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1. INTRODUCTION

Past studies about price risk premiums usually assume that the asset
return each follows a normal distribution with constant volatility.1 In this
case asset returns in different time-points will contribute equal weights to
historical volatility and thus cannot explain the stylized phenomenon of
volatility cluster.2 More recent generalizations of the classic CAPM are
three- or four-factor models. Bollerslev et al. (1988) implement a con-
ditional CAPM with time-varying covariances structure, and ultimately
time-varying market betas. Mandelbrot (1963), Fama (1965) and Diebold
et al. (2000) empirically find that asset returns are usually fat-tailed and
non-normal distributed. Ghysels et al. (1996) point out three stylized
characteristics of financial asset returns including dependence structure,
volatility clustering and volatility randomness. Taylor (1986) and Shep-
hard (1995) propose the concept of stochastic volatility to help capture
the features of high peaks, fat tails and volatility clustering in underlying
returns. Black (1976) and Christie (1982) discover a negative correlation
between current returns and future volatilities, which increases the skew-
ness of the return distribution. The effect may (in part) be attributed to
a chain of events according to which a negative return causes an increase
in the debt-to-equity ratio, in turn resulting in an increase in the future
volatility of the return to equity, so-called “leverage effect”. On the other
hand, the volatility feedback effect, along with the well-documented persis-
tent volatility dynamics, also implies an observationally equivalent nega-
tive correlation between current returns and future volatility, as a shock to
the volatility will require an immediate return adjustment to compensate
for the increased future risk. Empirical evidence along these lines gen-
erally confirms that aggregate market volatility responds asymmetrically
to negative and positive returns,3 but the economic magnitude is often
small and not always statistically significant (e.g., Schwert, 1989; Nelson,
1991; Gallant et al., 1992; Glosten et al., 1993; Engle and Ng, 1993; Duf-
fee, 1995; Bekaert and Wu, 2000). Moreover, the evidence tends to be
weaker for individual stocks (e.g., Tauchen et al., 1996; Andersen et al.,
2001). Importantly, the magnitude also depends on the volatility proxy
employed in the estimation, with options implied volatilities generally ex-

1The fundamental CAPM and APT pricing theories, for example, usually assume that
return volatility is constant over time. If investors are risk-averse, the CAPM developed
by Sharpe (1964) and Lintner (1965) implies a positive, linear relationship between the
expected market risk premium and conditional market variance.

2The phenomenon of volatility clustering indicates that the current movement of asset
returns is positively correlated to past price shocks.

3Guedhami and Sy (2004) find evidence of a positive (negative) and significant re-
lationship between the market risk premium and conditional market variance in bull
(bear) market context.
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hibiting much more pronounced asymmetry (e.g., Bates, 2000; Wu and
Xiao, 2002; Eraker, 2004). Traditional conditional heteroskedasticity mod-
els such as ARCH and GARCH cannot fully capture the asymmetry in
volatility shocks. Jacquier et al. (1994) and Harvey and Shephard (1996)
propose a stochastic volatility model allowing for correlation with under-
lying returns to capture the distribution skewness. Schwert (1990), Nelson
(1991), Campbell and Kyle (1993) and Engle and Ng (1993) find that the
correlation between stochastic volatility and underlying returns plays an
important role in capturing the volatility asymmetry. Nandi (1998) ad-
dresses the significance of time-varying correlation for pricing S&P 500
options under stochastic volatility. The asymmetric nature of the volatility
response to return shocks could simply reflect the existence of time-varying
risk premiums (Pindyck, 1984; French et al., 1987; Campbell and Hentschel,
1992). If volatility is priced, an anticipated increase in volatility raises the
required return on equity, leading to an immediate stock price decline.
Hence the causality is different: the leverage hypothesis claims that return
shocks lead to changes in conditional volatility, whereas the time-varying
volatility risk premium theory contends that return shocks are caused by
changes in conditional volatility. The volatility feedback effect underlies the
ARCH-M model originally, on one hand, developed by Engle et al. (1987).
GARCH perspectives also produce approaches to empirical asset pricing,
as with the empirical pricing kernels of Engle and Rosenberg (2002). On
the other hand, limited studies are found to investigate the existence of
volatility risk premiums in asset returns though stochastic volatility has
been characterized to return dynamics. Melino and Turnbull (1990) find
that stochastic volatility allowing for non-positive volatility risk premiums
can provide a better pricing fit for options than a constant volatility. Lam-
oureu and Lastrapes (1993) suggest a time-varying volatility risk premium.
While using Heston’s (1993) option pricing formula to price currency op-
tions, Guo (1996) finds that volatility risk premiums are significantly dif-
ferent from zero. He points out that the assumption of zero correlation
between underlying asset and volatility in Hull and White’s (1987) option
pricing formula causes a failure in capturing volatility risk premiums and
thus biases volatility forecasting of implied volatility. Guo also finds that
constant or deterministic historical volatilities do not contain volatility risk
premiums and thus cause a poor forecast of realized volatility. Empirical
applications of the ARCH-M, and related stochastic volatility models, have
met with mixed success. Some studies (see, e.g., French et al., 1987; Chou,
1988; Campbell and Hentschel, 1992; Ghysels et al., 2002) have reported
consistently positive and significant estimates of the risk premium, while
others (see, e.g., Campbell, 1987; Turner et al., 1989; Breen et al., 1989;
Nelson, 1991; Chou et al., 1992; Glosten et al., 1993) document nega-
tive values, unstable signs, or otherwise insignificant estimates. Moreover,
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the contemporaneous risk-return tradeoff appears sensitive to the use of
ARCH as opposed to stochastic volatility formulations (Koopman and Us-
pensky, 1999), the length of the return horizon (Harrison and Zhang, 1999),
along with the instruments and conditioning information used in empiri-
cally estimating the relationship (Harvey, 2001; Brandt and Kang, 2004).
These conflicting results are not necessarily inconsistent with the basic
Intertemporal CAPM (ICAPM) (Merton, 1980),4 in that the risk-return
tradeoff relationship depends importantly on the particular volatility mea-
sure employed in the empirical investigations.5 Moreover, whereas such a
relationship for the market portfolio would be consistent with the CAPM
or ICAPM, it only holds in general equilibrium settings under restrictive
assumptions (Backus and Gregory, 1993; Campbell, 1993; Glosten et al.,
1993). As evinced by the stylized features in underlying returns and previ-
ous literature, this study proposes a stochastic volatility process allowing
for time-varying correlation with underlying returns, in which the market
price of volatility risk is naturally taken into account.

Our theoretical results are based on a discrete time analogue of square
root diffusion models used by Cox et al. (1985), Heston (1993) and many
others. Nelson (1990), Nelson and Foster (1994), Corradi (2000) and He-
ston and Nandi (2000) previously develop the technique to derive various
closed-form expressions for discrete-time diffusion approximations of the
one-factor continuous-time stochastic volatility model. The same basic idea
could in principle be generalized to other more complicated model struc-
tures, including multiple volatility factors and jumps, at the expense of
notational and computational complexity (see, e.g. Andersen et al., 2002;
Eraker et al., 2003; and Chernov et al., 2003). Nonetheless, the relatively
simple one-factor affine Heston model is rich enough to explain our empir-
ical findings in regards to the return-volatility regressions for the S&P 500
market index. Similar to Engle and Ishida’s (2002) work, we parameterize
the volatility of volatility so that the variance of the variance is linear in the
variance. The main difference is that the past information set can no longer
be summarized by a conditional variance, since this is no longer defined by
our model. Instead, a more general conditioning data set is introduced. Our
empirical results reveal the existence of volatility clustering and volatility
asymmetry caused by a negative correlation between return and volatility
shocks. The market price per unit volatility risk is found to be significantly

4The classical Intertemporal CAPM (ICAPM) model of Merton (1980) implies that
the excess return on the aggregate market portfolio should be positively and directly
proportionally related to the volatility of the market (see also Pindyck, 1984).

5More general multifactor models also complicate the risk-return tradeoff relationship,
as the projection of the returns on the volatility must now control for other state variables
(see, e.g., Abel, 1988; Tauchen and Hussey, 1991; Backus and Gregory, 1993; Scruggs,
1998).



