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In this article we show that multiple cycles can occur in financial and eco-
nomic time series. We model these cycles by means of Gegenbauer processes,
using a procedure that permits us to test multiple roots at fixed frequencies
over time and thus, it permits us to approximate the length of each cycle. This
procedure is applied to one economic time series (US monthly unemployment
rate) and a financial one (US Federal Funds rate of interest), and the results
show that both series can be specified in terms of a multiple cyclical fractional
model.
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1. INTRODUCTION

The existence of cycles in macroeconomic and financial time series is a
well-known stylised fact. However, its appropriate modelling is a matter
that still remains controversial. Numerous authors have tried to describe
them and to consider their stability over time. In the context of economic
time series, Romer (1986, 1994), Diebold and Rudebusch (1992) and Wat-
son (1994) have, for example, explored data to know if fluctuations have
been smoother (lower amplitude and longer duration) after Second World
War. Also, Neftci (1984), Hamilton (1989), Beaudry and Koop (1993)
investigated new business cycles features, showing that cycles exhibit an
asymmetry in their phases: recessions being deeper and shorter than ex-
pansions. Other authors (e.g., Candelon and Henin, 1995; Hess and Iwata,
1997; Candelon and Gil-Alana, 2004; etc.) characterised the distributions
of these features via bootstrapped simulations, using them as benchmarks
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to gauge the adequacy of macroeconomic models. All these authors, how-
ever, only consider the existence of a single cycle underlying the series.
Using financial time series, Peters (1994) analysed the Dow Jones indus-
trial index over the period 1888 to 1991 and found evidence of a two month
and four year cycles. McKinzey (2001), using Australian stock prices, finds
evidence of long memory in the return generating process and cycles of
approximately 3, 6 and 12 years in average duration. Following this line of
research, we look in this paper at the possibility of more than one single
cycle in the series and consider multiple cyclical structures that might be
contaminating the results based on one single cycle.

Starting from an empirical data-based approach, it appears that many
economic time series present a persistent periodic behaviour, which cannot
be caught by the classical ARIMA (or even ARFIMA) models. There-
fore, recent years have witnessed the publication of several papers dealing
with long memory models able to take into account a possible harmonic
component in the data. Gray et al. (1989) proposed a new class of long
memory models, which generalises the class of ARFIMA models, insofar
as the spectral density function is not necessarily unbounded at the ori-
gin, but anywhere in the interval [0, π]. Giraitis and Leipus (1995) and,
later, Woodward et al. (1998) give an extension of the model in Gray et al.
(1989), for which the spectral density is unbounded for a finite number of
k frequencies, denoted Gegenbauer frequencies, on the interval [0, π]. This
k-factor extension was first suggested in the concluding remarks of Gray
et al. (1989) and is used by Robinson (1994) in a hypothesis testing con-
text.1 Related estimators for the k-factor generalized fractional integration
model have also been developed by Arteche and Robinson (2000), Ferrara
and Guégan (2001), Smallwood and Beaumont (2001), Arteche (2002) and
Smallwood and Beaumont (2003).

The outline of the article is as follows: Section 2 describes the statisti-
cal model and its implications in terms of economic policy and planning
inference. In Section 3 we describe the procedure employed in the paper
for testing this type of model. Section 4 contains a small Monte Carlo
simulation study in order to find a plausible strategy to determine the ap-
propriate number of cyclical structures. Section 5 contains the empirical
application, while Section 6 concludes.

1Porter-Hudak (1990) and Hassler et al. (1994) proposed two different seasonal long
memory models, which are in fact special cases of the k-factor model, insofar as the
frequencies are the seasonal frequencies.
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2. A MODEL WITH MULTIPLE CYCLICAL COMPONENTS

Starting with a single cycle, Gray et al. (1989, 1994) consider a model
of the form:

(1− 2 cos wrL + L2)dxt = ut, t = 1, 2, · · · , (1)

with xt = 0 for t ≤ 0, and where L is the lag operator (i.e., Lxt = xt−1);
d can be any real number, and where ut is an I(0) process, defined as a
covariance stationary process, with spectral density function that is posi-
tive and finite at any frequency on the spectrum; wr = 2πr/n, r = n/j,
and j indicates the number of time periods within the cycle. Clearly, when
d = 0 in (1), xt = ut, and a “weakly autocorrelated” xt is allowed for, as
opposed to the case of d > 0 when the process is said to be “strongly auto-
correlated” or also called “strongly dependent”, so-named because of the
strong association (in the cyclical structure) between observations widely
separated in time. Gray et al. (1989) showed that xt in (1) is stationary
if d < 0.50. They also showed that the polynomial in (1) can be expressed
in terms of the Gegenbauer polynomial Cj,d such that, calling µ = cos w,

