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We describe the numerical method used to compute equilibria in the econo-
mies studied by Aiyagari and McGrattan, The Optimum Quantity of Debt
(Journal of Monetary Economics 1998). These economies have a large number
of infinitely lived households whose saving behavior is influenced by precau-
tionary saving motives and borrowing constraints. We apply the finite element
method to compute households’ saving decisions and to compute the distribu-
tion of asset holdings. To verify that the method works well for our problems,
we apply them to some related test problems with known solutions. c© 2003
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1. INTRODUCTION

Aiyagari and McGrattan (1998) study economies with a large number of
infinitely lived households whose saving behavior is influenced by precau-
tionary saving motives and borrowing constraints. In this paper, we show
that the finite element method generates accurate solutions to these prob-
lems. We apply the finite element method to compute households’ saving
decisions and to compute the distribution of asset holdings.

We show how to apply the finite element method in the economies of
Aiyagari and McGrattan (1998) with inelastically supplied labor and in
the economies with elastically supplied labor (their benchmark economy).
Although the economy with inelastically supplied labor is a special case of
the benchmark economy, the equilibrium in the inelastic labor supply case
is much easier to compute and is therefore treated separately. In each case,
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we start with the consumer’s problem, assuming the consumer takes prices
as given. We then show how the equilibrium prices are determined.

The properties of the equilibrium functions in the Aiyagari-McGrattan
economies make them ill-suited to most numerical methods. The saving
decision functions of the households have kinks at points where borrowing
constraints bind. The distribution of asset holdings has discontinuities,
possibly infinite in number, because there are mass points in the distribu-
tion. The finite element approximation is done subdomain by subdomain.
With an appropriate discretization of the domain, kinks and discontinuities
can be handled.

To verify that the methods work well for our problems, we apply them
to some related test problems with known solutions. The functions in
the related problems have the same properties as the Aiyagari-McGrattan
decision and asset-pricing functions.

In Section 2, we describe the economy with inelastically supplied labor
and the computational algorithm. We do the same in Section 3 for the
benchmark economy with elastically supplied labor. In Section 4, we work
through the test problems.

2. THE CASE WITH INELASTICALLY SUPPLIED LABOR
2.1. Computing the consumer’s decision functions

The consumer chooses sequences of consumption and asset holdings to
maximize expected utility; i.e.,1

max
{c̃t,ãt+1}

E
[ ∞∑

t=0

(β(1 + g)1−ν)tc̃1−ν
t /(1− ν)|ã0, e0

]
(1)

subject to c̃t + (1 + g)ãt+1 ≤ (1 + r̄)ãt + w̄et + χ, (2)
ãt ≥ 0, (3)

with the after-tax interest rate r̄, the after-tax wage rate w̄, and a lump-
sum transfer χ taken as given. The productivity level et is assumed to
follow a Markov chain with Eet = 1. The probability of transiting from
state i to state j is given by πi,j , i, j = 1, . . . ,m.

To incorporate the inequality constraints in (3), we replace the objective
in (1) with

E

[ ∞∑
t=0

(β(1 + g)1−ν)t

{
c̃1−ν
t

1− ν
+

1
3
ζmin(ãt, 0)3

}
|ã0, e0

]
, (4)

1As in the paper, we normalize variables by dividing through by output, and we
assume that ãt ≥ 0 is sufficiently restrictive for the parameters that we consider.
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where ζ is some positive parameter. Note that if ãt is negative, then we
subtract −ζã3

t from the consumer’s value function. With this respecifica-
tion, the optimization problem is as follows: given ζ, we choose sequences
of consumption and assets that are optimal for (4) subject to (2). The
parameter ζ is set so that (3) is approximately satisfied. In practice, the
optimization is done either by iterating over a sequence 1, 10, 102, etc. for
ζ, until the constraints are satisfied to within the tolerance, or by starting
with a reasonably large value of ζ.2

Because the decision rules are stationary, we can compute the functions
c(x, i) and α(x, i) that satisfy the following first-order conditions for i =
1, . . . ,m and x ∈ [0, xmax]:

(1 + g)c(x, i)−ν

=β(1 + g)1−ν{
∑

j

πi,j (1 + r̄)c(x′, j)−ν + ζmin(α(x, i), 0)2}, (5)

c(x, i) + (1 + g)α(x, i) = (1 + r̄)x+ w̄e(i) + χ, (6)

where x′ = α(x, i) and e(i) is the productivity level in state i. Note that
these conditions assume an interior solution for c(x, i). If we substitute the
expression for c(x, i) in (6) into (5), we have a functional equation in α.
We denote this expression by R(x, i;α); i.e.,