IS VOLATILITY PRICED? 43

positive and time-varying, indicating the importance of volatility risk pre-
miums in S&P 500 index returns. The non-zero volatility risk premium in
a non-traded volatility asset may contribute to explain the pricing puzzle in
CAPM that cannot fully interpret the behavior of expected returns. Since
the S&P 500 index is generally used as a proxy of the market portfolio, the
volatility shocks negatively correlated to S&P 500 returns may also be neg-
atively correlated to aggregate consumption growth, and thus results in a
negative volatility risk premium. However, the negative impact of volatil-
ity shocks on the total expected returns is offset and dominated by the
volatility asymmetry. The net effect of volatility shocks on the total return
rate will turn out to be positive,6 indicating that investors will demand
positive volatility risk premiums to counter with volatility shocks. This
study also demonstrates how to calculate the premiums for price risk and
volatility risk. The justification for the importance of this approach arises
from the argument that the risk premiums are important determinants in
asset pricing. For comparison purposes, a constant-volatility model that
converges to the geometric Brownian motion in the continuous-time limit
is also considered. Further, empirical results from out-of-sample forecast in
mean returns suggest that volatility risk premium under stochastic volatil-
ity framework has richer information content about asset returns than the
constant-volatility model.

This paper is organized as follows. In Section 2 we address the question
whether S&P 500 index returns exhibit some degree of volatility random-
ness, after describing our dataset and providing summary statistics. The
models and methodology employed to describe the patterns followed by
S&P 500 returns are explained in Section 3. Section 4 presents the main
empirical results of our analysis and Section V contains our concluding
comments.

6If the volatility shock (represented by εt) is positive (i.e., εt > 0), then volatility
(denoted by ht) will increase (i.e., ht ↑ ) and the return shock (represented by xt)
negatively correlated to the volatility shock will be negative (i.e., xt < 0) and thus
reduces return rates (Rt ↓). However, due to the increase in volatility (ht ↑), the
magnitude of reduction in Rt becomes even more pronounced (i.e., Rt �). Therefore,
the relationship between return rate (Rt) and the term (

√
htxt) containing the volatility

risk premium appears to be positive. In contrast, if the volatility shock is negative
(εt < 0), then volatility will decrease (i.e., ht ↓) and the return shock will be positive
(xt > 0) due to volatility asymmetry. The positive return shock (xt > 0) will cause an
increase in the return rate (Rt ↑). However, the decrease in volatility will shrink the
magnitude of return increase. The net effect will result in a positive relationship between
the return rate (Rt) and the term (

√
htxt) containing the volatility risk premium.
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2. STYLIZED FACTS ABOUT S&P 500 RETURN
VOLATILITY

This study uses daily 1-, 30-, 100- and 300-day return data on the S&P
500 index, over the period January 1969 to December 2004, represent-
ing 9083, 9054, 8984 and 8784 observations, respectively. We take the
log-difference of the value of the index, so as to convert the data into con-
tinuously compounded returns. The raw data are presented in Figure 1
where prices are shown on the left axis. The rather smooth curve shows
what has happened to this index over the last 36 years. The great growth
of equity prices over the period and the subsequent decline after the new
millennium. The 1- and 30-day return series as shown on the right axis
is centered around zero, while a small positive average return is found for
100- and 300-day returns. The most dramatic event is the crash of Oc-
tober 1987 which dwarfs short-term returns in the size of the decline and
subsequent partial recovery. However, such occasional jumps and crashes
diminish at long time horizons. It is apparent that the amplitude of the
returns is changing—the magnitude of the changes is sometimes large and
sometimes small, and what is so-called volatility clustering. It is also clear
that the volatility is higher when prices are falling. Volatility tends to be
higher in bear markets. This is the asymmetric volatility effect that Nelson
(1991) described with his EGARCH model. The period 1990 through the
end of 1996 is recorded as an era of low volatility that was accompanied by
a slow and steady growth of equity prices, reflecting investor confidence,
while 1997 to the present has been a time of higher volatility. Table 1
shows some statistics on the data that illustrate the stylized features men-
tioned above: fat tails, volatility asymmetry and volatility clustering. The
standard deviations of 1-, 30-, 100- and 300-day returns correspond to an-
nualized volatilities of 1.60%, 1.57%, 1.56% and 1.64%, respectively. The
skewness coefficient indicates that the returns distributions are negatively
skewed. Finally, the kurtosis which measures the thickness of the tails of
the distribution shows a strong evidence that extremes are more substantial
for short-term returns than for long-term returns. Similar evidence is seen
graphically in Figure 2, which is a quantile plot and histogram with super-
imposed normal density. The correlogram of the squared returns, presented
in Figure 3, indicates substantial dependence in the volatility of returns,
i.e. volatility clustering, especially for longer returns. The autocorrela-
tion in squared returns was studied by, for example, Liesenfeld and Jung
(2000), Loudon, et al. (2000), Engle and Patton (2001) and Carnero et al.
(2004). The squared returns exhibit positive autocorrelation, indicating
a tendency to mean-revert. The first-order autocorrelation coefficients of
1-, 30-, 100- and 300-day returns are, respectively, 0.1174, 0.9256, 0.9749
and 0.9900. Such a mean-reverting process for squared returns implies an
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autoregressive process for conditional variances, for example, a GARCH
process. As shown in Table 1, the correlation coefficients between mean
returns and historical volatility based on rolling standard deviations of
returns of various horizons are −0.3121, −0.7734, −0.7953 and −0.3592.
Black (1976), Christie (1982), Nelson (1991), Glosten et al. (1993) and
Engle and Ng (1993) all find evidence of volatility being negatively re-
lated to equity returns. The asymmetric structure of volatility generates
skewed distributions of forecast prices and this gives a skewed option im-
plied volatility surface across moneyness. This study attempts to propose
a volatility model that is able to capture and reflect these stylized facts.

TABLE 1.

S&P 500 Index Returns Summary Statistics

Sample period: January 1969—December 2004

Horizon 1 day 30 days 100 days 300 days

M 0.0003 0.0081 0.0268 0.0836

(0.0756) (0.0680) (0.0675) (0.0702)

Mdn 0.0003 0.0114 0.0304 0.1095

Std.Err.(%) 1.0079 5.4081 9.8279 17.8398

(1.6000) (1.5674) (1.5601) (1.6350)

Skewness −1.3397 −0.7694 −0.4191 −0.6085

Kurtosis 36.0157 5.8028 3.7669 2.9946

Corr(Rt, σt) −0.3121 −0.7734 −0.7953 −0.3592

The values in the parentheses within M and Std.Err.(%) cate-
gories correspond to annualized means and volatilities, respec-
tively. The log-difference of the value of the index is taken so as
to convert the data into continuously compounded returns, Rt.
σt is historical volatility based on rolling standard deviations of
returns.

3. DATA GENERATING DYNAMICS

In contrast to ARCH and GARCH,7 the stochastic volatility model as-
sumes that the volatility itself is a random variable. Since the volatility is
non-traded and assets perfectly correlated with volatility do not exist in
the market,8 a mechanism of volatility filtering is required. Nelson (1988)

7Since ARCH (Engle, 1982) and GARCH (Bollerslev, 1986) assume only one uncer-
tainty source from underlying returns, the volatilities themselves do not have a variation
coefficient to additionally capture excess kurtosis. Ghysels et al. (1996) provide detailed
comparisons between ARCH/GARCH and stochastic volatility models.

8CBOE’s VIX and VXN are the weighted implied volatilities of short-term S&P 500
index options and Nasdaq-100 index options, respectively, which are not the quotes with
respect to the volatilities themselves.
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FIG. 1. The S&P 500 index and its returns of various horizons, January 1969 to
December 2004.
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FIG. 2. Quantile plot and histogram with superimposed normal density of S&P 500
index returns.
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Figure 2. Quantile plot and histogram with superimposed normal density of S&P 500 index 
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FIG. 3. Correlogram of squared returns.
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and Harvey et al. (1994) suggest a Kalman filter that nonlinearly trans-
forms the square of returns and volatility to linear state variables. Due
to non-linearity of transformation, however, it is possible to obtain an in-
efficient filtered volatility. Kitagawa (1987) and Watanabe (1993) instead
use numerical multi-integration to calculate a filtered volatility, which may
be computation expensive. Nelson (1992) and Nelson and Foster (1994)
suggest an unspecified ARCH model to filter volatility. The unspecified
model, however, does not correspond to an existed model in the ARCH
and GARCH literature. In light of unaccomplished volatility filtration the-
ory, this study simply adopts Kalman filter to estimate volatility. The
spirit of using Kalman filter to daily update volatility is analogue to the
implied diffusion theory (see Derman and Kani’s (1994) implied volatility
tree, Rubinstein’s (1994) implied binomial tree, Dupire (1994) and Dumas
et al.’s (1998) implied volatility function), which allows for time-varying lo-
cal volatilities. Numerous estimation strategies have been proposed in the
literature for dealing with the discrete-time stochastic-volatility models.
Important contributions include the quasi-maximum likelihood (QML) esti-
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mator for the discrete-time stochastic volatility model in Ruiz (1994), Har-
vey et al. (1994) and Harvey and Shephard (1996); the Bayesian Markov
Chain Monte Carlo (MCMC) methods advanced by Jacquier et al. (1994),
Eraker (2001), and Kim et al. (1998); the simulated methods of moments
approach in Duffie and Singleton (1993); the indirect inference procedure
of Gourieroux et al. (1993); the efficient methods of moments (EMM) de-
veloped by Gallant and Tauchen (1996) and Gallant and Long (1997); the
infinitesimal moment generator underlying the GMM procedure in Hansen
(1982), Hansen and Scheinkman (1995) and Conley et al. (1997); the ap-
proximation method to the likelihood function building on the Kolmogorov
forward equations in Lo (1988) and Aı̈t-Sahalia (2002); and the spectral
GMM estimator utilizing the empirical characteristic function in Chacko
and Viceira (2003), Jiang and Knight (2002), and Singleton (2001). While
all of these procedures yield consistent, and in many cases also asymptot-
ically efficient, parameter estimates for the various model specifications,
most of them are computationally demanding and cumbersome to imple-
ment in practice (Bollerslev and Zhou, 2002). In contrast, QML is rela-
tively simpler and can be easily accompanied with Kalman filter. In the
present paper we adopt QML for our estimation procedure. The basic idea
is straight forward. Instead of integrating out the squared returns, the
strategy proposed here utilizes Kalman filter for explicitly measuring the
latent volatility.