(1− 2µL + L2)−d =
∞∑

j=0

Cj,d(µ)Lj , (2)

for all d 6= 0, where

Cj,d(µ) =
[j/2]∑
k=0

(−1)k(d)j−k(2µ)j−2k

k!(j − 2k)!
; (d)j =

Γ(d + j)
Γ(d)

,

Γ(x) represents the Gamma function and a truncation will be required in
(2) to make the polynomial operational. Thus, the process in (1) becomes:

xt =
t−1∑
j=0

Cj,d(µ)ut−j , t = 1, 2, · · · , (3)

and when d = 1, we have

xt = 2µxt−1 − xt−2 + ut, t = 1, 2, · · · , (4)

which is a cyclical I(1) process with the periodicity determined by µ. Tests
of (4) based on autoregressive (AR) alternatives were proposed amongst
others by Ahtola and Tiao (1987). Their tests are embedded in an AR(2)
process of form:

xt = φ1xt−1 + φ2xt−2 + ut, (5)
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which, under the null hypothesis:

H0 : |φ1| < 2 and φ2 = −1, (6)

becomes the cyclical I(1) model (4). Unit root cycles were also examined by
Chan and Wie (1988) and Gregoir (1999a, b) who derive the limiting distri-
bution of least squares estimates of AR processes with complex-conjugate
unit roots, with inference based on parametric estimates.2

In this article, we make use of the fractional structure (1), testing cyclical
roots with integer or fractional orders of integration in raw time series.
However, as mentioned in the introduction, this paper is concerned with
the k-factor Gegenbauer processes and thus, we consider processes of form:

h∏
j=1

1− 2µ(j)L + L2)dj xt = ut, t = 1, 2, · · · , (7)

where h is a finite integer; |µ(j)| ≤ 1 for j = 1, 2, · · · , h, and dj is a frac-
tional number for j = 1, 2, · · · , h. These processes, for which the common
point is to have a spectral density with a finite number of peaks on the
interval [0, π], have been extensively investigated concerning the parameter
estimation problem. See, for instance, Gray et al. (1989), Giraitis and Lei-
pus (1995), Chung (1996a, b), Yajima (1996), Hosoya (1997) and Ferrara
and Gugan (1999, 2001).

The use of the parametric approach described in (7) to investigate the
long run behaviour of time series consists of testing a parametric model for
the series and relying on the long run implications of the estimated model.
The primary advantage is the precision gained by focusing the information
in the series through the parameter estimates. A drawback is that the
parameter estimates are sensitive to the class of models considered and
may be misleading because of misspecification. However, the possibility of
misspecification with parametric models can never be settled conclusively,
and the problem can be addressed by considering a large class of models.
This is the approach of the present paper. For this purpose, we employ a
version of the tests of Robinson (1994) that permits us to test long memory
multiple cyclical models. The main advantage of this procedure is that it
is based on the Lagrange Multiplier principle and thus, it does not require
efficient estimates of the fractional (cyclical) differencing parameters, as is
the case with other procedures.

2Bierens (2001) also uses a model of this sort in the context of the UK monthly
unemployment series.
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3. THE TESTING PROCEDURE

Following Bhargava (1986), Schmidt and Phillips (1992) and others in
the parameterization of unit-root models, Robinson (1994) considers the
regression model:

yt = β′zt + xt t = 1, 2, · · · , (8)

where yt is a given time series; zt is a (kx1) vector of exogenous variables;
β is a (kx1) vector of unknown parameters; and the regression errors xt

are such that:

ρ(L; θ)xt = ut t = 1, 2, · · · , (9)

where ρ is a given function, which depends on L and the (px1) parameter
vector θ, adopting the form:

ρ(L; θ) = (1− L)dL+θL(1− L4)dS+θS

h∏
j=1

(1− 2 cos wj
rS

L + L2)dj+θj , (10)

for real given numbers dL, dS , d1, · · · , dh, and integer h.3 Under the null
hypothesis, defined by:

