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This paper compares recently developed semiparametric estimators of Type-
3 Tobit model using Monte Carlo simulations. In particular, we examine
the finite sample performance of the recently proposed method by Li and
Wooldridge and compare it to some alternative semiparametric estimators.
Simulation results indicated that Li and Wooldridge (2002) estimator under
the independence restriction compares well relative to other alternative esti-
mators, especially when the sample size is small or the error distribution has
a thick tail. c© 2003 Peking University Press
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1. INTRODUCTION

This paper compares recently developed semiparametric estimators of
Type-3 Tobit model using Monte Carlo simulations. Type-3 Tobit model
is widely used in economics, for example we observe market wages only if
an individual participates in the labor force. Because we do not observe the
wage for non-participant in the labor market, samples for the wage equa-
tion are non-randomly selected. When samples are non-randomly chosen,
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estimation methods ingoring the sample selection bias may lead to inconsis-
tent estimation results. Heckman (1979) described this problem as sample
selection bias with which least square estimators are usually inconsistent.

Many examples with selectivity bias are analyzed in the applied economic
fields such as modeling labor supply (Connelly 1992; Hill 1983; Riboud
1985; Gerfin 1996; Martins 2001), migration (Nakosteen and Zimmer 1980),
credit scoring model (Greene 1998) and health insurance model (Van and
Praag 1981), to mention only a few. Two types of sample selection models
are frequently used in the empirical modelings: Type-2 and Type-3 Tobit
models. In a Type-2 Tobit model, the dependent variable in the selection
step is the binary variable (e.g., participant or non-participant), while in
a Type-3 Tobit model the dependent variable is censored as a selection
variable. It is well known that the latter uses more information about the
selection variable than the former does.

In order to consistently estimate the model with possible selectivity bias,
Heckman (1979) suggested a simple two-step estimation procedure in which
the normal distribution of error terms is assumed. Moreover, Wooldridge
(1994) proposed a two-step estimation procedure which can be generalized
to non-normal error distributions. Wooldridge (1994) argued that his es-
timators are potentially more efficient than Heckman (1979)’s procedure
especially when the X matrix is near multicollinearity. Many studies have
been carried out to avoid the misspecification of distributional function
and accordingly semiparametric estimation for the model with sample se-
lection has been proposed with weaker restrictions than the normality of
error terms. For a Type-3 Tobit model, Lee (1994), Chen (1997), Hon-
ore, Kyrizidou and Udry (1997, hereinafter HKU), and Li and Wooldridge
(2002) suggested various semiparametric estimation methods with the in-
dependence restriction between regressors and error terms. In this paper,
we use Monte Carlo experiment to compare the finite sample performances
of four different Type-3 Tobit estimators.

This paper is organized as follows. In section 2, we briefly discuss the
basic Type-3 Tobit model and various semiparametric estimators. Section 3
reports the Monte Carlo simulation results and compares the finite sample
performance of each semiparameric estimator. Section 4 concludes the
paper.

2. SEMIPARAMETRIC ESTIMATION OF TYPE-3 TOBIT
MODEL

Formally, a Type-3 Tobit model consists of two equations: The first
equation (the selection equation) is given by

yi = max{xiβ + ui, 0}, (1)
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where yi is known as the selection variable. This differs from a Type-2
Tobit model where one only observes the sign of yi. In a Type-3 Tobit
model, we observe yi’s actual value when yi > 0. And the second equation
(the main equation) is

wi = {ziγ + vi} · I(yi > 0), (2)

where I(·) is the usual indicator function which is equal to 1 when yi > 0, 0
otherwise. An example of Type-3 Tobit model is that yi is the hour worked
by an individual and wi is the wage of the same individual. We observe
the wage only if the hour of work is positive.

Without the specific distribution assumption, the first step (selection)
equation can be estimated by Censored Least Absolute Deviation (CLAD)
method proposed by Powell (1984). Powell (1984) established the

√
n-

consistency and the asymptotic normality for the CLAD estimator. Let
β̂CLAD denote the CLAD estimator of β. β̂CLAD is obtained by minimizing
the following objective function,

β̂CLAD = arg min
β

1
n

n∑
i=1

|yi −max{0, xiβ}| (3)

For the second step estimation, take the expectation of (2), conditioning
on yi > 0, gives

E(wi|yi > 0) = ziγ + E(vi|yi > 0) = ziγ + E(vi|ui > −xiβ) (4)

Because E(vi|ui > −xiβ) does not have zero mean, the least squares
estimator of regressing wi on zi will lead to inconsistent estimation of γ.
Under the joint normality assumption of (ui, vi), one can add a bias cor-
rection term which can be written as the inverse Mills ratio to restore a
zero mean condition in (4). However, this estimator based on a paramet-
ric distribution assumption of the error terms is consistent only when the
error distribution is correctly specified. As an alternative, various semi-
parametric approaches without assuming the underlying error distribution
are proposed. In the following subsection, we briefly discuss some semi-
parametric estimators which are used in our simulation.

