−X̃,Ũ = op(N−1/2).
By equation (A.2), SX−X̃,Ũ = Sη−η̃+v−ṽ+h−h̃,Ũ = Sη,Ũ +Sv,Ũ +Sh−h̃,Ũ−

Sṽ,Ũ − Sη̃,Ũ . We consider these five terms separately.
(1) We have

E[
∥∥∥Sη,Ũ

∥∥∥2

|Z] = (NT )−2E[U ′P (P ′P )−1P ′ηη′P (P ′P )−1P ′U |Z]

= (NT )−2tr[P (P ′P )−1P ′ηη′P (P ′P )−1P ′E(UU ′|Z)]
≤ C(NT )−2tr(η̃η̃′) = C(NT )−1tr(Sη̃) = op(N−1)

by lemma A.5. Hence Sη,Ũ = Op(N−1/2).
(2) We have

E[
∥∥∥Sv,Ũ

∥∥∥2

|X, Z] = (NT )−2tr[P (P ′P )−1P ′vv′P (P ′P )−1P ′E(UU ′|X, Z)]

≤ C(NT )−2tr(ṽṽ′) = C(NT )−1tr(Sṽ) = O(K/N2)

by lemma A.5.
(3) Sh−h̃,Ũ ≤ {Sh−h̃SŨ}1/2 = Op(K−δ)Op(

√
K/

√
N) by lemmas A.4

and A.5.
(4) Sṽ,Ũ ≤ {SṽSŨ}1/2 = Op(K/N) by lemma A.5.
(5) We have

E[
∥∥∥Sη̃,Ũ

∥∥∥2

|Z] = (NT )−2tr[P (P ′P )−1P ′ηη′P (P ′P )−1P ′E(UU ′|Z)]

≤ C(NT )−2tr(η̃η̃′) = C(NT )−1tr(Sη̃) = op(N−1)

by lemma A.5. Hence Sη̃,Ũ = op(N−1/2).
(iv) Proof of

√
NSX−X̃,U → N(0,Ω) in distribution.

SX−X̃,U = Sη−η̃+v−ṽ+h−h̃,U = Sη+v,U + Sh−h̃,U − Sṽ,U − Sη̃,U . We
consider them separately.

(1)
√

NSη+v,U =
√

NSη+v,U =
√

N
∑

i(ηi + vi)u′i → N(0,Ω) by Levi-
Lindberg central limit theorem.

(2) We have

E[
∥∥∥Sh−h̃,U

∥∥∥2

|Z] = (NT )−2tr[(h− h̃)(h− h̃)′E(UU ′|Z)]
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≤ C(NT )−1tr[(h− h̃)(h− h̃)′/NT ]
= C(NT )−1tr(Sh−h̃) = op(N−1)

by lemma A.4 and lemma A.5. Hence, Sh−h̃,U = op(N−1/2).
(3) Similarly, we have

E[‖Sṽ,U‖2 |Z] ≤ C(NT )−1tr[Sṽ] = op(N−1)

by lemma A.5. Hence, Sṽ,U = op(N−1/2).
(4) We have

E[‖Sη̃,U‖2 |Z] ≤ C(NT )−1tr[Sη̃] = op(N−1)

by lemma A.5. Hence, Sη̃,U = op(N−1/2).
(i) – (iv) above imply that

√
N(γ̂ − γ) = Φ−1N(0,Ω) + op(1) →

N(0,Φ−1ΩΦ−1).
Proof of Σ̂ = Σ + op(1):

Φ̂ ≡ SX−X̃ = Φ + op(1) is proved in (i) of Theorem 2.1.
Similarly we can prove that Ω̂ = Ω + op(1). Notice that γ̂ − γ =

Op(N−1/2) and Ĝ −G = op(1). It is easy to prove that ûit = uit + op(1).
Also, we know that hit − h̃it = op(1), ṽit = op(1) and η̃it = op(1). Hence
Xit − X̃it = εit + op(1). These results lead to Ω̂ = Ω + op(1) by a law of
large numbers.

Proof of Theorem 2.2:
This theorem is almost the same as Theorem 1 in Newey (1997) and

Theorem 4.1 in Newey (1995) except that our estimator ĝ has an extra
term X(γ − γ̂). It suffices to show that the contribution of this extra term
is asymptotically negligible. One would expect this to be true because (γ−
γ̂) = Op(N−1/2) which has a smaller order than that of the nonparametric
series estimation convergence rate.