R(x, i;α) = (1 + g){(1 + r̄)x+ w̄e(i) + χ− (1 + g)α(x, i)}−ν

− β(1 + g)1−ν{
∑

j

πi,j {(1 + r̄)(1 + r̄)α(x, i) + w̄e(j)

+ χ− (1 + g)α
(
α(x, i), j

)
}−ν + ζmin(α(x, i), 0)2}. (7)

The computational task is, therefore, to find an approximation for α(x, i)
– say αh(x, i) – that implies R(x, i;αh) ≈ 0 for all x and i. We accomplish
this task by applying a finite element method. In particular, we do the
following. We choose some discretization of the domain of our functions.
Since only x is continuous, we need to specify some partition of [0, xmax]
where xmax is such that no x > xmax would be chosen by the consumer.
We refer to each subinterval of x as an element. On each element, we choose
a set of basis functions for approximating α; that is, we assume αh can be
represented as a weighted sum of basis functions, where the weights and
basis functions may be different for each element. In our case, we choose
linear basis functions for all elements; e.g.,

αh(x, i) = ψi
eNe(x) + ψi

e+1Ne+1(x),

2See R. Fletcher (1987), Practical Methods of Optimization (New York: Wiley) for a
discussion of the relationship of ζ to the Lagrange multipliers of the constraints in (3).
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Ne(x) =
xe+1 − x

xe+1 − xe
, Ne+1(x) =

x− xe

xe+1 − xe
,

on the element [xe, xe+1]. This choice is motivated by our test problem (see
below). Notice that αh(xe, i) = ψi

e and αh(xe+1, i) = ψi
e+1. If we consider

the approximation globally, we need to compute values for ψi
e for all nodes

e (assume there are n) and for all levels of productivity i. We choose these
values for ψi

e by setting the weighted residual to zero; i.e.,∫
R(x, i;αh)Ne(x)dx = 0, i = 1, . . . ,m, e = 1, . . . , n. (8)

In effect, we solve a problem of the following form: find ~ψ such that h(~ψ) =
0, where ~ψ is the vector of coefficients that we are searching over and h is
the system of equations in (8).

There are several practical points worth noting. The first point is that,
for parameterizations in which the no-borrowing constraint binds, the penal-
ty function only serves to get α(x, i) > −ε, where ε is small but positive.
Thus, if the function is truly equal to zero for low values of x and i, then
the algorithm will not yield a mass point at x = 0. To deal with this
problem, we use a two-step procedure. At the first step, we apply the
penalty function method and choose a sufficiently fine mesh to resolve the
kink. The kink is defined as the grid point at which the second derivative
is maximized. At the second step, we use the candidate solution to deter-
mine the boundary conditions αh(x, i) = 0, x < x∗, where x∗ is the grid
point at which the second derivative of αh(x, i) is highest. These boundary
constraints are imposed on the solution prior to the final run. The second
point concerns the procedure for solving h(~ψ) = 0. We solve this system
of equations by applying a Newton method. Therefore, we need to com-
pute the derivative of h(~ψ) with respect to ~ψ, and we need to invert it.
We calculate analytical derivatives because it saves computing time. With
respect to inverting the Jacobian, we can rely on the fact that it is very
sparse. The sparseness is due to the fact that the approximation is done el-
ement by element; thus, the basis functions are nonzero on relatively small
subdomains. In practice, however, we only use sparse matrix routines if
the dimension of the matrix to be inverted is bigger than 2000 × 2000.

2.2. Computing the distribution of assets
To compute equilibrium prices, we must first construct the joint distribu-

tion over assets and productivities. This distribution can be derived from
the decision rule for asset holdings; i.e.,

xt+1 = α(xt, et),
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where xt is asset holdings in t and et is the earnings shock in t. We want
to compute the invariant distribution for asset holdings; namely, H(x, i) =
Pr(xt < x | et = e(i)). To compute the distribution, we solve the following
functional equation:

H(x, i) =
m∑

j=1

πj,iH(α−1(x, j), j)I(x ≥ α(0, j)), (9)

where π is the transition matrix for the Markov chain governing earnings
and I is an indicator function (i.e., I(x > y) is equal to one if x > y and
is equal to zero otherwise). The form of the functional equation in (9) is
motivated below.