2.1. Lee’s Estimator (Lee 1994)
Lee (1994) suggested using a nonparametric term to correct the sample

selection bias in the main equation. He employed the ‘index property’
suggested by Ichimura and Lee (1991). For the identification of γ in (4), the
index property that additional term generated from the non-random sample
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selection is a function of xiβ. The selection bias term can be rewritten as

E(v|u > −xβ) =

∞∫
−∞

∞∫
xβ

∞∫
−xβ

vf(v, u)h(k)du dk dv

∞∫
xβ

∞∫
−xβ

fu(t)h(k)dt dk

(5)

where f(v, u) is a joint density of v and u, fu(·) is a marginal density of
u and h(·) is the density function of xβ. The distribution of xβ should be
absorbed in the truncated sample selection term. Nonparametric estimate
for the bias correction term is obtained by

Ê(v|u > −xiβ, xβ > xiβ) =

∫∞
xiβ

∫ 1
na2

n

∑n
j=1,j 6=i vjK

(
uj−ui

a1

)
K

(
xjβ−xiβ

a2

)
−xiβ∫∞

xiβ

∫ 1
na2

n

∑n
j=1,j 6=i K

(
uj−ui

a1

)
K

(
xjβ−xiβ

a2

)
−xiβ

(6)
where (a1, a2) are smoothing parameters1 and K(·) is a kernel function.2

In practice, the conditions xβ > xiβ and u > −xiβ can be reduced to
y = xβ + u > 0.

Subtracting (4) from (2), the regression model for the main equation is
given by

wi − Ê(w|u > −xiβ, xβ > xiβ) =
[
z − Ê(z|xβ > xiβ)

]
· γ + εi (7)

Because the error term (εi) in (7) satisfies the condition E(εi|xi) = 0, γ
can be consistently estimated by the least squares procedure. Lee (1994)
also showed that his suggested semiparametric estimator has an asymptotic
normal distribution.

2.2. Chen’s Estimator (Chen 1997)
Chen (1997) proposed an alternative semiparametric estimator under

the independence assumption between error terms and regressors. With
consistently estimated β̂CLAD in the first step, a bias correction term is
converted to a constant term through trimming the sample in the second
step. By switching the bias term into a constant, the net effect on the
subsample of the selection is only to shift the intercept term in the main
equation without affecting the slope coefficients.

1Lee (1994) showed in the simulation that his estimators are not very sensitive to the
choice of the smoothing parameter.

2In this article, the standard normal density function is used as the kernel function,
while Lee (1994) adopted the following density function: K(t) = (15/16)(1 − t2)2 if
|t| < 1, K(t) = 0 otherwise.
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Chen (1997) suggested a constant censoring point instead of−xβ through
trimming the original sample so that the conditional expectation E(vi|ui >
−xiβ) becomes zero in the trimmed sample. In practice, he set up K dif-
ferent subsamples in which (u ∈ (ck−1, ck), xiβ > −ck−1) holds in the kth
subsample, and c0 < c1 < · · · < cK . Define αk = E(v|ck > u > ck−1, xβ >
−ck−1, y > 0) as the conditional mean of v in the kth subsammple. As a
consequence, αk becomes a constant under the assumption that regressors
and error terms are independent. Hence, equation (4) can be rewritten as

E(w|ck > u > ck−1, xβ > −ck−1, y > 0) = zγ + αk (8)

Chen’s estimator for γ is constructed by pooling K subsamples:

γ̂p1 = min
γ,α1,α2,···αK

1
n

n∑
i=1

K∑
k=1

I(ck > ui > ck−1, xiβ > −ck−1, yi > 0)

× (wi − ziγ − αk)2 (9)

where I(·) is an indicator trimming function and γ̂p1 denotes a least-
squares-type estimator. Chen has shown that this estimator is consistent
and asymptotically normal under some regularity conditions.