Let βg satisfy assumption 2.3 with f = g. We have

β̂ = (P ′P )−P ′(Y −Xγ̂) = (P ′P )−P ′[(Y −Xγ)−X(γ̂ − γ)]
= βg + (P ′P )−P ′[(G− Pβg) + U ]− (P ′P )−P ′X(γ̂ − γ)
= βg + D1N −D2N (γ̂ − γ), (A.5)

where D1N = (P ′P )−P ′[(G−Pβg)+U ] and D2N = (P ′P )−P ′X. ‖D1N‖ =
Op(K−δ +

√
K/

√
N) was proved by Theorem 4.1 in Newey (1995).

Next we will show that D2N (γ̂ − γ) = Op(N−1/2).

‖D2N‖2 =
∥∥(P ′P )−P ′(η + v + h)

∥∥2 =
∥∥∥β̃η + β̃v + β̃h

∥∥∥2
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≤ C(
∥∥∥β̃η

∥∥∥2

+
∥∥∥β̃v

∥∥∥2

+
∥∥∥β̃h

∥∥∥2

)

= Op(
1
N
{‖η̃‖2 + ‖ṽ‖2 +

∥∥∥h̃
∥∥∥2

})

= N−1{Op(‖h‖2) + op(1)} = Op(1).

So D2N (γ̂−γ) = Op(γ̂−γ) = Op(1/
√

N) which has an order smaller than

Op(
√

K/
√

N). Thus
∥∥∥β̂ − βg

∥∥∥ = Op(K−δ +
√

K/
√

N) as in Newey (1995).
The rest of proofs (to prove (i)–(iii) in our Theorem 2.2) follows the same
arguments as in the proofs of Theorem 1 in Newey (1997) for (i) and that
of Theorem 4.1 in Newey (1995) for (ii) and (iii).

Proof of Theorem 3.1:
Note that

γ̂IV = γ + [(W − W̃ )′(X − X̃)]−1(W − W̃ )′[(G− G̃) + (U − Ũ)].(A.6)

So we have
√

N(γ̂IV − γ) = S−1

(W−W̃ ),(Y−1−Ỹ−1)

√
NS(W−W̃ ),(G−G̃)+(U−Ũ). (A.7)

We will show the followings:
(i) S(W−W̃ ),(X−X̃) = Ψ + op(1);
(ii) S(W−W̃ ),(G−G̃) = op(N−1/2);
(iii) S(W−W̃ ),Ũ = op(N−1/2); and
(iv)

√
NS(W−W̃ ),U → N(0,Λ) in distribution.

(i) Proof of S(W−W̃ ),(X−X̃) = Ψ + op(1).
Let W = [W − EG(W )] + EG(W ) = ε + h. Then W̃ = ε̃ + h̃. Let

X = [X − EG(X)] + EG(X) = τ + κ. Then X̃ = τ̃ + κ̃. Follow the proof
in Theorem 2.1, we have

S(W−W̃ ),(X−X̃) = Sε+(h−h̃−ε̃),τ+(κ−κ̃−τ̃) =
1
T

T∑
t=1

E(εitτ
′
it) + op(1) = Ψ + op(1).

(A.8)

(ii) Proof of S(W−W̃ ),(G−G̃) = op(N−1/2).
The proof is similar to that in Theorem 2.1 and thus omitted.

(iii) Proof of S(W−W̃ ),Ũ = op(N−1/2).
The proof is similar to that in Theorem 2.1 and thus omitted.

(iv) Proof of
√

NS(W−W̃ ),U → N(0,Λ) in distribution.
S(W−W̃ ),U = Sε+(h−h̃−ε̃),U = Sε,U + S(h−h̃),U − Sε̃,U . We consider them

separately.
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(1) We have
√

NSε,U =
√

N
∑

i εiu
′
i → N(0,Λ) by Levi-Lindberg central

limit theorem.
(2) We have

E[
∥∥∥S(h−h̃),U

∥∥∥2

W,Z] = (NT )−2tr[(h− h̃)(h− h̃)′E(UU ′|Z)]

≤ C(NT )−1tr(Sh−h̃) = op(N−1)

by lemma A.4 and lemma A.5. Hence, S(h−h̃),U = op(N−1/2).
(3) Similar to that in the proof of Theorem 2.1, Sε̃,U = op(N−1/2).
So we have

√
NS(W−W̃ ),U → N(0,Λ) in distribution.

From (i) - (iv), we have
√

N(γ̂IV −γ) → N(0,Ψ−1ΛΨ−1) in distribution.
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