H0 : θ = 0, (11)

(10) becomes:

ρ(L; θ = 0) = ρ(L) = (1−L)dL(1−L4)dS

h∏
j=1

(1−2 cos wj
rS

L+L2)dj . (12)

This is a very general specification that permits us to consider different
models under the null. For example, if dL = 1 and dS = dj = 0 for all
j, we have the classical unit-root model (Dickey and Fuller, 1979; Phillips
and Perron, 1988; or the alternative in Kwiatkowski et al., 1992, etc.)
and, if dL is a real value, the fractional models examined in Diebold and
Rudebusch (1989), Baillie (1996) and others. Similarly, imposing dS = 1
and dL, dj = 0, we have the seasonal unit root model (Dickey, Hasza and
Fuller, 1984, Hyllerberg et al., 1990, etc.) and if dS is real, the seasonal
fractional model analysed in Porter-Hudak (1990) and Gil-Alana (2002).
Finally, if dL = dS = 0 and d1 = 1, we have the unit root cycles of Ahtola
and Tiao (1987); if d1 is real, the model in Gray et al. (1989) and, if j > 1,

3Equation (10) is not exactly the same equation as in Robinson (1994). In his model,
the second polynomial in the right hand side of (10) is (1 + L)d, though it can be
easily shown that (10) satisfies the same properties as Robinson (1994) since (1−L4) =
(1− L)(1 + L)(1 + L2).
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the k-factor Gegenbauer processes studied in Ferrara and Guégan (2001)
and others.

In this paper we consider multiple cyclical structures and thus, we take
dL = dS = 0. In such a situation, (10) becomes:

ρ(L; θ) =
h∏

j=1

(1− 2 cos wj
rS

L + L2)dj+θj , (13)

and similarly (12):

h∏
j=1

(1− 2 cos wj
rS

L + L2)dj . (14)

Plugging then (13) in (8) and (9), yt follows under the null, a multiple
cyclical I(d) model of the form advocated by Ferrara and Guégan (2001)
and Smallwood and Beaumont (2001, 2003).

We next describe the test statistic. We observe {(yt, zt), t = 1, 2, · · · , n},
and suppose that the I(0)ut in (9) have spectral density given by:

f(λ; τ) =
σ2

2π
g(λ; τ), −π < λ ≤ π,

where the scalar σ2 is known and g is a function of known form, which
depends on frequency λ and the unknown (qx1) vector τ . Based on H0

(11), the residuals in (8), (9) and (13) are

ût =
h∏

j=1

(1− 2 cos wj
rS

L + L2)dj yt − β̂′wt, (15)

where β̂ = (
∑n

t=1 sts
′
t)
−1∑n

t=1 St

∏h
j=1(1−2 cos wj

rS
L+L2)dj yt, and st =∏h

j=1(1− 2 cos wj
rS

L + L2)dj zt.
Unless g is a completely known function (e.g., g ≡ 1, as when ut is

white noise), we have to estimate the nuisance parameter τ , for example
by τ̂ = arg minτ∈T σ2(τ), where T is a suitable subset of Rq Euclidean
space, and

σ2(τ) =
2π

n

n−1∑
s=1

g(λs; τ)−1Iû(λs),

with Iû(λs) = |(2πn)−1/2
∑n

t=1 ûte
iλst|2; λs = 2πs

n .4

4Note that β̂. is an OLS estimate. In case of autocorrelated disturbances, it may be
improved via GLS.
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The test statistic, which is derived via Lagrange Multiplier (LM) princi-
ple, takes the form:

R̂ = r̂′r̂; r̂ =
(

n

Â

)1/2
â

σ̂2
, (16)

where

â =
−2π

n

∗∑
s=1

Ψ(λs)g(λs; τ̂)−1Iû(λs); σ̂2(τ) = σ2(τ̂);

Â =
2
n

 ∗∑
s=1

Ψ(λs)2 −
∗∑

s=1

Ψ(λs)ε̂(λs)′
( ∗∑

s=1

ε̂(λs)ε̂(λs)′
)−1 ∗∑

s=1

ε̂(λs)Ψ(λs)

 ,

Ψ(λs) = [Ψ1(λs); · · · ; Ψj(λs); · · · ; Ψh(λj)]; Ψj(λs) = log |2(cos λs−cos wj
rs

)|;
ε̂(λs) = ∂

∂τ log g(λs; τ̂). and the summation on ∗ in the above expressions
refers to the discrete bounded frequencies λs.