2.3. HKU’s Estimator (Honore, Kyriazidou and Udry 1997)
HKU (1997) considered two semiparmetric estimators for Type-3 Tobit

model: One is under the assumption of conditional symmetry, the other is
under the assumption of independence between error terms and regressors
to restore a zero conditional mean. In this paper, we focus on the second
one based on the independence condition to keep same assumption with
other estimators. Under this assumption, a pairwise comparison approach
is employed to correct the sample selection bias in the main equation.
Pairwise difference approach is based on the fact that the difference of
independently and identically distributed random variables is distributed
around zero. Consider the following two pairwise equations:

E(wi|ui > −xiβ) = ziγ + E(vi|ui > −xiβ) (10)

E(wj |uj > −xjβ) = zjγ + E(vj |uj > −xjβ) (11)

Subtracting (11) from (10), the pairwise difference regression model is

E(wi|ui > −xiβ)− E(wj |uj > −xjβ)
= (zi − zj)γ + [E(vi|ui > −xiβ)− E(vj |uj > −xjβ)] (12)

If the conditional mean of the error terms inside the bracket of (12) is
zero, then (12) can be estimated by the least squares method. In order to
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restore a zero conditional mean, a truncated point should be used which
gives the same bias for vi and vj . They suggested the following trimmings:
ui > max{−xiβ,−xjβ} and uj > max{−xiβ,−xjβ}. Therefore, by replac-
ing the pairwise trimming, (vi − vj) is distributed symmetrically around
zero.

Using the pairwise difference approach, HKU estimator based on the
main equation is

γ̂h2 = min
γ

∑
i<j

I [yi > max{0, (xi − xj)β}, yj > max{0, (xi − xj)β}]

× {wi − wj − (zi − zj)γ}2 (13)

where I(·) is the usual indicator function.

2.4. Li-Wooldridge’s Estimator
Wooldridge (1994) proposed an alternative parametric two-step estima-

tion procedure for a sample selection model. He argued that his estimator
may be more efficient than the one suggested by Heckman (1979). More-
over, Wooldridge (1994) suggested that his method can be generalized to
the non-normal error case. Li and Wooldridge (2002) proposed a new semi-
parametric estimator in the second step under the assumption that error
terms are independent with regressors. Using the data with yi > 0, equa-
tion (4) can be written as

E(wi|xi, ui, yi > 0) = ziγ+E(vi|xi, ui, yi > 0) = ziγ+E(vi|ui) = ziγ+g(ui)
(14)

where the second equality used the fact that E(vi|xi, ui, yi > 0) = E(vi|ui)
by the independence assumption. g(ui) = E(vi|ui) is an unknown function.
Li and Wooldridge showed that γ can be consistently estimated from the
following partially linear model, using observations with yi > 0,

wi = ziγ + g(ui) + εi (15)

Robinson (1988) considered the consistent estimation of γ in the case ui

is observable. When ui is not observable but can be consistently estimated
(e.g., generated regressor), Li and Wooldridge (2002) established the

√
n-

consistency and asymptotic normal distribution of γ̂ based on estimating
(15) with ui being a generated regressor.

3. SIMULATION RESULTS

In this section, we compare the finite sample performances of the four
different Type-3 Tobit estimators discussed in section 2. In order to com-
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pare with the results of Chen (1997), the data generating process in this
paper is similar to the ones used in Chen (1997).

The selection equation of the Type-3 Tobit model in our experiment is

yi = max{β1x1i + β2x2i + ui, 0} (16)

And the main equation is given by

wi = {γ1z1i + γ2z2i + vi} · I(yi > 0) (17)

The true parameters are the same as in Chen (1997), which are {β1, β2} =
{1, 1} and {γ1, γ2} = {1, 2}. The independent variables, x1 = z1 and
x2 = z2 are designed for both equations. x1 and x2 follow a Normal (0,1)
distribution and a Uniform (-2,2) distribution, respectively. The error term
ui in the selection equation follows three different distributions: (i) ui is
drawn from a Normal (0,1) distribution, (ii) ui is drawn as a mixed gamma
and normal, which is (

√
0.8·Standardized χ2

(8) +
√

0.2·Normal (0,1)),3 and
(iii) ui follows a Cauchy (0,1) distribution that has symmetric and much
heavier tails than the normal distribution. The error term vi in the main
equation is constructed by mixing ui and a normal distribution: vi =√

0.5 · ui +
√

0.5 · Normal(0, 1). For γ̂p1 of Chen (1997), the censored
intervals are chosen with K=20 with c0 = −4 and cK = 4. We do not trim
the data set when using γ̂l of Lee (1994). We conduct 2,000 replications
with the sample size equal to 50, 100, 200 and 500. We select three different
error term distributions. Because similar simulation results are verified for
the coefficient γ̂2 on z2i in (17), only results for the coefficient γ̂1 on z1i are
reported. The tables 1∼3 present the mean, standard deviation, and Root
Mean Squared Error (RMSE) of the estimates in each case.