3.1. Stochastic Volatility
Hull and White (1987) build their option model on a stochastic volatility

process uncorrelated with underlying returns, equivalently, excluding the
possibility of the volatility risk premium, and thus restrict the model ability
to describe the asset distribution. Heston (1993) relaxes the assumption
of zero correlation and allows for the existence of systematic volatility risk
premiums. He assumes that instantaneous volatility vt follows a mean-
reverting square root volatility process, which has been widely used in
option pricing and continuous-time finance. The time-t logarithmic index
price lnSt follows,

d lnSt =
(

µ− 1
2
vt

)
dt +

√
vtdωS,t

=
(

r + ηSvt −
1
2
vt

)
dt +

√
vtdωS,t (1)

dvt = κγ(θγ − vt)dt + σγ
√

vtdωγ,t

= [κ∗γ(θ∗γ − vt) + ηγvt]dt + σγ
√

vtdωγ,t

corr(dωS,t, dωγ,t) = ρdt
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where µ is the instantaneous expected rate of percentage changes in index
prices, attributed by the risk-free interest rate, r, and the price premium,
ηSvt. The volatility process takes into account the pricing of volatility risk,
ηvvt,9 which additionally contributes to the total expected rate of index
returns by the magnitude of

√
vtωS,t via its correlation with the return

shock, ρ. ωS,t and ωv,t are standard Wiener processes; κγ(κ∗γ), θγ(θ∗γ) and
σγ are adjusted (risk-neutral) speed, long-run mean and variation coef-
ficient of the volatility process, respectively. In light of this, this study
follows Nelson’s (1990) and Taylor and Xu’s (1993) volatility approxima-
tion approaches to propose a discrete-time stochastic volatility process (as
shown in equations (2) and (3)) whose continuous-time limit is Heston’s
(1993) volatility process. We also adopt the methodology provided by Har-
vey and Shephard (1996) to deal with the correlation between underlying
returns and stochastic volatilities.

Rt = µS −
1
2
µh,t|t−1 +

√
ht(xt + λ) (2)

ht = $ + βht−1 + α
√

ht−1εt (3)
xt ∼ ID(0, 1), εt ∼ ID(0, 1), corr(xt, εt) = ρ,

where the log-difference of the value of the index is taken so as to convert
the data into continuously compounded returns, Rt. µS is the expected
percentage rate of return compensated for bearing price risk; ht is time-t
variance of index returns. Given the information set available at time t−1,
i.e. It−1, µh,t|t−1 = E(ht|It−1) is the conditional expectation of time-t vari-
ance ht. Similarly, µh,t−1|t−1| = E(ht−1|It−1) is the expectation of variance
ht−1 conditional on the information set It−1. Since the unconditional ex-
pectation of variance is computed by E(ht) = ω/(1− β), one of necessary
conditions to guarantee a stationary volatility process is β < 1. The varia-
tion coefficient of the variance process is α contributable to kurtosis of the
return distribution. The return innovation is expressed by xt ∼ ID(0, 1),
whereas the volatility shock is denoted by εt ∼ ID(0, 1) correlated with
contemporaneous xt by a correlation coefficient ρ. The phenomenon of
volatility being negatively related to equity returns is associated with cor-
relation between the shock to returns and the shock to volatility, which is
partly responsible for the distribution skewness. By construction the total
expected return of Rt comprises the price risk premium, µS − µh,t|t−1/2,
and the volatility risk premium, E[

√
ht(xt + λ)|It−1]. Thus, the influence

of volatility changes on the Rt is observed through the correlation between

9Strict linearity of the volatility risk premium can be supported under log utility when
index volatility and market risk have a common component of a particular form. Bates
(2000) and Pan (2002) use a similar approximation when modeling the risk premium on
equities.
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return shocks and volatility shocks and the market price of volatility risk, λ.
The closed form for the conditional expectation of

√
ht(xt +λ) is expressed

by10

E[
√

ht(xt + λ)|It−1] =
7
16

λ
√

µh,t|t−1 +
11
16

αρ

√
µh,t−1|t−1
√

µh,t|t−1

−1
8
λβ2

µ2
h,t−1|t−1√
µ3

h,t|t−1

. (4)

This study uses Kalman filter to construct the conditional expectation
of volatility, i.e., µh,t|t−1, and derives the QML function for parameter
estimation. Related steps are presented as follows.

Step 1: transform the underlying process denoted in equations (2) and
(3) into a linear combination of state-space variables.

Re-arrange equation (2) and take squares and logarithms of both sides,

yt = ln(ht) + ln(xt + λ)2, (5)

where yt = ln
[(

Rt − µS + 1
2µh,t|t−1

)2]. The terms, ln(ht) and
√

ht−1, in
equations (5) and (3), respectively, are still nonlinear. Thus, using Tay-
lor’s series expanded at their conditional means µh,t|t−1 and µh,t−1|t−1, we
obtain equations (6) and (7).

ln(ht) ∼=
(

1
µh,t|t−1

)
ht +

[
ln(µh,t|t−1)− 1

]
(6)

√
ht−1

∼= √
µh,t−1|t−1 +

1
2√µh,t−1|t−1

(ht−1 − µh,t−1|t−1)

∼= √
µh,t−1|t−1. (7)

Since ht−1 is known at time t−1, the term, 1
2
√

µh,t−1|t−1
(ht−1−µh,t−1|t−1),

in Taylor’s series expansion will diminish and thus
√

ht−1
∼= √

µh,t−1|t−1.

10By applying the Taylor’s series to the function
√

ht expanded at ht = µh,t|t−1, we
can obtain the following equation:p

ht
∼=

p
µh,t|t−1 +

1

2
µ
−1/2
h,t|t−1

(ht − µh,t|t−1)−
1

8
µ
−3/2
h,t|t−1

(ht − µh,t|t−1)2

+
1

16
µ
−5/2
h,t|t−1

(ht − µh,t|t−1)3 + · · · .

The approximation of the volatility risk premium, denoted by the conditional expecta-

tion of
√

ht(xt+λ), becomes E[
√

ht(xt+λ)|It−1] = 7
16

λ
√

µh,t|t−1+ 11
16

αρ

√
µh,t−1|t−1√

µh,t|t−1
−

1
8
λβ2

µ2
h,t−1|t−1q
µ3

h,t|t−1

.
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Re-arrange equations (5)?(7), we can obtain a linear combination of state-
space variables as shown in the following equations.

yt = [c0 + ln(µh,t|t−1)− 1] +
(

1
µh,t|t−1

)
ht + et (8)

ht
∼= $ + βht−1 + α

√
µh,t−1|t−1εt, (9)

where c0 = E(vt); vt = ln(xt + λ)2; et = vt − E(vt) ∼ ID(0, σ2
e);

εt ∼ ID(0, 1). Note that if the joint probability density function of εt

and xt is symmetric, the residuals et and εt are uncorrelated. Under this
circumstance the estimation based on equations (8) and (9) is still feasible,
but the correlation, ρ, between εt and xt will be omitted from the squares
of observed data. In order to recover the correlation information, or equiv-
alently, to deal with the volatility asymmetry, this study follows Harvey
and Shephard’s (1996) approach to adjust equations (8) and (9).