Robinson (1994) showed that under certain very mild regularity condi-
tions,5

R̂ →d χ2
h as n →∞ (17)

where “→d” means convergence in distribution. Thus, we are in a classical
large-sample testing situation, by reasons described in Robinson (1994).
Moreover, he shows that the above test is efficient in the Pitman sense
against local departures from the null. This version of Robinson’s (1994)
tests (with h = 1) was examined in Gil-Alana (2001), and its performance in
the context of unit root cycles was compared with Ahtola and Tiao’s (1987)
tests, the results showing that Robinson’s (1994) tests outperform Ahtola
and Tiao (1987) in a number of cases. Other versions of his tests have been
applied to time series in Gil-Alana and Robinson (1997, 2001), testing for
I(d) processes with the roots occurring respectively at zero and the seasonal
frequencies. However, testing multiple fractional cyclical models with the
tests of Robinson (1994), this is one of the few empirical applications, and
one by-product of this work is its emergence as a credible alternative to the
usual ARIMA (ARFIMA) specifications, which have become conventional
in parametric modelling of macroeconomic and financial time series.

There exist other procedures for estimating and testing the fractionally
cyclical differencing parameters, some of them also based on the likelihood
function. We believe that as in other standard large-sample testing situa-
tions, Wald and LR test statistics against fractional alternatives will have

5These conditions are very mild, and concern technical assumptions to be satisfied by
Ψ(λ).
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the same null and local limit theory as the LM tests of Robinson (1994).
However, these procedures require efficient estimates of the differencing
parameters, and while such estimates can be obtained, no closed-form for-
mulae are available and so the LM procedure of Robinson (1994) seems
computationally more attractive.

4. A MONTE CARLO SIMULATION STUDY

In this section we examine the possibility of misspecification in the con-
text of multiple fractional cyclical models, using the version of the tests
of Robinson (1994) described in Section 3. For the ease of presentation,
we only display the results for the case of unit root cycles, though sim-
ilar conclusions were obtained when fractional orders of integration were
entertained.

In all cases, we assume that the number of cyclical structures in the
true model is equal to or higher than the number of cycles tested with the
procedure. First, we assume a model of form:

(1− 2 cos wrL + L2)xt = ut,

with r = 2π/10, and test H0 : d = d0 for values d0 = 0, (0.25), 2. Thus, the
rejection probabilities corresponding to d0 = 1 will indicate the size of the
test. The nominal size is 5% and T = 100 and 500.6

TABLE 1.

True model: (1− 2 cos wn/10L + L2)xt = ut

Alternative: (1− 2 cos wT/10L + L2)dxt = ut

n/d0 0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

100 0.998 0.916 0.893 0.695 0.087 0.619 0.910 0.971 0.984

500 0.996 1.000 1.000 1.000 0.056 0.997 1.000 1.000 1.000

We see that the size is too large with T = 100(8.7%), though it consid-
erably improves as we increase the sample size. The rejection probabilities
are relatively high in all cases, and the local efficiency of the test seems to
assert itself in view of the fact that the rejection values are practically 1
for the alternatives d = 0.75 and 1.25 with T = 500.

In Table 2, the true model contains two cyclical structures with 10 and
20 periods of length,

(1− 2 cos w1
s=10L + L2)(1− 2 cos w2

s=20L + L2)xt = ut,

6We generate Gaussian series using the routines of GASDEV and RAN3 of Press et
al. (1986) and 10,000 replications were used in each case.
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and test H0 for the same d0-values as in the previous case, assuming that
h = 1 and 2. In the former case, the model will be misspecified since we are
not taking into account the second cyclical structure. Starting with h = 1,
we see that the rejection frequencies are close to 1 even for T = 100. If
h = 2, the size is again too large for T = 100(11.2%), though if T = 500 it
reduces to 5.7%. In the latter case, the rejection probabilities are 1 in all
cases. Finally, in Table 3, the true model contains three cyclical structures
with h = 10, 20 and 30, and perform the tests with h = 1, 2 and 3. Thus,
only in the case with h = 3 the model will be correctly specified. If h = 1

TABLE 2.