The finite sample performance of RMSE is mixed for various cases. In
Table 1, Li and Wooldridge’s estimator performs better than other esti-
mators in the Normal distribution case, especially when the sample size
is small (n = 50 and 100). However, as the sample size increases, the
RMSE of HKU (n=200) and Chen (n=500) estimators tend to be smaller
than that of Li-Wooldridge’s method. Also note that the bias and variance
of four estimators are significantly improved as the sample size increases.
In particular, when the sample size is 500, most seimparametric methods
(except for Lee) sharply estimate the true parameter. For Li-Wooldridge’s
estimator, we use two different methods to choose the smoothing param-
eter; one is the fixed bandwidth selection (denoted by LW1 and LW2 in
Table 1) where the smoothing parameter is chosen via h = c ·sd(ûi) ·n−1/5,
and c=1 (LW1) and c=2 (LW2) are selected for the constant c. The other is

3Standardized χ2
(8)

has the same density function with the gamma (0,1) distribution

in Chen (1997).
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TABLE 1.

µi ∼ N(0, 1)

Sample size Estimator True value Mean Standard deviation RMSE

N=50 Lee 1.000 0.9780 0.3072 0.3079

Chen 1.000 0.9793 0.3234 0.3239

HKU 1.000 0.9696 0.2756 0.2772

LW1 1.000 0.9703 0.2791 0.2805

LW2 1.000 0.9343 0.2613 0.2693

LWCV 1.000 0.9682 0.2824 0.284

N = 100 Lee 1.000 1.0287 0.2222 0.2240

Chen 1.000 0.996 0.2068 0.2068

HKU 1.000 0.9826 0.1921 0.1928

LW1 1.000 0.9900 0.1956 0.1958

LW2 1.000 0.9612 0.1843 0.1882

LWCV 1.000 0.9885 0.1983 0.1986

N = 200 Lee 1.000 1.0575 0.1682 0.1777

Chen 1.000 0.9960 0.1327 0.1327

HKU 1.000 0.9912 0.1309 0.1311

LW1 1.000 0.9918 0.1373 0.1375

LW2 1.000 0.9735 0.1306 0.1332

LWCV 1.000 0.9918 0.1372 0.1374

N = 500 Lee 1.000 1.1072 0.1160 0.1579

Chen 1.000 1.0036 0.0829 0.0829

HKU 1.000 1.0014 0.0837 0.0837

LW1 1.000 0.9999 0.0857 0.0857

LW2 1.000 0.9895 0.083 0.0837

LWCV 1.000 10000 0.086 0.0859

1. Because similar simulation results are found for γ̂2, we report only results for γ̂1in
equation (17).
2. LW1 and LW2 have the fixed bandwidth with c=1 and c=2, respectively. LWCV has
the bandwidth obtained from cross validation method.

the local constant cross validation method (denoted by LWCV) which leads
to the optimal bandwidth selection. Even though LW2 performs slightly
better than LW1 and LWCV in the normal error case, overall the RMSE
is very similar with respect to other choices of h.4 This finding also holds
true for the case of the mixed gamma and normal distribution.

Table 2 reports simulation results of four semiparametric estimators
when ui is the mixed gamma and normal distribution, and thus is an asym-

4Christofides et al. (2003) pointed out that the semiparametric estimator of γ depends
on the average of the nonparametric estimates which is less sensitive to different values
of the smoothing parameter.
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TABLE 2.