Step 2: Recover the correlation information between εt and xt, i.e., ρ.
Harvey and Shepard (1993, 1996) suggest that the missing correlation

information can be recovered via the usage of a sign symbol, st, corre-
sponding to the residual xt. Define the value of st is +1(−1) if the residual
xt > 0(< 0). Let E+(E−), var+(var−) and cov+(cov−) denote the expec-
tation, variance and covariance functions, conditional on the value of st.
Thus, the equation (9) can be rewritten as equation (10),

ht
∼= $ + βht−1 + stµ

∗ + η∗t , (10)

where η∗t = α
√

µh,t−1|t−1εt − µ∗st

µ∗st = E+

(
α
√

µh,t−1|t−1εt

)
= α

√
µh,t−1|t−1E(εt|st) (11)

The residual η∗t of equation (10) is correlated with the residual et of equa-
tion (8) in a specific structure shown as in equation (12),(

et

η∗t

) ∣∣∣st ∼ ID

((
0
0

)
,

(
σ2

e r∗st

r∗st α2µh,t−1|t−1 − µ∗2

))
, (12)

where r∗st = cov+(α√µh,t−1|t−1εt, et) = cov+(α√µh,t−1|t−1εt−µ∗st, et) =
cov+(η∗t , et).

The equations of (8), (10) and (12) are our empirical models under
stochastic volatility framework. By using Kalman filtration to filter the
conditional volatility, we can construct the QML function to estimate pa-
rameters, Ξ = {µS , $, β, α, σ2

e , c0, µ
∗, r∗}. Given these estimates of pa-

rameters, Ξ̂, and the properties of xt and εt in equation (2), we construct
a form for εt to recover the information of ρ. Define εt = ρ(x∗t − λ) +
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√
1−ρ2

V ar|x∗t |
[|x∗t | − E|x∗t |] where x∗t = xt + λ ∼ ID(λ, 1). Thus, we have

E(εt) = 0, V ar(εt) = 1 and corr(xt, εt) = ρ. The expectation of εt condi-
tional on st becomes stρλ derived as follows,

E(εt|st, It−1; Ξ̂) = E[ρ(x∗t − λ)|st, It−1; Ξ̂]

+

√
1− ρ2

V ar|x∗t |
[E(|x∗t ||st, It−1; Ξ̂)− E|x∗t |]

= stρE[x∗t |st, It−1; Ξ̂] = stρλ

= stρ

∫ ∞

−∞
x∗t f(x∗t |st, It−1; Ξ̂)dx∗t − stρλ

= stρ

∫ ∞

−∞
x∗t

f(x∗t |It−1; Ξ̂)
f(st|It−1; Ξ̂)

dx∗t − stρλ

= 2stρ

∫ ∞

−∞
x∗t f(x∗t |It−1; Ξ̂)dx∗t − stρλ

= 2stρE(x∗t |It−1; Ξ̂)− stρλ

= 2stρλ− stρλ = stρλ (13)

(Supposed that xt is symmetric around zero, the conditional probability
density function of st becomes f(st|It−1; Ξ̂) = f(st) = 1

2 .)
Combine equations (11) with (13), the correlation ρ between the return

and volatility innovations can be recovered as

ρ =
µ∗

λα
√

µh,t−1|t−1
. (14)

Step 3: Kalman filtration of stochastic volatility.
Kalman filtration uses the linear projection to construct the conditional

mean of variance, µh,t+1|t, and conditional prediction error, Pt+1|t, shown
as follows,

µh,t+1|t = $ + βµh,t|t−1 + µ∗st+1 (15)

+β

(
Pt|t−1

µh,t|t−1
+ r∗st

)(
Pt|t−1

µ2
h,t|t−1

+ σ2
e +

2r∗st

µh,t|t−1

)−1

(yt − yt|t−1)
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Pt+1|t = β2Pt|t−1 − µ∗2 + α2µh,t|t−1 (16)

+
(

Pt|t−1

µh,t|t−1
+ r∗st

)(
Pt|t−1

µ2
h,t|t−1

+ σ2
e +

2r∗st

µh,t|t−1

)−1

×
[
α2(yt − yt|t−1)− β2

(
Pt|t−1

µh,t|t−1
+ r∗st

)
+2β2

(
ω

1− β
− µh,t|t−1

)2

µ−1
h,t|t−1

]

Equation (15) will also generate a term structure of volatility, µh,t+k|t,
which summarizes all the forecasting properties of second moments of re-
turns of various maturities, all starting at date t. Given the observations
of {Rt}T

t=1 and initial values of µh,1|0 and P1|0, we can use equations (15)
and (16) to estimate the conditional mean of variance and prediction error
in the next period, µh,2|1 and P2|1. By iteration, µh,t|t−1 and Pt|t−1 with
t = 3, 4, . . . , T can be computed. The Kalman filter is initialized using the
unconditional mean of variance, E(ht) = $/(1 − β), as µh,1|0. Similarly,
the conditional variance of variance P1|0 adopts the unconditional variance
of variance, i.e. var(ht) = α2$/(1− β)(1− β2), as its starting value.

The predicted value yt+1|t and the prediction error E(yt+1 − yt+1|t)2 of
yt+1 are expressed, respectively, by equations (17) and (18).

yt+1|t = c0 + ln(µh,t+1|t) (17)

E(yt+1 − yt+1|t)2 =
Pt+1|t

µ2
h,t+1|t

+ σ2
e +

2r∗st+1

µh,t+1|t
. (18)

Given the assumption that the residuals {et, η
∗
t }T

t=1 follow a Gaussian dis-
tribution, the logarithmic QML function for {yt}T

t=1 is expressed in equa-
tion (19). By maximizing this logarithmic QML function, we can obtain
the parameter estimates, Ξ̂ = {µ̂S , $̂, β̂, α̂, σ̂2

e , ĉ0, µ̂
∗, r̂∗}.

max
Ξ={µS ,$,β,α,σ2

e ,c0,µ∗,γ∗}
L =

−T

2
ln(2π)− 1

2

T∑
t=1

ln
[
E(yt − yt|t−1)2

]
−
∑T

t=1(yt − yt|t−1)2

2E(yt − yt|t−1)2
. (19)
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Given the estimates of parameters, the residual
√

ht(xt + λ) of equation
(2) can be calculated as follows,

Rres
t = Rt − µ̂S +

1
2
µ̂h,t|t−1

∼=
√

ht(xt + λ), (20)

where Rres
t is the residual return containing the information of volatility

risk premiums.

3.2. Constant Volatility
The benchmark model for option pricing is the classic Black-Merton-

Scholes (BMS) model published in 1973 which was awarded the Nobel Prize
in Economics in 1997.11 The BMS model assumes volatility is constant,
and its discrete-time process can be approximated by,

Rt = µS −
1
2
σ2 + σxt (21)

where σ is standard deviation of index returns; xt is the residual term
following a normal distribution with mean 0 and variance 1. Given a set
of observations {Rt}T

t=1, the logarithmic maximum likelihood function be-
comes,

max
Ξ={µS ,σ}

L =
−T

2
ln(2π)− T ln(σ)−

∑T
t=1(Rt − µS + σ2/2)2

2σ2
. (22)

By maximizing the logarithmic maximum likelihood function, we can ob-
tain the parameter estimates, Ξ̂ = {µ̂S , σ̂}, and further calculate the resid-
ual σxt according to equation (21).

Rres
t = Rt − µ̂S +

1
2
σ̂2 ∼= σxt. (23)

Since {Rt}T
t=1 are in accordance with stylized facts of observed leptokur-

tosis, the calculated Rres
t thus contains the information about the market

price of volatility risk.

11Although the BMS model assumes volatility is constant, its creators knew that
volatility is itself volatile — an observation underlined by the Nobel Prize awarded in
2003 to professor Engle for his pioneering work (1982) on modeling volatility dynamics.
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4. THE PRICE AND VOLATILITY RISK PREMIUMS
4.1. The Market Price of Volatility Risk under Stochastic Volatil-
ity

The volatility risk premium, on one hand, can be expressed as the con-
ditional expectation of the residual term in the return process (equation
(4)). On the other hand, the residual return Rres

t in equation (20) contains
the information about the volatility risk premium. Thus, we can express
the relationship between the volatility risk premium and residual returns
by,

Rres
t =

11
16

αρ

√
µh,t−1|t−1
√

µh,t|t−1
+λ

 7
16
√

µh,t|t−1 −
1
8
β2

µ2
h,t−1|t−1√
µ3

h,t|t−1

+ ξt, (24)

where λ is the market price of volatility risk, and the residual term is
expressed by

ξt =
√

hh,t|t−1(xt + λ)− E[
√

hh,t|t−1(xt + λ)|It−1] ∼ ID(0, 1).