True model: (1− 2 cos wn/10L + L2)(1− 2 cos wn/20L + L2)xt = ut

Alternative: R̂(h = 1) and R̂(h = 2)

n R̂/d0 0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

h = 1(10) 0.990 0.999 1.000 1.000 1.000 1.000 1.000 0.999 0.998

100 h = 1(20) 0.684 0.937 0.997 1.000 1.000 1.000 1.000 1.000 0.978

h = 2 1.000 1.000 1.000 1.000 0.112 0.967 0.998 0.999 0.999

h = 1(10) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

500 h = 1(20) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

h = 2 1.000 1.000 1.000 1.000 0.057 1.000 1.000 1.000 1.000

TABLE 3.

True model: (1− 2 cos wn/10L + L2)(1− 2 cos wn/20L + L2)(1− 2 cos wn/30L + L2)xt = ut

Alternative: R̂(h = 1), R̂(h = 2) and R̂(h = 3)

n R̂/d0 0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

h = 1(10) 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999

h = 1(20) 0.821 0.937 0.982 0.992 0.994 0.996 0.997 0.998 0.999

h = 1(30) 0.375 0.761 0.980 0.999 1.000 1.000 1.000 1.000 1.000

100 h = 2(10, 20) 0.999 0.999 0.999 0.998 0.998 0.995 0.998 0.695 0.918

h = 2(10, 30) 0.999 0.999 0.999 1.000 1.000 1.000 0.962 0.617 0.998

h = 2(20, 30) 0.989 0.995 1.000 1.000 1.000 1.000 0.992 0.479 0.935

h = 3 0.999 0.999 0.999 1.000 0.112 0.991 0.999 1.000 1.000

h = 1(10) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

h = 1(20) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

h = 1(30) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

500 h = 2(10, 20) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

h = 2(10, 30) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

h = 2(20, 30) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

h = 3 1.000 1.000 1.000 1.000 0.058 1.000 1.000 1.000 1.000
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or 2, the rejection frequencies are very high in all cases, and if h = 3, the
sizes are 11.2% with T = 100 and 5.8% with T = 500.

5. THE EMPIRICAL WORK

We analyse in this section two different datasets, one corresponding to an
economic time series (unemployment rate) and the other being a financial
variable (Federal Funds rate of interest). The unemployment series is the
US unemployment rate, monthly, for the time period 1948m1-2004m1, ob-
tained from the US Bureau of Labour Statistics. The Federal Funds rate of
interest is the cost of borrowing immediately available funds, primarily for
one day. It is also monthly, running from 1954m7 to 2004m1, and obtained
from the Federal Reserve Bank of St. Louis database.

Figure 1 displays plots of the two time series, with their corresponding
correlograms and periodograms. We observe that both series may have a
stationary appearance though the correlograms show a very slow decay and
significant values at lags far away from zero. Moreover, the periodograms
show a peak at the smallest frequency indicating the possibility of long
memory at the zero frequency in both cases.

Denoting each of the time series by yt, we employ throughout the model
given by (8), (9) and (13), with zt = (1, t)′, t ≥ 1, zt = (0, 0)′. Thus, under
H0 (11),

yt = β0 + β1t + xt, t = 1, 2, · · · (18)
h∏

j=1

(1− 2 cos wj
rs

L + L2)dj xt = ut, (19)

We initially impose h = 4, but in the case of the interest rate, H0 was
rejected in all cases for non-zero dj-values. Thus, we try for this series
h = 3 with wj

rs
= 2πrs

n , rs = n
s , j = 1, 2, 3, s = 6, (6), n/2. That is, we

consider cycles with a periodicity of 6 or multiples of 6 periods (months).
Also, the plots in Figure 1 show that the two series may have a component
of long memory at the long run or zero frequency. Because of that, we
include the case of r = 0(s = ∞) as the first cyclical (long run) structure.
Note that in this case the cyclical polynomial becomes (1 − 2L + L2)d1 =
(1 − L)2d1 , so that d1 refers to half the order of integration at the long
run frequency. Moreover, we treat separately the cases β0 = β1 = 0 a
priori; β0 unknown and β1 = 0 a priori; and both β0 and β1 unknown,
i.e., we consider respectively the cases of no regressors in the undifferenced
regression (18), an intercept, and an intercept and a linear time trend, and
model ut as a white noise process.
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FIG. 1.