ui ∼ Mixed Gamma and Normal distribution

Sample size Estimator True value Mean Standard deviation RMSE

N = 50 Lee 1.000 0.9632 0.3070 0.3090

Chen 1.000 0.9754 0.3248 0.3255

HKU 1.000 0.9696 0.2814 0.2829

LW1 1.000 0.9619 0.2804 0.2828

LW2 1.000 0.9181 0.2571 0.2697

LWCV 1.000 0.9555 0.2825 0.2859

N = 100 Lee 1.000 0.9758 0.2222 0.2234

Chen 1.000 0.961 0.1966 0.2003

HKU 1.000 0.9603 0.2032 0.2070

LW1 1.000 0.9534 0.1916 0.1971

LW2 1.000 0.9203 0.1810 0.1977

LWCV 1.000 0.9536 0.1928 0.1982

N = 200 Lee 1.000 1.0171 0.1635 0.1643

Chen 1.000 0.9681 0.1353 0.139

HKU 1.000 0.9791 0.1418 0.1433

LW1 1.000 0.9622 0.1377 0.1428

LW2 1.000 0.9388 0.1320 0.1454

LWCV 1.000 0.963 0.1386 0.1434

N = 500 Lee 1.000 1.0504 01133 0.1239

Chen 1.000 0.9592 0.0812 0.0908

HKU 1.000 0.9724 0.0889 0.0930

LW1 1.000 0.9587 0.0855 0.095

LW2 1.000 0.9441 0.0829 0.100

LWCV 1.000 0.9591 0.0858 0.095

1. Because similar simulation results are found for γ̂2, we report only results for γ̂1in
equation (17).
2. LW1 and LW2 have the fixed bandwidth with c=1 and c=2, respectively. LWCV has
the bandwidth obtained from cross validation method.

metric distribution. Similarly to the results of Table 1, Li-Wooldridge’s esti-
mator slightly dominates other semiparametric estimators when the sample
size is 50 and 100. It is noted that Chen’s estimator performs better than
other estimators including Li-Woodridge method when the sample size is
large. However, as a whole the finite sample performances of semiparamet-
ric estimators are slightly deteriorating when compared with the normally
distributed error case in that the estimators reveal the larger variance and
bias as reported in Table 2 . The asymmetric error distribution seems to
affect the precise parameter estimate of a Type-3 Tobit model.
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TABLE 3.

ui ∼ Cauchy (0, 1)

Sample size Estimator True value Mean Standard deviation RMSE

N = 50 Lee 1.000 0.8459 0.7403 0.7558

Chen 1.000 0.9879 0.7208 0.7206

LW1 1.000 0.8213 0.6483 0.6678

LW2 1.000 0.9880 0.2724 0.2726

LWCV 1.000 0.8430 0.6503 0.6687

N = 100 Lee 1.000 0.8778 0.5356 0.5491

Chen 1.000 0.9614 0.4951 0.4963

LW1 1.000 0.8050 0.4576 0.4972

LW2 1.000 1.0012 0.1721 0.1721

LWCV 1.000 0.8317 0.4913 0.5191

N = 200 Lee 1.000 0.8850 0.5275 0.5396

Chen 1.000 0.9560 0.4142 0.4163

LW1 1.000 0.7780 0.3420 0.4076

LW2 1.000 1.0121 0.1281 0.1286

LWCV 1.000 0.7907 0.4001 0.4513

N = 500 Lee 1.000 0.9157 0.3512 0.3610

Chen 1.000 0.9897 0.3631 0.3631

LW1 1.000 0.7544 0.2858 0.3767

LW2 1.000 1.0262 0.0816 0.0857

LWCV 1.000 0.7441 0.3254 0.4139

1. Because similar simulation results are found for γ̂2, we report only results for γ̂1in
equation (17).
2. LW1 and LW2 have the fixed bandwidth with c=1 and c=2, respectively. LWCV has
the bandwidth obtained from cross validation method.

Table 3 presents simulation results with a Cauchy error distribution that
has no finite moments of any order (a thick tail distribution). In the case
of the Cauchy errors, McDonald and Xu (1996) examined that Powell’s
CLAD estimator which is employed in our analysis dominates other esti-
mators such as Tobit and Semiprametric Maximum Likelihood (SP-ML)
estimators. Hence we expect that there is no serious bias in estimating the
parameters in the first step even with a Cauchy error distribution. Under
this design, LW2 estimator outperforms the other alternatives either the
sample size is large or small. Since the HKU estimator is quite distorted
in this case, we do not report the RMSE for HKU estimator. As a con-
sequence, the thick tail (no finite moments of any order) critically affects
the performance of the pairwise difference approach. Compared to the
two previous experiments, the bias and variance estimated from the four
estimators became relatively larger in the Cauchy distribution case.
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In summary, Li and Wooldridge’s estimator based on the semiparametric
partially linear model compares favorably with other existing methods, and
especially when the sample size is small.

4. CONCLUSION

We have investigated and compared the finite sample performances of the
four different semiparametric estimators recently developed for a Type-3
Tobit model. In general, the Monte Carlo simulation results suggest that
all the semiparametric methods lead to similar results. Specifically we
found that the asymmetry or thick tails (no finite moments) error distri-
bution moderately affect the bias and variance of semiparamtric estimator.
Simulation results also indicated that Li and Wooldridge’s estimator un-
der the independence restriction performs relatively well compared with
other alternative approaches, especially when the sample size is small and
the error has a thick tail distribution. Our simulations reinforce the fact
that semiparametric estimators of Type-3 Tobit models can be widely em-
ployed in empirical research without the standard assumption of normal
error distributions.
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