Suppose X1 is a random variable with density function f1. Assume that
X2 is a second random variable that is given by X2 = h(X1) for some
function h. In this case, the density function for X2 is

f2(x2) =
∫ ∞

−∞
f1(x1)δ(x2 − h(x1))dx1, (10)

where δ is the Dirac delta function. If we integrate the left-hand side of
(10), we get

F2(x2) =
∫ x2

−∞
f2(s)ds =

∫ x2

−∞

∫ ∞

−∞
f1(x1)δ(s− h(x1))dx1ds

=
∫ ∞

−∞

[∫ x2

−∞
δ(s− h(x1))ds

]
f1(x1)dx1ds

=
∫ ∞

−∞
I(h(x1) ≤ x2)f1(x1)dx1

=
∫ ∞

−∞
I(h(x1) ≤ x2)dF1(x1). (11)

Now assume that h is strictly increasing and, hence, invertible. In this
case, we can rewrite (11) as follows:

F2(x2) =
∫ ∞

−∞
I(h−1(h(x1)) ≤ h−1(x2))dF1(x1)

=
∫ ∞

−∞
I(x1 ≤ h−1(x2))dF1(x1)

=
∫ h−1(x2)

−∞
dF1(x1)

= F1(h−1(x2)).
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In the example with assets, we have α increasing but not strictly. To
motivate the functional equation in (9), we consider cases in which the
borrowing constraints do not bind and cases in which they do and conclude
that both cases imply the same functional equation for H. First, consider
states of the world where the borrowing constraint does not bind (e.g.,
values of i such that α(x, i) > 0 for all x ≥ 0). Using (11), we know that
the equation to be solved is

Hn+1(x′, i) =
m∑

j=1

πj,i

∫ ∞

−∞
I(α(x, j) ≤ x′)dHn(x, j), (12)

where Hn is the cumulative distribution function for today’s assets, Hn+1

is the cumulative distribution function for tomorrow’s assets, and both Hn

and Hn+1 are functions of the earnings state. If an invariant distribution
exists, it is given by the fixed point of (12); i.e., H = Hn = Hn+1. In this
case, I(α(x, j) ≤ x′) is equal to one for x′ ≥ α(0, j) and is equal to zero for
x′ < α(0, j). Therefore,

∫ ∞

−∞
I(α(x, j) ≤ x′)dHn(x, j) =

{
Hn(α−1(x′, j), j) if x′ ≥ α(0, j)
0 if x′ < α(0, j),

and (12) can be rewritten as follows:

Hn+1(x′, i) =
m∑

j=1

πj,iHn(α−1(x′, j), j)I(x′ ≥ α(0, j)). (13)

Second, consider states of the world where the borrowing constraint binds
(e.g., values of i such that α(x, i) = 0 for x ∈ [0, x∗] where x∗ > 0). In
these cases, if we assume that α−1(0, j) = x∗ where x∗ is the point at
which we see a kink, then we again have the mapping in (13). If we assume
that Hn = Hn+1 at a fixed point, the functional equation for the invariant
distribution is given by (9).

To compute H, we again apply the finite element method with linear
basis functions. In this case, the residual is the difference between the
right- and left-hand sides of (9). For this problem, we do not have to
worry about inequality constraints directly, but we do have to deal with
them indirectly. If inequality constraints bind in the consumer’s problem,
then the decision functions for low productivity levels will be set to zero
for some interval [0, x∗]. Thus, there will be a mass point at x = 0 and
throughout the distribution at points traversed prior to reaching the zero-
asset position. The mass points in the distribution imply that the solution
to (9) has discontinuities, possibly at a countably infinite number of points.
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Thus, we need to know if the finite element method, as we implement it,
will yield a good approximation to the distribution H.

2.3. Computing an equilibrium
Assume that we have in place numerical algorithms for computing α(x, i)

and H(x, i). We now describe an algorithm for computing the equilibrium
after-tax interest rate. All other prices and quantities can be determined
from the interest rate.