Original time series with their corresponding correlograms and
periodograms
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Tables 4 and 5 reports the combinations of (s1, s2, s3) and (d1, d2, d3)
values7 where H0 (11) cannot be rejected at the 5% level, respectively for

7s1, s2 and s3 refers respectively to the values of s (the number of periods per cycle)

for wj
r, j = 1, 2 and 3. In case of j = 1, we adopt the notation s1 = 0 to refer to the

long run or zero frequency.
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unemployment and interest rates. We only display the results for the case
of an intercept, the reason being that the coefficients corresponding to the
time trend were found to be insignificant in all cases where the null cannot
be rejected.8

Starting with the Federal Funds rate of interest, we observe that all
the non-rejection values take place when s1 = 0 and s2 = 12, with s3

widely ranging from 24 to 120 periods. Thus, we clearly observe a long
run component, an annual cyclical structure (probably due to the monthly
nature of the series) and another cyclical structure constrained between 2
and 10 years. With respect to the orders of integration at each of these
frequencies, we see that d1 (long run effect) is in all cases 0.10 and 0.20; d2

(the annual structure) ranges between 0.30 and 0.60, while d3 lies between
0.10 and 0.40. Thus, it is the annual structure the most important one and
the closest to nonstationarity. On the other hand, the long run and the
purely cyclical components are clearly stationary with values strictly below
0.5. Finally, the fact that all the values are smaller than 1 implies that the
series is mean reverting with respect to all these components, suggesting
that shocks affecting them will disappear in the long run, though it will
take longer time in case of those shocks affecting the annual (monthly)
structure.

The results for the US unemployment rate are displayed in Table 5. We
see that, apart from the long run or zero frequency, there exist three cyclical
structures, two of them affecting the annual and semi-annual frequencies
(j2 and j3) and one purely cyclical with the periodicity constrained between
2 and 10 years. The order of integration at the zero frequency (2d1) is 0.20
in practically all cases. The highest order of integration corresponds to the
semi-annual frequency, with d2 ranging between 0.20 and 0.60; d3 (annual)
lies between 0.10 and 0.30, while the purely cyclical one (d4) is in all cases
0.10 or 0.20.

We have marked in the two tables in bold the values corresponding to the
model that produces the lowest statistic across the values of the s’s and the
d’s. In doing so, the residuals of these selected models should be the closest
to white noise and their orders of integration should be approximations to
the maximum likelihood estimates. The resulting models are:

yt = 0.339 +xt;
(0.107)

(1− L)0.20(1− 2 cos ws=12L + L2)0.50(1− 2 cos ws=84L + L2)0.20xt = εt

8Note that the test statistic is evaluated under the null differenced model, which is
supposed to be short memory and thus, standard t-tests apply.
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TABLE 4.

Combination of values where H0(11) cannot be rejected for the Federal
Funds rate of interest

s1 s2 s3 d1 d2 d3

0 12 24 0.10 0.30 0.40

0 12 24 0.10 0.40 0.40

0 12 24 0.10 0.50 0.30

0 12 24 0.10 0.60 0.20

0 12 24 0.20 0.30 0.30

0 12 24 0.20 0.40 0.20

0 12 24 0.20 0.50 0.10

0 12 36 0.10 0.30 0.40

0 12 36 0.10 0.40 0.30

0 12 36 0.10 0.60 0.20

0 12 36 0.20 0.40 0.20

0 12 36 0.20 0.50 0.10

0 12 48 0.10 0.40 0.30

0 12 48 0.10 0.50 0.2

0 12 48 0.10 0.60 0.2

0 12 48 0.10 0.70 0.1

0 12 48 0.20 0.50 0.10

0 12 60 0.10 0.40 0.30

0 12 60 0.10 0.50 0.20

0 12 60 0.10 0.70 0.10

0 12 60 0.20 0.50 0.10

0 12 72 0.10 0.50 0.20

0 12 72 0.10 0.70 0.10

0 12 72 0.20 0.50 0.10

0 12 84 0.10 0.50 0.20

0 12 84 0.10 0.70 0.10

0 12 84 0.20 0.50 0.10

0 12 96 0.10 0.50 0.20

0 12 96 0.10 0.70 0.10

0 12 96 0.20 0.50 0.10

0 12 108 0.10 0.50 0.20

0 12 108 0.10 0.70 0.10

0 12 108 0.20 0.50 0.10

0 12 120 0.10 0.50 0.20

0 12 120 0.10 0.70 0.10

0 12 120 0.20 0.50 0.10

In bold the values corresponding to the
model that produces the lowest statistic.
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TABLE 5.