Given the estimates of parameters Ξ̂ = {µ̂S , $̂, β̂, α̂, σ̂2
e , ĉ0, µ̂

∗, r̂∗}, we can
estimate λ by minimizing the difference between Rres

t and its analytical
formula for the volatility risk premium,

min
λ

T∑
t=1

[
Rt − µ̂S +

1
2
µ̂h,t|t−1 −

11
16

1
λ

µ̂∗√
µ̂h,t|t−1

−λ

 7
16

√
µ̂h,t|t−1 −

1
8
β̂2

µ̂2
h,t−1|t−1√
µ̂3

h,t|t−1

2

(25)

Given λ̂ and Ξ̂ = {µ̂S , $̂, β̂, α̂, σ̂2
e , ĉ0, µ̂

∗, r̂∗}, the estimates of price and
volatility risk premiums are respectively obtained through µ̂S − 1

2 µ̂h,t|t−1

and 7
16 λ̂
√

µ̂h,t|t−1 + 11
16

1
λ̂

µ̂∗√
µ̂h,t|t−1

− 1
8 λ̂β̂2 µ̂2

h,t−1|t−1q
µ̂3

h,t|t−1

. The information of ρ

can be also recovered from ρ̂ = µ̂∗

λ̂α̂
√

µ̂h,t−1|t−1
.

4.2. The Market Price of Volatility Risk under Constant Volatil-
ity

The constant-volatility model itself as shown in equation (21) cannot
capture the volatility risk premium.12 However, the residual return Rres

t in

12This is due to the assumption of E(σxt|It−1) = 0.
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equation (23), as a function of realized returns, {Rt}T
t=1, contains the in-

formation of the volatility risk premium. Therefore, we express the market
price of volatility risk, λ, under the constant-volatility assumption, by

Rres
t = λσ + ξt, (26)

where ξt ∼ ID(0, 1).
Similarly, by minimizing the difference between the residual return Rres

t

and its theoretical volatility risk premium, the parameter estimate λ̂ can
be obtained via the following equation.

min
λ̂

T∑
t=1

[
Rt − µ̂S +

1
2
σ̂2 − λσ̂

]2
. (27)

Given the values of λ̂ and Ξ̂ = {µ̂S , σ̂}, the estimates of price and volatility
risk premiums are, respectively, calculated by µ̂S − 1

2 σ̂2 and λ̂σ̂ under the
constant-volatility assumption.

5. ESTIMATION RESULTS

This section presents empirical results from the QML estimation proce-
dures outlined in the previous sections. The estimation results for individ-
ual models are presented first and then characteristics of residual returns
in terms of the information of the market prices of price and volatility risk
are diagnosed later.

5.1. Estimation Results
QML estimates of parameters with asymptotic t statistics are reported

in Table 2 for various models for data covering alternative frequencies.

The long-term means of the volatility process (
√

$̂/(1− β̂)) appear time-
varying and seem to revert their medians of various frequencies (0.64, 0.69,
0.66 and 0.71). The QML estimates of the autoregressive parameter β̂
with significant asymptotic t-statistics imply persistence of the volatility.
Given the dynamics of the volatility process in equation (3), the half-life is
determined by finding the date ts, for which

E(hts |ht) =
1
2

(
ht +

$

1− β

)
, ts > t. (28)

Thus, it is necessary to know the process driving ht+∆t in the future in
order to obtain the value of ts. The estimate for the expected future spot
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TABLE 2.

Parameter Estimates of Constant- and Stochastic-Volatility Models

Constant Volatility Stochastic Volatility

Parameters 1 day 30 days 100 days 300 days 1 day 30 days 100 days 300 days

µ 0.0706 0.0658 0.0871 0.1155 0.0383 0.0472∗∗ 0.0404∗∗ 0.0434∗∗

(0.47) (0.46) (0.55) (0.66) (1.09) (2.94) (14.83) (22.23)

σ 0.3987 0.3950 0.3882 0.3772

(0.99) (0.94) (0.85) (0.45)

$ 0.0728∗ 0.0764∗∗ 0.0781∗∗ 0.0804∗∗

(2.23) (9.59) (30.34) (311.25)

β 0.8214∗∗ 0.8388∗∗ 0.8239∗∗ 0.8388∗∗

(50.12) (2983.73) (167.11) (427.72)

α 0.0397∗∗ 0.0014 0.0014 0.0014∗∗

(21.54) (0.56) (1.37) (28.69)

σ2
e 0.1474 0.1468∗∗ 0.1468∗∗ 0.1468∗∗

(1.18) (15.16) (14.10) (3.16)

c0 −2.8628∗∗ −3.0723∗∗ −3.9200∗∗ −3.0702∗∗

(−7.65) (−81.93) (−3.44) (−6.53)

µ∗ −0.0056 −0.0005 −0.0006 −0.0006∗∗

(−0.30) (−0.08) (−0.93) (−15.24)

r∗ −0.0000 −0.0001 −0.0000∗∗ −0.0000∗∗

(−0.00) (−0.33) (−4.83) (−3.96)

QBL 2.6749 16765.1266∗∗ 92795.4964∗∗ 119310.1977∗∗ 140.8119∗∗ 16460.8644∗∗ 92639.1171∗∗ 119245.2475∗∗

corr(Rres
t , µh,t|t−1) 0.3375 −0.8011 −0.8767 −0.9061

corr(Rres
t , Rt) 1.0000 1.0000 1.0000 1.0000 0.9435 0.9999 1.0000 1.0000

QML estimates with asymptotic t-statistics in the parentheses are reported. The symbol of ∗ (∗∗) indicates that given a 5% (1%)
significance level, the t test statistic rejects the null hypothesis of a zero parameter. QBL presents the Box-Ljung statistics for
residual returns, based on 20 lags, and is distributed χ2 under the null hypothesis of identical and independent observations. The
symbol of ∗ (∗∗) along with QBL indicates that given a 5% (1%) significance level, the QBL statistic show an indication of residual
serial correlation. The residual return Rres

t is the realized return Rt after subtracting its expectation, i.e., the premium for price
risk. By contruction, the residual return under constant volatility is Rres

t = σxt
∼= Rt − (µ̂S − σ̂2/2), whereas the one under

stochastic volatility is expressed by Rres
t =

√
htxt

∼= Rt − (µ̂S − µ̂h,t|t−1/2) with µ̂h,t|t−1 being the Kalman-filtered volatility.
corr(·, ·) represents the correlation coefficient between variables. All figures presented in this table are the averages within the 180
one-month subperiods starting from January 1969 and ending in January 1990—December 2004.

volatility is given by

E(hts |ht) = hte
−(1−β)(ts−t) +

$

(1− β)
[1− e−(1−β)(ts−t)]. (29)

According to equations (28) and (29),

ts − t =
ln 2

1− β
× τi, (30)



58 YUEH-NENG LIN, AND KEN HUNG

where τi = 1, 30, 100, 300 days and (ts − t) is the number of working days.
The persistence parameter of β̂ gives about 4, 129, 395 or 1290 working
days for an arbitrary volatility to revert halfway to its 1-, 30-, 100- or
300-day long-term mean. The volatility of variance, as measured by α̂,
is possibly responsible for the high kurtosis in short-term raw returns.13

Given the estimated parameter values, together with the corresponding σ̂
or µ̂h,t|t−1, we fit our models to the residuals Rres

t as shown in equations
(20) and (23). The Box-Ljung statistics of the residual returns for 20 lags
indicate that there is some linear structure left in the models, except for the
1-day constant-volatility model. This could be removed by fitting a more
complex dynamic model to the mean of the process, and experiments along
these lines indicate a substantial degree of correlation between Rres

t and
Kalman filtered µ̂h,t|t−1, which is increased in magnitude across investment
horizons by 0.34, −0.80, −0.88 and −0.92 for the 1, 30, 100 and 300 days.
Except for the 1-day frequency, the residual returns also have a substantial
degree of correlation with raw returns. This partially explains why this
study exploits the residual returns to recover the information of the market
price of volatility risk. Nevertheless parameter estimates can be obtained
by treating lnx2

t as though it were NID(−1.27, π2/2) and maximizing the
resulting QML function (Ruiz, 1994). A further extraction of applying
QML to stochastic-volatility models proposed here is that the assumption
of normality for xt can be relaxed, in which case its mean c0 and variance σ2

e

are estimated unrestrictedly. The resultant statistical significance of ĉ0 and
σ̂2

e implies that the distribution of xt is nonnormal for the S&P 500 returns.
This is important because the kurtosis in many financial series is greater
than the kurtosis that results from incorporating stochastic volatility into
a Gaussian process (Harvey et al., 1994). The introduction of µ∗ and r∗ is
aimed to recover the lost information of the correlations between the return
shock xt and the volatility shock εt due to the usage of squared returns.
The signs of the cross-correlations are determined by the corresponding
pair of estimated values (µ̂∗, λ̂) or (r̂∗, λ̂) and noting that the sign of each
of the pairs (µ̂∗, r̂∗) is negative.