We start with bounds on the interest rate r; that is, we assume that the
equilibrium interest rate is in the interval [rl, ru]. Our inputs are the share
of capital in production θ, the government consumption-to-GDP ratio γ,
the debt-to-GDP ratio b, the discount factor β, the rate of capital depre-
ciation δ, the utility parameters η and µ, the growth rate g, the initial
bounds on r, the productivity levels e(i), i = 1, . . . ,m, and the transition
probability matrix π. Our initial guess for the equilibrium r is 1

2 (rl+ru). If
lump-sum taxes are assumed, then we set the taxes equal to γ+χ+(r−g)b.
If proportional taxes are assumed, then we back out the tax rate from the
government budget constraint; i.e.,

τy =
γ + χ+ rb− gb

1 + rb− δθ/(r + δ)
. (14)

With τy and r, we have the after-tax interest rate r̄ = (1 − τy)r. We can
also compute the after-tax wage rate

w̄ = (1− τy)(1− θ). (15)

We now have the inputs needed for computing finite element approxima-
tions of α and H. The next step is to calculate the mean asset holdings
Eãt. Since our approximation for H is piecewise linear, an estimate of the
mean asset holdings is simply

1
2

∑
j

∑
i

(Ĥ(i+ 1, j)− Ĥ(i, j))(x(i+ 1) + x(i)),

where x(i) is the ith grid point over asset holdings and Ĥ(i, j) is the finite
element approximation of H(x(i), j). Given this estimate of Eãt, we check
to see if markets are cleared; i.e., if

Eãt =
θ

r + δ
+ b. (16)

If the right-hand side of (16) is larger than the left-hand side, then we set
rl = r and repeat the above steps. Otherwise, we set ru = r and repeat.
Iterations are made until (16) is satisfied to within some tolerance level.
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3. THE CASE WITH ELASTICALLY SUPPLIED LABOR
3.1. Computing the consumer’s decision functions

The consumer chooses sequences of consumption, asset holdings, and
leisure to maximize expected utility; i.e.,

max
{c̃t,ãt+1,`t}

E
[ ∞∑

t=0

(β(1 + g)η(1−µ))t(c̃ηt `
1−η
t )1−µ/(1− µ)|ã0, e0

]
(17)

subject to c̃t + (1 + g)ãt+1 ≤ (1 + r̄)ãt + w̄et(1− `t) + χ, (18)
ãt ≥ 0, (19)
`t ≤ 1, (20)

with the after-tax interest rate r̄, the after-tax wage rate w̄, and a lump-
sum transfer χ taken as given. In specifying the optimization problem,
we have left out two inequality constraints; namely, ct ≥ 0 and `t ≥ 0.
When we compute the decision functions, these inequality constraints are
ignored, but we check the solution to make sure that they are satisfied. The
productivity level et is assumed to follow a Markov chain with Eet = 1.
The probability of transiting from state i to state j is given by πi,j , i, j =
1, . . . ,m.

To incorporate the inequality constraints in equations (19) and (20), we
replace (17) with

E

[ ∞∑
t=0

(β(1+g)η(1−µ))t

{
(c̃η

t `1−η
t )1−µ

1 − µ
+

1

3
ζ(min(ãt, 0)3+min(1−`t, 0)3)

}
|ã0, e0

]
,

(21)

where ζ is some positive parameter. Note that if ãt is less than zero, then
we subtract −ζã3

t from the consumer’s value function. If `t is greater than
one, then we subtract −ζ(1− `t)3. With this respecification, the optimiza-
tion problem is as follows: given ζ, we choose sequences of consumption,
asset holdings, and leisure that are optimal for (21) subject to (18). The
parameter ζ is set so that (19) is approximately satisfied. In practice, the
optimization is done either by iterating over a sequence 1, 10, 102, etc. for
ζ, until the constraints are satisfied to within the tolerance, or by starting
with a reasonably large value of ζ.

Because the decision rules are stationary, we can compute the functions
c(x, i), α(x, i), and `(x, i) that satisfy the following first-order conditions:

η(1 + g)c(x, i)η(1−µ)−1`(x, i)(1−η)(1−µ) = β(1 + g)η(1−µ){
∑

j

πi,j η(1 + r̄)

· c(x′, j)η(1−µ)−1`(x′, j)(1−η)(1−µ) + ζmin(α(x, i), 0)2}, (22)
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(1− η)c(x, i)η(1−µ)`(x, i)(1−η)(1−µ)−1

= ηw̄e(i)c(x, i)η(1−µ)−1`(x, i)(1−η)(1−µ)