Combination of values where H0(11) cannot be rejected for the US unemployment
rate

s1 s2 s3 s4 d1 d2 d3 d4

0 6 12 24 0.10 0.20 0.30 0.10

0 6 12 24 0.10 0.30 0.10 0.20

0 6 12 24 0.10 0.30 0.20 0.20

0 6 12 24 0.10 0.30 0.30 0.10

0 6 12 24 0.20 0.30 0.30 0.10

0 6 12 24 0.10 0.40 0.10 0.20

0 6 12 24 0.10 0.40 0.30 0.10

0 6 12 24 0.10 0.50 0.10 0.20

0 6 12 24 0.10 0.50 0.30 0.10

0 6 12 24 0.20 0.50 0.30 0.10

0 6 12 24 0.10 0.60 0.10 0.20

0 6 12 36 0.10 0.20 0.30 0.10

0 6 12 36 0.10 0.30 0.10 0.20

0 6 12 35 0.10 0.30 0.30 0.10

0 6 12 36 0.10 0.40 0.10 0.20

0 6 12 36 0.10 0.40 0.30 0.10

0 6 12 36 0.10 0.50 0.10 0.20

0 6 12 48 0.10 0.30 0.20 0.10

0 6 12 48 0.10 0.30 0.30 0.10

0 6 12 48 0.10 0.40 0.20 0.10

0 6 12 48 0.10 0.40 0.30 0.10

0 6 12 48 0.10 0.50 0.20 0.10

0 6 12 48 0.10 0.60 0.20 0.10

0 6 12 60 0.10 0.30 0.20 0.10

0 6 12 60 0.10 0.40 0.20 0.10

0 6 12 60 0.10 0.50 0.20 0.10

0 6 12 60 0.10 0.60 0.20 0.10

0 6 12 72 0.10 0.30 0.20 0.10

0 6 12 72 0.10 0.40 0.20 0.10

0 6 12 72 0.10 0.50 0.20 0.10

0 6 12 72 0.10 0.60 0.20 0.10

0 6 12 84 0.10 0.30 0.20 0.10

0 6 12 84 0.10 0.40 0.20 0.10

0 6 12 84 0.10 0.50 0.20 0.10

0 6 12 84 0.20 0.50 0.20 0.10

0 6 12 96 0.10 0.30 0.20 0.10

0 6 12 96 0.10 0.40 0.20 0.10

0 6 12 96 0.10 0.50 0.20 0.10

0 6 12 108 0.10 0.30 0.20 0.10

0 6 12 108 0.10 0.40 0.20 0.10

0 6 12 108 0.10 0.50 0.20 0.10

0 6 12 120 0.10 0.30 0.20 0.10

0 6 12 120 0.10 0.40 0.20 0.10

0 6 12 120 0.10 0.50 0.20 0.10

In bold the values corresponding to the model that pro-
duces the lowest statistic.
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FIG. 2.

Residuals from the selected model for the Federal Funds rate of interest
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for the Federal Funds rate of interest, and

yt = 1.335 +xt;
(0.212)

(1− L)0.20(1− 2 cos ws=6L + L2)0.40(1− 2 cos ws=12L + L2)0.20

× (1− 2 cos ws=96L + L2)0.10xt = εt

for the unemployment rate, with the standard errors in parenthesis.
Figure 2 displays the residuals of these estimated models. We observe

that both have the appearance of white noise, though further refinement
can be done by using short memory (autoregressive, moving average, etc.)
models. However, we performed several diagnostic tests on these estimated
residuals and both pass the diagnostics of homoscedasticity and no serial
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correlation.9 A visual inspection at Figure 2 suggests that a structural
break may have occurred around World War II, adopting the form of an
impact change for the interest rate and of a mean shift for the unem-
ployment rate. Robinson’s (1994) testing procedure described in Section
3 permits us to incorporate dummy variables to take into account breaks,
with no effect on its standard limit distribution, but this is out of the scope
of the present work and it will be examined in future papers.