5.2. Filtered Volatilities
During periods of financial turmoil, which are often accompanied by

steep market declines, filtered volatilities tend to rise. As the char in Fig-
ure 4 illustrates, the filtered volatility mirrored the peaks and troughs as
the market suffered through steep declines during the Long Term Capital
Management and Russian Debt Crises in 1998. A high level of the filtered
volatility seems to have a power in predicting the market’s subsequent di-

13The annualized volatility of variance of various frequencies (1, 30, 100 and 300 days)
is presented by α̂× 252/τi = 10.0139, 0.0117, 0.0035 and 0.0012, respectively.
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rection. A reversion of the filtered volatility occurs both after upside and
downside extremes. Another interesting aspect of filtered volatility is that
it tends to move opposite its underlying index, i.e. asymmetric volatility
shocks. This tendency is illustrated in Figure 5 comparing future filtered
volatilities with current S&P 500 returns. Note that the negatively sloping
trend line, except for 1-day frequency, confirms the negative correlation be-
tween filtered volatility and market movement. Thus, the filtered volatility
paves the way for both listed and over-the-counter volatility contracts at
a time of increased market demand for such products. Thus, the filtered
volatility could capture the pulse of the market. Extreme filtered volatil-
ity readings and reversals often signal quick reversals in the stock market,
making it an effective tool for trading strategies. The graph also shows that
filtered volatilities are statistically significant leading indicators of market
returns.

FIG. 4. Expected conditional variance of S&P 500 index returns of various frequen-
cies.

 64

Figure 4. Expected conditional variance of S&P 500 index returns of various frequencies. 

)IE(h 1tt −  in the left Y-axis denotes the estimated expected conditional variance, 1,
ˆ

−tthµ , and St in the 

right Y-axis presents the index level. The filtered volatilities are graphed over the period January 

1969−December 2004 with monthly updated parameters. The averages of 1-, 30-, 100- and 300-day 

filtered variances since 1969 are roughly 38.76%, 46.87%, 44.17% and 49.08%, respectively. 

E(ht|It−1) in the left Y -axis denotes the estimated expected conditional variance,

µ̂h,t|t−1, and St in the right Y -axis presents the index level. The filtered volatil-

ities are graphed over the period January 1969—December 2004 with monthly

updated parameters. The averages of 1-, 30-, 100- and 300-day filtered variances

since 1969 are roughly 38.76%, 46.87%, 44.17% and 49.08%, respectively.
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FIG. 5. Future filtered variances and current S&P 500 returns.
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Figure 5 Future filtered variances and current S&P 500 returns. )IE(h t1t+  in the Y-axis denotes 

the estimated future expected conditional variance, tth 1,
ˆ

+µ .  The correlations between current return 

Rt and future filtered variance )IE(h t1t+  are given by 0.4188, −0.8418, −0.8871 and −0.9095 for 1-, 

30-, 100- and 300-day returns, respectively. 

E(ht+1|It) in the Y -axis denotes the estimated future expected conditional vari-

ance, µ̂h,t+1|t. The correlations between current return Rt and future filtered

variance E(ht+1|It) are given by 0.4188, −0.8418, −0.8871 and −0.9095 for 1-,

30-, 100- and 300-day returns, respectively.

5.3. The Relative Contributions of Price and Volatility Risk
Premiums to the Residual Returns

The magnitude of volatility risk premiums depends on the market price,
λ, the amplitude of volatility risk, var(Rt|It−1), and the correlation ρ be-
tween volatility shocks and return shocks. The estimates of the market
price of volatility risk, λ̂, in Table 3 are in general significantly positive
at a given 90% confidence interval, indicating the existence of volatility
risk premiums in the residual returns. In particular, the stochastic volatil-
ity provides a greater and more significant λ̂ than the constant volatility,
indicating a superior capability to capture volatility risk premiums. As
shown in the left axis of Figure 6, a drop in stock price occurs immediately
due to the higher expected return required to compensate for the added
risk, as an indicative of the existence of time-varying volatility premiums.
Since the volatility of the index increases as well, return and volatility are
negatively correlated by −0.8089, −0.8785 and −0.9071 for 30, 100 and
300 days to horizon.14 The observed negative correlation between return
innovations and volatility shocks could be often referred to as the volatility
feedback effect displayed in Figure 7. The presence of asymmetric volatility

14The 1-day return is slightly positively correlated with filtered variance by 0.0066.
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TABLE 3.

The Market Prices of Price and Volatility Risks

Model Constant Volatility Stochastic Volatility

Horizon 1 day 30 days 100 days 300 days 1 day 30 days 100 days 300 days

λ̂ 0.0230 0.0514∗∗ 0.0397∗ 0.1072∗∗ 0.7480∗∗ 0.8177∗∗ 0.8859∗∗ 1.1717∗∗

(1.09) (2.42) (1.85) (4.76) (20.61) (23.47) (24.76) (33.70)

ˆvar(Rt|It−1) 0.1590 0.1561 0.1507 0.1422 0.3876 0.4687 0.4417 0.4908

ρ̂ −0.3002 −0.7032 −0.7025 −0.4586

Rvrp 0.0092 0.0203 0.0154 0.0404 0.1557 0.1951 0.2065 0.2866

Rprp −0.0089 −0.0122 0.0118 0.0444 −0.1554 −0.1871 −0.1795 −0.2021

λ̂ is the estimated market price of volatility risk along with asymptotic t-statistics in the
parentheses. The symbol of ∗ (∗∗) denotes that at the significance level of 5% (1%)
the t-statistic rejects the null hypothesis of λ = 0. ˆvar(Rt|It−1) is the filtered vari-
ance of Rt, equal to µ̂h,t|t−1 for the stochastic volatility and σ̂2 for the constant volatil-

ity. ρ̂ = µ̂∗/λ̂α̂∗
q

µ̂h,t−1|t−1 illustrates the correlation between return shocks and volatil-

ity shocks. Rvrp means the “volatility risk premium” computed by 7λ̂
q

µ̂h,t|t−1/16 +

11µ̂∗/16λ̂
q

µ̂h,t|t−1 − λ̂β̂2µ̂2
h,t−1|t−1

/8
q

µ̂3
h,t|t−1

(stochastic volatility) or λ̂σ̂ (constant

volatility). Rprp denotes the “price risk premium” calculated as µ̂S − µ̂h,t|t−1/2 (stochastic

volatility) or µ̂S − σ̂2/2 (constant volatility). The figures in the table are the averages of
corresponding estimates in the sample period starting in January 1969 and ending in January
1990—December 2004.

is most apparent during market crashes when a large decline in stock price
is associated with a significant increase in market volatility. The economic
significance of a negative value of ρ slows down the increase in asset price
when the asset price is climbing up, whereas speeds up the decrease in asset
price when the asset is falling. Thus, investors in general are not in favor of
the consequence brought by a negative ρ. Given a negative value of ρ, the
greater the volatility risk, the more premiums demanded by investors for
compensation of bearing the risk and thus the market price of volatility risk
is positive. In contrast, given a positive value of ρ, the greater the volatil-
ity risk, the less premiums required by investors due to the favor of the
risk and thus the market price of volatility risk is negative. Our empirical
results show a negative estimate of ρ̂ and thus indicate a positive volatility
risk premium, which is consistent with the result of a positive estimate of
the market price of volatility risk λ̂. As a result, ρ̂ plays an important
role of passing the volatility information into the underlying market. In
other words, a great volatility shock cannot attract investors’ attention to
demand required premiums for bearing volatility risk if ρ̂ is close to zero
that blocks away the linkage between the volatility and underlying mar-
kets. On the other hand, a drop in the value of the stock (negative return)
increases financial leverage, which makes the stock riskier and increases
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its volatility. Thus, the price risk premium presented in Table 3 and in
the right axis of Figure 6 captures the leverage effect, which generates the
volatility asymmetry independent of the volatility feedback.15 Hence, the
causality is different: the leverage effect contends that returns shocks lead
to changes in conditional volatility, whereas the time-varying risk premium
claims that return shocks are caused by changes in conditional volatil-
ity. The volatility feedback effect is enhanced by strong asymmetries in
conditional covariances. The estimated structural models show that the
volatility feedback effect is stronger than the leverage effect, in particular
for the stochastic-volatility model. In addition, the volatility risk premium
grows along the time to maturity, whereas the price risk premium shrinks
across maturities. This is justified by the fact that the volatility feedback
effect also relies on the persistence in volatility (Bekaert and Wu, 2000).
Thus, the price risk premium is more contributable to short-term returns
whereas the volatility risk premium plays an important role in long-dated
returns.

FIG. 6. The price risk premium (in the right axis) and the volatility risk premium
(in the left axis) under stochastic volatility.
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Under the stochastic-volatility framework, the price risk premium is calculated

by Rprp = µ̂S − µ̂h,t|t−1/2, whereas the volatility risk premium is computed as

Rvrp = 7λ̂
p

µ̂h,t|t−1/16 + 11µ̂∗/16λ̂
p

µ̂h,t|t−1 − λ̂β̂2µ̂2
h,t−1|t−1/8

q
µ̂3

h,t|t−1.