+ ζmin(1− `(x, i), 0)2, (23)

c(x, i) + (1 + g)α(x, i) = (1 + r̄)x+ w̄e(i)(1− `(x, i)) + χ, (24)

x′ = α(x, i), (25)

for i = 1, . . . ,m and x ∈ [0, xmax], where e(i) is the productivity level in
state i. Notice that c(x, i) is a function of x, i, e(i), the parameters, and
the function α(·). Therefore, with a candidate solution for α, we can back
out c using (24). This is not the case for leisure, however, since (23) is
an implicit function of `(x, i) (if we assume that x, i, e(i), the parameters,
α(·), and c(·) are known). However, we can construct a numerical solution
for `(x, i) by applying a Newton method with given values for η, µ, ζ, r̄,
w̄, χ, g, x, i, e(i), and α(x, i). We simply iterate on

`k+1 = `k − f(`k)/J(`k), k = 0, 1, . . . , (26)

where

f(`) = (1− η)c(`)η(1−µ)`(1−η)(1−µ)−1 − ζmin(1− `, 0)2

− w̄e(i)ηc(`)η(1−µ)−1`(1−η)(1−µ),

c(`) = (1 + r̄)x+ w̄e(i)(1− `) + χ− (1 + g)α(x, i), (27)

J(`) = −2w̄e(i)(1− η)η(1− µ)c(`)η(1−µ)−1`(1−η)(1−µ)−1

+ (1− η)((1− η)(1− µ)− 1)c(`)η(1−µ)`(1−η)(1−µ)−2

+ w̄2e(i)2η(η(1− µ)− 1)c(`)η(1−µ)−2`(1−η)(1−µ)

+ 2ζmin(1− `, 0). (28)

The function f is the Euler equation in (23), the function c is consumption
derived from the budget constraint, and the function J is the derivative of
f with respect to `. We start the iterations in (26) with an initial guess `0,
and we stop when |`k+1 − `k| is less than some tolerance parameter.

Let `∗(x, i;α) be the solution to (26). Then we can write the first-order
conditions in (22)-(25) in terms of one residual; i.e.,
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R(x, i;α) = η(1 + g)c(`∗(x, i;α))η(1−µ)−1`∗(x, i;α)(1−η)(1−µ)

− β(1 + g)η(1−µ){
∑

j

πi,j η(1 + r̄)c(`∗(α(x, i), j;α))η(1−µ)−1

· `∗(α(x, i), j;α)(1−η)(1−µ) + ζmin(α(x, i), 0)2},

where c(·) is defined in (27). If we ignore the constraint on leisure (i.e.,
`t ≤ 1), the residual is given by

R(x, i; α)

= η(1 + g)

{
1 − η

ηw̄e(i)

}(1−η)(1−µ)

{(w̄e(i) + (1 + r̄)x − (1 + g)α(x, i) + χ)η}−µ

− β(1 + g)η(1−µ)

{∑
j

πi,j η(1 + r̄)

{
1 − η

ηw̄e(j)

}(1−η)(1−µ)

{(w̄e(j)

+ (1 + r̄)α(x, i) − (1 + g)α(α(x, i), j) + χ)η}−µ + ζ min(α(x, i), 0)2
}

.

(29)

We show later that other calculations are also simplified if an interior
solution for leisure is assumed. However, for some parameterizations, we
need to impose the constraint on leisure. Therefore, we describe how to
compute the equilibrium assuming the constraint is violated in some regions
of the state space.

As in the inelastic labor case, the computational task is to find an ap-
proximation for α(x, i), say αh(x, i), that implies R(x, i;αh) ≈ 0 for all x
and i. We follow the same procedure described for the inelastic labor case
(i.e., we apply the finite element method).

3.2. Computing the distribution of assets
Computation of the cumulative distribution is the same for the elastic

and inelastic labor cases. Therefore, the description in section 2.2 carries
over to this case.

3.3. Computing an equilibrium
Assume that we have in place numerical algorithms for computing α(x, i)

and H(x, i). We now describe an algorithm for computing the equilibrium
interest rate and aggregate hours. All other prices and quantities can be
determined from these two.