6. CONCLUDING COMMENTS AND EXTENSIONS

In this article we have proposed the use of a new statistical model for
economic and financial time series, which is based on the idea of multiple
cycles. We model the cycles by means of Gegenbauer processes, using a
procedure that permits us to test multiple unit and fractional roots at fixed
frequencies over time and thus, it permits us to approximate the length of
each cycle. This procedure is due to Robinson (1994) and it has several
distinguishing features that make it especially relevant compared with other
methods. In particular, it has standard null and local limit distributions,
and this standard behaviour holds whether or not we include deterministic
components in the model. Moreover, it does not require Gaussianity for the
asymptotic distribution, a feature that it is rarely satisfied in financial time
series, with a moment condition only of order 2 required. The procedure is
applied to one economic time series (US monthly unemployment rate) and
a financial one (Federal Funds rate of interest), and the results show that
both series can be specified in terms of a multiple cyclical fractional model.

Starting with the Federal Funds rate of interest, the results show the
existence of three cyclical structures: one corresponding to the long run or
zero frequency, one annual cycle (probably due to the monthly nature of
the series), and a purely cyclical one with length of approximately 7 years.
The orders of integration range between 0.1 and 0.4 for the long run and the
cyclical structures, and lies between 0.3 and 0.6 for the annual frequency.
For the unemployment rate, four cycles are observed: at the long run, the
semi-annual and annual frequencies and a cyclical one of 8 years of length.
The orders of integration are here around 0.20 for all frequencies except
the semi-annual one, with a value constrained between 0.2 and 0.6. The
fact that all the values are in the two series smaller than 1 implies that the
series are mean reverting with respect to all these components, suggesting
that shocks affecting them will disappear in the long run, though it will
take longer time in case of those affecting the annual (monthly) structure.

9In particular, we use tests of Durbin (1970) and Godfrey (1987a, b) for no serial
correlation, and Koenker (1981) for homoscedasticity, using Microfit.
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An argument that can be employed against this type of model is that,
contrary to seasonal cycles, business cycles are typically weak and irregular
and are spread evenly over a range of frequencies rather than peaked at a
specific value. However, contrary to that argument, we can explain that, in
spite of the fixed frequencies used in this specification, the flexibility can be
achieved throughout the first differencing polynomial (long run effect), the
cyclical components, the interaction between them and the error term. In
that respect, the results presented here lead us to unambiguous conclusions
and, with respect to the cyclical component, they are completely in line
with the literature on business cycle duration that says that cycles have a
duration constrained between 3 and 10 years. Previous researchers on busi-
ness cycles use the Hodrick-Prescott (1997) filter (HP-filter) or Baxter and
King’s (1999) band-pass filter, and most authors conclude that business
cycles have duration of about six years. The HP filter has been interpreted
as an approximation to an ideal high pass filter, eliminating frequencies of
32 quarters or greater. (See, e.g., Prescott, 1986, and King and Rebelo,
1993). Researchers relying on other methods often share this view about
the duration of the business cycle component. Baxter and King (1999)
construct a band-pass filter designed to extract cycles with duration be-
tween 1.5 and 8 years. Englund et al. (1992) and Hassler et al. (1994) use
a band-pass filter in the frequency domain to extract cycles with duration
between 3 and 8 years. Similar conclusions are obtained in Canova (1998),
Burnside (1998), King and Rebelo (1999) and others. The results in the
present work concerning the length of the cycle are completely in line with
all these previous works.

It would also be worthwhile proceeding to get point estimates of the
fractional differencing parameters in this context of multiple cyclical mod-
els. For the long run component the literature is extent. (See, e.g., Fox
and Taqqu, 1986; Dahlhaus, 1989; Sowell, 1992; Robinson, 1995a,b; etc.).
For the purely cyclical part, some attempts have been made by Arteche
and Robinson (2000) and Arteche (2002). However, the goal of this paper
is to show that fractional models with the roots simultaneously occurring
at various frequencies can be credible alternatives to other more classical
approaches when modelling many time series and, in that respect, the re-
sults presented in this paper leads us to some unambiguous conclusions,
with the periodicity of the cycle constrained between 4 and 7 years and
the orders of integration being slightly positive at the zero frequency, and
ranging between 0 and 0.5 for the seasonal/cyclical components.
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