15Due to the limitation of the constant-volatility model, the estimated parameter σ̂
using observed returns Rt cannot capture the randomness in volatility and the parameter
estimate µ̂S thus contains the information of price and volatility risk premiums as well
as the market prices of other risk factors.
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FIG. 7. The correlation between return shocks and volatility shocks in the S&P 500
index market.
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rho (ρ) in the left axis denotes the correlation coefficient between return shocks

and volatility shocks under stochastic volatility, which can be estimated through

the formula, ρ̂ = µ̂∗/λ̂α̂∗p
µ̂h,t−1|t−1, in which µ̂∗ and α̂ are parameter esti-

mates, and µ̂h,t−1|t−1 is the filtered variance at time t− 1 given by the informa-

tion set It−1. The average values (standard deviations) of ρ̂ over 180 subperiods

are −0.3002 (0.0033), −0.7032 (0.0021), −0.7025 (0.0014) and −0.4586 (0.0011)

for 1, 30, 100 and 300 days to expiration. The negative value of ρ̂ represents

the asymmetric impact of volatility shocks on returns. In addition, the aver-

aged correlations between ρ̂ and µ̂h,t|t−1 over 180 subperiods are 0.9988, 0.9994,

0.9946 and 0.9622 for 1, 30, 100 and 300 days, respectively. The highly positive

correlation represents the situation that the more volatile the index, the more

pronounced the volatility asymmetry.

Figure 8 reports the distributions of price and volatility risk premiums
under stochastic volatility. With one exception for the 1-day return, the
volatility (price) risk premiums have positive (negative) skewness. The ex-
istence of volatility risk premiums in the S&P 500 return may help explain
the pricing puzzle of CAPM that often, in practice, underestimates (over-
estimates) the expected rate of return with a low (high) beta coefficient.
As motivated by the significant correlation between aggregate consumption
growth and S&P 500 index returns (EBRI, 1993), the S&P 500 index could
be used as a proxy of the market portfolio. CAPM defines the beta coef-
ficient of an asset i as βi = σi,m/σ2

m where σi,m is the covariance between
the asset return, Ri, and the market return, Rm, and σ2

m is the variance
of the market portfolio. If volatility is priced, the relevant measure of risk
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FIG. 8. Distributions of the price risk premium (Rprp) and the volatility risk pre-
mium (Rvrp) under stochastic volatility.
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tive (negative) skewness coefficient of 1.3382 (−1.4013), the price (volatility) risk

premiums for 30, 100 and 300 days to expiration have negative (positive) skew-

ness coefficients of −2.0468 (2.0407), −2.6609 (3.1589) and −1.9704 (2.2480),

respectively.

is the covariance with the market portfolio that should response positively
to increases in market volatility. The beta coefficient of an asset i could be
decomposed into two components,

βi =
cov(Ri, Rm)

σ2
m

=
cov(Ri, R

prp
m )

σ2
m

+
cov(Ri, R

vrp
m )

σ2
m

= βprp
i + βvrp

i ,

where Rprp
m and Rvrp

m , respectively, present the price and volatility risk
premiums in the market return. The CAPM uses standard statistical tech-
niques (simple linear regression with constant volatility) to compute the
intercept and the slope (beta) of a line that analyzes the relationship be-
tween the periodic returns of the asset i and those of the market (e.g.
the S&P 500). While considering an asset with a high (low) βi, much of
the contribution to the expected return comes from the market price of
volatility (price) risk (see Table 3). This is justified by our empirical find-
ings that the increased volatility then raises expected returns and lowers
current stock prices, dampening volatility in the case of good news and in-
creasing volatility in the case of bad news. The estimated β̂i is thus greater
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(lower) than its theoretical value of βCAPM
i (under the constant-volatility

assumption).

6. OUT-OF-SAMPLE FORECASTS IN MEAN RETURNS
6.1. Out-of-Sample Forecasts Using Price and Volatility Risk

Premiums
In order to measure whether calculated price and volatility risk premi-

ums contain information contents about returns, an out-of-sample forecast
in returns is performed. The out-of-sample period is one-month ahead and
lasts for 15 years, from February 1990 to December 2004,16 in total 179
one-month periods. For the stochastic-volatility model, we use the esti-
mates of model parameters, Ξ̂ = {µ̂S , $̂, β̂, α̂, σ̂2

e , ĉ0, µ̂
∗, r̂∗}, and the mar-

ket price of volatility risk, λ̂, obtained from the estimation periods to cal-
culate the volatility risk premium, 7λ̂

√
µ̂h,t|t−1/16+11µ̂∗/16λ̂

√
µ̂h,t|t−1−

λ̂β̂2µ̂2
h,t−1|t−1/8

√
µ̂3

h,t|t−1, and the price risk premium, µ̂S − µ̂h,t|t−1/2, for
corresponding out-of-sample data periods. Note that the conditional mean
and variance of returns, i.e., µ̂S−µ̂h,t|t−1/2 and µ̂h,t|t−1 need to be updated
daily via Kalman filter. In the constant-volatility model the estimates of
parameters, Ξ̂ = {µ̂S , σ̂}, and the market price of volatility risk, λ̂, are used
to calculate the price risk premium of µ̂S− σ̂2/2 and the volatility risk pre-
mium of λ̂σ̂ for the forecast horizons. The summations of calculated price
and volatility risk premiums are then compared to corresponding actual
rates of return and the forecast errors are computed. Three error matrices
are used to evaluate the forecast performances, including ME (mean error),
MAE (mean absolute error) and RMSE (root mean squared error).

ME =
1
N

N∑
i=1

εi

NAE =
1
N

N∑
i=1

|εi|

RMSE =

√√√√ 1
N

N∑
i=1

ε2
i

16The choice of one-month forecast horizon is justified by the consideration that the
estimated model parameters only apply to the returns in the following one-month and
thus reduces the inappropriateness of parameter estimates. The ending date of each data
subperiod is the third Friday of the current month which corresponds to the expiration
date of S&P 500 index options.
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where εi is the out-of-sample forecast error that measures the difference
between the observed return and the predicted return computed as the
summation of calculated price and volatility risk premiums. N = 3, 848 is
the number of forecasts for the out-of-sample period, 18 January 1990—15
December 2004. As shown in Table 4, the shorter the investment horizon,
the smaller the MAE and RMSE, indicating a superior forecast performance
for short-term returns relative to long-term returns under either constant
or stochastic volatility. As evidenced by significantly high estimates of
parameter β, the relatively poor forecast for long-dated returns may result
from the existence of long memory in realized volatility that is not explicitly
taken into account in our models (Harvey, 1993). With an exception of
the 1-day return, the stochastic-volatility model outperforms the constant-
volatility model for 30-, 100- and 300-day returns. According to ME values,
both models overprice the realized returns for 30, 100 and 300 days to
expiration, but underprice the 1-day return.

TABLE 4.

Out-of-Sample Forecast Errors

Constant Volatility Stochastic Volatility

1 day 30 days 100 days 300 days 1 day 30 days 100 days 300 days

ME 0.0000 −0.0150 −0.0577 −0.0078 0.0027 −0.0142 −0.0570 −0.0072

MAE 0.0078 0.0453 0.0766 0.1154 0.0083 0.0448 0.0760 0.1152

RMSE 0.0098 0.0500 0.0807 0.1174 0.0104 0.0494 0.0801 0.1172

This table shows the performance of out-of-sample forecasts of the constant- and stochastic-
volatility models during the forecast periods. The forecast errors are measured by the
difference between realized and predicted returns. The predicted returns are computed
as the summation of predicted price and volatility risk premiums. Three error matrices
are used to evaluate the forecast performances, including ME (mean error), MAE (mean
absolute error) and RMSE (root mean squared error). The figures in the table are the
averages of forecast errors for 179 forecast subperiods, starting from February 1990—
December 2004.

There are two drawbacks while using the RMSE criterion (Fair and
Shiller, 1990). First, RMSE cannot really tell the difference between two
models when their values are close to each other. Second, the model with
higher RMSE may contain useful information for forecasting that is absent
from the model with lower RMSE. Consequently, the next section uses
the information of price and volatility risk premiums embedded in both
constant- and stochastic-volatility models to predict the mean returns.