We start with an initial guess for N . With N fixed, we apply a bisection
method to calculate the interest rate that clears the asset market. Assume
that the equilibrium r is in the interval [rl, ru] and that our initial guess for
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the equilibrium r is 1
2 (rl +ru). If lump-sum taxes are assumed, then we set

the taxes equal to γ+χ+(r− g)b. If proportional taxes are assumed, then
we back out the tax rate from the government budget constraint. Given
the tax rate and the guess for N , we can determine the after-tax interest
rate (1 − τy)r and the after-tax wage rate (1 − τy)(1 − θ)/N . These two
rates are used to compute the finite element approximation of α. To check
to see that the asset market has cleared, we also compute a finite element
approximation of H. H is used to calculate the mean asset holdings Eãt.
Given this estimate of Eãt, we check to see if markets are cleared; i.e., if

Eãt =
θ

r + δ
+ b. (30)

If the right-hand side of (30) is larger than the left-hand side, then we set
rl = r; otherwise, we set ru = r. Iterations are made until (30) is satisfied
to within some tolerance level. Once (30) is satisfied, we update our guess
for N . The updating scheme is simply Newton-Raphson:

Nk+1 = Nk − J(Nk)−1f(Nk),

where

f(N) =
∑

i

∫
e(i)(1− `∗(x, i;α))dH(x, i)−N, (31)

and J is the derivative of f with respect to N . Note that the first term on
the right-hand side of (31) is a function of N because the optimal decision
rules depend on it.

4. TEST PROBLEMS
4.1. Computing the consumer’s decision functions – a test case

Assume that the household solves

max
{ct,at+1}

∞∑
t=0

βtu(ct)

subject to ct + at+1 = (1 + r)at + w.

This specification assumes that there is no uncertainty (et = 1); therefore,
wages are constant.

The dynamic program for this example involves the following form for
Bellman’s equation:

v(x) = max
0≤y≤Rx+w

{u(Rx+ w − y) + βv(y)}, (32)
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where yt = xt+1 is the asset position next period and R = 1+r is the gross
return. A conjectured solution is as follows:

y = 0 if x ∈ [0,m1],

y = −m2
1

m2−m1
+ m1

m2−m1
x if x ∈ (m1,m2],

y = (m3m1−m2
2)

m3−m2
+ m2−m1

m3−m2
x if x ∈ (m2,m3],

...

(33)

where mj , j = 1, 2, . . ., will be calculated below. Note that the solution
assumes that if x = mj+1, then y = mj .

The Lagrangian for the maximization on the right-hand side of (32) is
given by

L = u(xR+ w − y) + βv(y) + p(Rx+ w − y) + qy,

where p and q are multipliers. The first-order conditions for this problem
are

− u′(Rx+ w − y) + βv′(y)− p+ q = 0,
p ≥ 0, Rx+ w − y ≥ 0, p(Rx+ w − y) = 0,
q ≥ 0, y ≥ 0, qy = 0. (34)

If we assume that the conjecture above is correct, then when x ∈ [0,m1) we
have the y ≥ 0 constraint binding. Therefore, if we assume that Rx+w > 0,
then it must be true that y < Rx+ w, p = 0, and

v′(0) =
1
β
u′(Rx+ w)− q

β
≤ 1
β
u′(Rx+ w).

Furthermore, from Bellman’s equation, we get

v(x) = u(Rx+ w) + βv(0), for x ∈ (0,m1) and v(0) =
β

1− β
u(w),

and taking derivatives, we get

v′(x) = Ru′(Rx+ w) <
1
β
u′(Rx+ w), (35)

since βR < 1.
Consider next the interval (m1,m2]. The conjectured solution is such

that in this interval, the constraint y ≥ 0 is not binding. If we assume that
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Rx+ w > y, then the first-order conditions imply

v′(y) =
1
β
u′(Rx+ w − y). (36)

If y = 0 at x = m1, then

v′(0) =
1
β
u′(Rm1 + w). (37)

Using (35) evaluated at x = 0 and (37), we get

u′(Rm1 + w) = βRu′(w),

which gives us an equation for m1. For example, if u(c) = c1−µ/(1 − µ),
then

m1 =
w(1− (βR)

1
µ )

(βR)
1
µR

,

and y = 0 in the interval [0,m1].
Now we want to compute the asset function for the next interval (m1,m2].

If the conjecture in (33) is correct, then (36) holds, as does

v′(x) = Ru′(Rx+ w − g(x)), (38)

which is the derivative of the value function once y is replaced by the
optimal policy y = g(x). The conjecture assumes that y = m1 when
x = m2, and by (36) and (38), we have

u′(Rm2 + w −m1) = βRu′(Rm1 + w).

Note that this equation can be solved for m2. If we follow the same logic
for the remaining m’s, we find that, in general,

u′(Rmj+1 +w−mj) = βRu′(Rmj +w−mj−1), j = 1, . . . , and m0 = 0.
(39)

Thus, given m1 and m2, we can compute m3 and so on.
What we have done is conjectured a solution and derived the functions

analytically. It is easy to show that the solution is, in fact, piecewise linear
and that the conjecture is correct.

Now we consider the finite element approximation. Let β = 0.95, w =
1.0, r = 0.02, u(c) = c1−µ/(1− µ), and µ = 3. We can use the formula in
(39) to derive the exact solution. In Figure 1a, we plot the true solution
and the finite element approximation assuming the grid is given by mj ,
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FIG. 1a. Decision functions for the test case with correct discretization, no bound-
ary conditions imposed, and n = 15.
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FIG. 1b. Decision functions for the test case with correct discretization, no bound-
ary conditions imposed, and n = 15. (Only x ∈ [0, .07] shown.)
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FIG. 1c. Decision functions for the test case with correct discretization, boundary
conditions imposed, and n = 15. (Only x ∈ [0, .07] shown.)
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FIG. 2a. Decision functions for the test case without correct discretization, without
boundary conditions imposed, and n = 15. (Only x ∈ [0, .07] shown.)
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FIG. 2b. Decision functions for the test case without correct discretization, without
boundary conditions imposed, and n = 17. (Only x ∈ [0, .07] shown.)
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FIG. 2c. Decision functions for the test case without correct discretization, with
boundary conditions imposed, and n = 17. (Only x ∈ [0, .07] shown.)
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j = 0, . . . , 14. Notice that the two functions are in very good agreement. In
Figure 1b, we look at exactly the same picture, but we focus on the corner,
where the constraints bind. The finite element approximation in this case
does not assume any boundary constraints are imposed. Notice that there
is a slight deviation of the approximate and exact solutions because the
penalty function ensures only approximate satisfaction of the inequality
constraints. The approximate solution in Figure 1c imposes that the asset
holdings are zero at the first two grid points. Notice that the fit is exact.
In Figures 2a-2c, we show the results of a more realistic experiment. In this
case, we start with a grid that is “stretched” exponentially: the intervals
get exponentially larger the farther they are from the origin. To obtain
the results of Figure 2a, we use 15 grid points (n = 15). Notice in Figure
2a that the grid points of the approximate solution do not line up exactly
with the kinks in the exact solution. Notice also that boundary conditions
are not imposed. In Figure 2b, we add two grid points around the value
of x where the decision function becomes positive. The picture is similar
to Figure 2a. In Figure 2c, we impose that asset holdings are zero for the
first three grid points. Notice how close we get to the exact solution even
though we do not use the best possible discretization. Finally, in Figure 3,
we plot the decision functions for three different sized grids: n = 5, n = 9,
and n = 17. In all three cases, we impose some boundary conditions. If we
plot the solutions for all x, the picture looks like Figure 1a. In Figure 3,
we focus on only the corner. Notice how close the approximate function is
to the exact function, even with n = 5.

4.2. Computing the distribution of assets – a test case
Suppose the productivities take on two possible values and the decision

functions are given by

α(x, i) =

{
max(0,−0.25 + x), if i = 1
0.5 + 0.5x, if i = 2,

with π1,1 = π2,2 = 0.8. In this case,

H(0, 1) = 0.8H(0.25, 1),
H(0, 2) = 0.2H(0.25, 1),

H(0.25, 1) = 0.8H(0.5, 1),
H(0.25, 2) = 0.2H(0.5, 1),
H(0.5, 1) = 0.8H(0.75, 1) + 0.2H(0, 2),
H(0.5, 2) = 0.2H(0.75, 1) + 0.8H(0, 2),
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FIG. 3. Decision functions for the test case without correct discretization, with
boundary conditions imposed, and various n. (Only x ∈ [0, .09] shown.)
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H(0.75, 1) = 0.8H(1.0, 1) + 0.2H(0.5, 2),
H(0.75, 2) = 0.2H(1.0, 1) + 0.8H(0.5, 2),
H(0.875, 1) = 0.8H(1.125, 1) + 0.2H(0.75, 2),
H(0.875, 2) = 0.2H(1.125, 1) + 0.8H(0.75, 2),
H(1.0, 1) = 0.5,
H(1.0, 2) = 0.5.