6.2. Encompassing Regression
As motivated by APT theory that the expected rate of return is com-

posed of premiums of related risk factors, this section considers an en-
compassing regression to examine the relative contributions of price and
volatility risk premiums to the mean returns. This study uses the aver-
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ages of period returns calculated from the earliest available date in 1969 to
the out-of-sample forecast date as the proxy of realized mean returns R̃t,T

where T corresponds to 1-, 30-, 100- and 300-day investment horizons and
t is the forecast date, starting from 18 January 1990 to 15 December 2004.
Regression R̃t,T on the risk premiums predicted from both constant and
stochastic volatility as shown in the following,

R̃t,T = β0 + β1ϑ
const
t + β2ϑ

sv
t + ut, (31)

where ϑconst
t is the summation of the predicted price premium, ζconst

t =
µ̂S − σ̂2/2, and the predicted volatility risk premium, νconst

t = λ̂σ̂, under
constant volatility where {µ̂S , σ̂} are obtained from the estimation period.
Similarly, ϑsv

t represents the summation of the predicted volatility risk
premium,

νsv
t = 7λ̂

√
µ̂h,t|t−1/16 + 11µ̂∗/16λ̂

√
µ̂h,t|t−1 − λ̂β̂2µ̂2

h,t−1|t−1/8
√

µ̂3
h,t|t−1,

and the predicted price premium, ζsv
t = µ̂S − µ̂h,t|t−1/2, under stochastic

volatility where µ̂h,t−1|t−1 and µ̂h,t|t−1 are updated daily via Kalman filter
and structural parameters are obtained from the estimation period.

Three hypothesis tests are performed with respective to the encompass-
ing regression of equation (31). First, given running a simple univariate
regression, a significant slope coefficient denotes the predictability of ϑconst

t

or ϑsv
t towards R̃t,T . Next, an unbiased forecast will have the result with

an intercept of 0 and the slope coefficient of 1. Finally, according to the
orthogonality condition of market efficiency, if ϑsv

t (ϑconst
t ) contains enough

efficient information about R̃t,T , the estimated coefficient of ϑsv
t (ϑconst

t )
turns out to be zero. Besides, if there is no measurement error in ϑconst

t , ϑsv
t

and R̃t,T , OLS can provide consistent parameter estimates. Further, this
study also runs a multiple regression, shown as follows, to address the
relative contribution of individual risk premiums to R̃t,T .

R̃t,T = β0 + β1ζ
const
t + β2ν

const
t + β3ζ

sv
t + β4ν

sv
t + ut. (32)

Significant slope coefficients indicate the predictability of corresponding
ζconst
t , νconst

t , ζsv
t or towards R̃t,T . The estimation results are shown in

Table 5. The first two rows in Table 5 represent average parameter esti-
mates along with t-statistics of a univariate regression of R̃t,T on ϑconst

t

and ϑsv
t , respectively, for alternate forecast horizons. Although the slope

parameter of ϑconst
t is close to 1, it is not statistically significant and thus

lacks the evidence of the predictability of ϑconst
t for R̃t,T . In contrast,

although the slope parameter of ϑsv
t is far from 1, it is statistically signifi-

cant and thus supports for the predictability of ϑsv
t (= ζsv

t + νsv
t ) for R̃t,T .
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However, the intercept is significantly different from zero that rejects the
unbiasedness of ϑsv

t towards R̃t,T . The result of a multiple regression of
R̃t,T on ϑconst

t and ϑsv
t shows the slope estimate of ϑsv

t is statistically dif-
ferent from zero, indicating that ϑsv

t has incremental information relative
to ϑconst

t . Finally, the parameter estimates of a multiple regression of R̃t,T

on ζconst
t , νconst

t , ζsv
t and νsv

t are statistically insignificant. However, the
slope estimates with ζsv

t and νsv
t are greater and closer to 1 than those with

ζconst
t and νconst

t , indicating that ζsv
t and νsv

t are R̃t,T -informative.

7. CONCLUSION

The volatility feedback effect, along with the well-documented persis-
tent volatility dynamics, implies an observationally equivalent negative
correlation between current returns and future volatility, as a shock to
the volatility will require an immediate return adjustment to compensate
for the increased future risk. Empirical evidence also confirms that ag-
gregate market volatility responds asymmetrically to negative and positive
returns, and the economic magnitude is statistically significant and time-
varying. Importantly, the magnitude also depends on the volatility proxy
employed in the estimation, with stochastic volatilities generally exhibiting
much more pronounced asymmetry. Since the S&P 500 index is generally
used as a proxy of the market portfolio, the volatility shocks negatively
correlated to S&P 500 returns may also be negatively correlated to ag-
gregate consumption growth, and thus results in a negative volatility risk
premium. However, the negative impact of volatility shocks on the to-
tal expected returns is offset and dominated by the volatility asymmetry.
The net effect of volatility shocks on the total return rate will turn out
to be positive, indicating that investors will demand a positive volatility
risk premium to counter with volatility shocks. The contribution of the
price risk premium to short-term returns is relatively significant whereas
the volatility risk premium is more contributable to long-term returns. Fi-
nally, the market price of volatility risk may help to solve the pricing puzzle
of CAPM that uses a simple linear regression with constant volatility. To
investigate the information contents embedded in the price and volatility
risk premiums, this study performs out-of-sample forecasts in returns. The
stochastic-volatility model in general outperforms the constant-volatility
model for 30-, 100- and 300-day returns. In addition, encompassing regres-
sion is used to investigate the information contents of price risk premiums
(ζconst

t , ζsv
t ) and volatility risk premiums (νconst

t , νsv
t ) towards the mean re-

turn R̃t,T during the out-of-sample data period. The predicted mean return
is computed as either ϑconst

t (= ζconst
t + νconst

t ) under constant volatility or
either ϑsv

t (= ζsv
t + νsv

t ) under stochastic volatility. The slope parameter of
ϑconst

t is found close to 1 but not statistically significant and thus cannot
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TABLE 5.

Encompassing Regression

β0 ϑconst
t ϑsv

t ζconst
t νconst

t ζsv
t νsv

t

0.0000 1.0000

(0.00) (0.00)

0.0002∗∗ 0.00001∗∗

1 day (1182949.90) (1581.17)

0.0001 0.7092 0.0001∗∗

(0.00) (0.00) (508.57)

−0.1213 −0.2180 0.2179 0.5403 1.2903

(−0.06) (−0.18) (0.02) (0.09) (0.09)

0.0000 1.0000

(0.00) (0.05)

0.0068∗∗ −0.0364∗∗

30 days (766534.77) (−19335.74)

0.0127 −0.8917 −0.0364∗∗

(0.02) (−0.01) (−14707.80)

−0.1439 −0.0911 0.0895 0.4884 1.2317

(−0.02) (−0.52) (0.41) (0.23) (0.31)

−0.0001 0.9999

(−0.00) (0.09)

0.0262∗∗ −0.1682∗∗

100 days (54436.99) (−5441.05)

0.0412 −0.6681 −0.1682∗∗

(0.01) (−0.00) (−7976.21)

−0.1461 0.1715 0.1704 0.4982 1.2673

(−0.42) (0.37) (0.05) (0.09) (0.13)

0.0000 1.0000

(0.00) (0.11)

0.0744∗∗ −0.0237∗∗

300 days (62856.18) (60328.52)

0.0813∗∗ −0.0952 −0.0237∗∗

(4.31) (−0.05) (21699.38)

0.1182 0.0394 0.0392 0.6420 1.1451

(?0.12) (0.14) (0.04) (0.29) (0.25)

The first two rows in the table represent the results of a univariate regression of R̃t,T on ϑconst
t and

ϑsv
t , respectively, where R̃t,T is the realized mean return. The third row shows the estimation results

of R̃t,T = β0 + β1ϑconst
t + β2ϑsv

t + ut, whereas the fourth row displays the parameter estimates

of R̃t,T = β0 + β1ζconst
t + β2νconst

t + β3ζsv
t + β4νsv

t + ut. The figures in the parentheses are the
t-statistics of parameter estimates. The symbol of ∗∗ indicates that the t-statistic rejects the null
hypothesis of a zero parameter at the significance level of 1%.
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support for the predictability of ϑconst
t on R̃t,T . The intercept and slope

parameters of ϑsv
t are relatively small but statistically significant, indicat-

ing that ϑsv
t is an informative but biased estimator of R̃t,T . The result of a

multiple regression of R̃t,T on ϑconst
t and ϑsv

t indicates that ϑsv
t has incre-

mental information relative to ϑconst
t . Finally, all parameter estimates of a

multiple regression of R̃t,T on ζconst
t , νcobst

t , ζsv
t and νsv

t are not statistically
significant. However, slope parameter estimates of ζsv

t and νsv
t are greater

and closer to 1 than the corresponding values of ζconst
t and νconst

t , indi-
cating a superior information content of ζsv

t and νsv
t towards R̃t,T relative

to ζconst
t and νconst

t . In other words, these empirical results point out the
importance of volatility risk premiums in mean returns, especially under
the stochastic volatility. Thus, the framework of stochastic volatility plays
an important role in correctly measuring or capturing the market price of
volatility risk, which is crucial to asset pricing.
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