If we assume that H(x, i) = 0.5 for x > 1, then the above expressions can
easily be solved. We can first determine H(0, j), H(0.25, j), H(0.5, j), and
H(0.75, j) for j =1,2 by solving Ax = b, where

A =



1 −.8 0 0 0 0 0 0
0 1 −.8 0 0 0 0 0
0 0 1 −.8 −.2 0 0 0
0 0 0 1 0 0 −.2 0
0 −.2 0 0 1 0 0 0
0 0 −.2 0 0 1 0 0
0 0 0 −.2 −.8 0 1 0
0 0 0 0 0 0 −.8 1


b =



0
0
0
.4
0
0
0
.1


.
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FIG. 4a. Distribution for the test case with evenly spaced mesh and n = 13.
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The solution is H(0, 1) = 0.225, H(0.25, 1) = 0.282, H(0.5, 1) = 0.352,
H(0.75, 1) = 0.426, H(0, 2) = 0.056, H(0.25, 2) = 0.070, H(0.5, 2) = 0.130,
and H(0.75, 2) = 0.204. Note that we can back out the other points from
these solutions by applying the formula in (9). In Figure 4a, we plot the
finite element approximation and the exact solution for a relatively coarse
grid (n = 13) with evenly spaced partitions. Notice that a grid this coarse
will not resolve the discontinuities. In Figure 4b, we refine the grid by
doubling the number of partitions (i.e., n = 25); in this case, they are
still evenly spaced. In Figures 4c and 4d, we recompute with an evenly
spaced grid but with finer partitions (i.e., n = 49 and n = 97). In both
of these cases, it is clear where the discontinuities occur. In Figure 4e, we
plot the finite element approximation for a grid adapted to better resolve
the discontinuities. Note that we get very good agreement with the above
solution.

In Figures 4f and 4g, we focus on regions where jumps occur to illustrate
how the method performs. Although the solution is relatively accurate,
there are slight deviations at the discontinuities due to the fact that the
method is essentially “centrally differencing.” That is, to determine the
solution at x = 0.5, information is used from above and below this point.
The result is nonmonotonicity near discontinuities. To fix this nonmono-
tonicity, we simply adjust the final solution as follows. In regions just to the
left of large gradients (i.e., discontinuities), if we see Ĥ(i, j) < Ĥ(i− 1, j),
then we set Ĥ(i, j) = Ĥ(i− 1, j). In regions to the right of discontinuities,
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FIG. 4b. Distribution for the test case with evenly spaced mesh and n = 25.
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FIG. 4c. Distribution for the test case with evenly spaced mesh and n = 49.
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FIG. 4d. Distribution for the test case with evenly spaced mesh and n = 97.
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FIG. 4e. Distribution for the test case with an adapted grid and n = 73.
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FIG. 4f. Distribution for the test case with an adapted grid. (Only x ∈ [0.475, 0.525]
shown.)

Exact      
Approximate

0.475 0.48 0.485 0.49 0.495 0.5 0.505 0.51 0.515 0.52 0.525
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

FIG. 4g. Distribution for the test case with an adapted grid. (Only x ∈ [0.84, 1.02]
shown.)
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FIG. 4h. Distribution for the test case with an adapted grid and nonmonotonicities
eliminated. (Only x ∈ [0.475, 0.525] shown.)
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if we see Ĥ(i, j) < Ĥ(i− 1, j), then we look at points k = i+ 1, i+ 2, . . . ,
until we find Ĥ(k, j) ≥ Ĥ(k − 1, j). Once we find such a point, we set
Ĥ(l, j) = Ĥ(k − 1, j), l = i − 1, . . . , k − 1. The solution shown in Figure
4h applies this “trick.” If we compare this solution to Figure 4f, we see
that the nonmonotonicity is eliminated and that the solution is closer to
the exact solution.

Finally, we should note that for this example, if values of x greater than
one are not included in the grid, then the approximation is very inaccu-
rate. This inaccuracy is due to the fact that values of H(x, i), x < 1 are
used to construct an estimate of H(x, i), x > 1. For this example, this
extrapolation will lead to the inaccurate approximation shown in Figure 5.
Notice that the approximation in Figure 5 lies above the true solution and
violates the terminal condition that H(x, i) = 0.5.

5. SUMMARY

This paper describes the application of the finite element method to the
economies studied by Aiyagari and McGrattan, The Optimum Quantity
of Debt (Journal of Monetary Economics 1998). The Aiyagari-McGrattan
economies provide some challenge to standard computational methods be-
cause of kinks in decision functions and discontinuities in distribution func-
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FIG. 5. Inaccurate solution for the distribution.
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tions. To verify that the finite element method works well for this class of
problems, we applied them to related test problems with known solutions.
These test problems allowed us to highlight technical problems that arise
and some practical solutions.
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