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Optimal taxation under income uncertainty has been extensively developed
in expected utility theory, but it is still open for inseparable utility function
between income and effort. As an alternative of decision-making under un-
certainty, prospect theory (Kahneman and Tversky (1979), Tversky and Kah-
neman (1992)) has been obtained empirical support, for example, Kahneman
and Tversky (1979), and Camerer and Lowenstein (2003). It is beginning
to explore optimal taxation in the context of prospect theory, for example,
Oswald (1983), Tuomala (1990) in conventional setting without utility inter-
dependence, and Kanbur, Pirttila, and Tuomala (2008) for separable value
functions between income and effort. It is challenging in the prospect theory
to treat with optimal taxation for inseparable value function between income
and effort. In this paper, we model taxation under income uncertainty by
sufficiently considering government’s risk aversion and individuals’ loss aver-
sion. We obtain its sufficient condition for the first order approach to general
value functions including inseparable value function between income and ef-
fort, hence generalizing Oswald (1983), Tuomala (1990) to optimal taxation
with utility interdependence, and Kanbur, Pirttila, and Tuomala (2008) to
inseparable value functions between income and effort.
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1. INTRODUCTION

Optimal taxation under income uncertainty was characterized, for ex-
ample, Mirrlees (1971, 1974, 1976), Atkinson and Stiglitz (1976, 1980),
Golosov, Kocherlakota and Tsyvinski (2003), where the government (prin-
cipal) has access to taxation, ex-ante identical individuals (agents) have
heterogenous skills level unobservable to others, and the agent’s utility de-
pends randomly on effort under income uncertainty. However, the aim of
taxation is to transform resources from the highly skilled to the less skilled
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in an efficient way, given that incomes, not skills, are observable. In most
principal-agent analysis, including Mirrlees (1971, 1974, 1976), Atkinson
and Stiglitz (1976, 1980), Golosov, Kocherlakota and Tsyvinski (2003), the
expected utility theory (EUT henceforth) is extensively applied to describe
agents’ behavior under income uncertainty.

In the EUT, agent’s utility, in which his/her preference is exhibited with
regard to uncertain outcomes, is represented by a function of payoff, prob-
ability of occurrence and risk aversion. Different utility conforms to dif-
ferent preferences. As an alternative of decision-making under uncertainty,
prospect theory (PT henceforth, Kahneman and Tversky (1979), Tversky
and Kahneman (1992)) has been obtained empirical support, for example,
Kahneman and Tversky (1979), and Camerer and Lowenstein (2003). Dif-
ferent from the EUT, individuals’ utilities, when applying the PT, depend
on how the outcome deviates from reference points, rather than directly on
the absolute value of the outcomes. Individuals are loss-averse. In addi-
tion, PT has been applied elsewhere, for example, Maskin and Riley (1984)
and Dai (2010) on efficient auction.

As an alternative to Mirrlees (1971, 1974, 1976), Atkinson and Stiglitz
(1976, 1980), and Golosov, Kocherlakota and Tsyvinski (2003), we model
taxation, in this paper, under income uncertainty by introducing elements
of the PT in accordance with the emerging empirical consensus, that is,
the individuals’ utilities depend on their gains and losses, however, they
are more sensitive to losses than to gains. Thus we obtain the sufficient
condition for the first order approach (FOA henceforth) to general value
function over income and effort.

As a keynote to the PT, we must ask what determines the reference
income level for the individuals to assess losses and gains? One possibili-
ty is for the individuals to compare their ex-post outcome relative to the
means of the outcome for other individuals, close to models of optimal
taxation with utility interdependence (or envy). Those were explored in
the conventional setting without income uncertainty by Oswald (1983) and
Tuomala (1990). This paper will analyze taxation with utility interdepen-
dence under income uncertainty, hence generalizing Kanbur, Pirttila, and
Tuomala (2008). If the reference points could be a past consumption level,
Kanbur, Pirttila, and Tuomala (2008) and this analysis will resemble habit
formation models, for example, Ljunqvist and Uhlig (2000) and Carroll,
Overland and Weil (2000).

Though Kanbur, Pirttila, and Tuomala (2008) explored optimal taxa-
tion under income uncertainty when individuals behave according to the
PT, they obtained sufficent condition required for the FOA to separable
functions between income and effort, and found that optimal marginal tax
rates on low incomes tend to be lower under the PT than under the EUT.
Therefore we construct Pareto-optimization programme for nonlinear taxa-
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tion, on top of which we develop sufficient condition for the FOA to general
utility functions including inseparable functions between income and effort,
hence generalizing Kanbur, Pirttila, and Tuomala (2008). Then we check
taxation under income uncertainty when the individuals behave according
to the PT, but the government applies the EUT.

This paper falls into a rapidly expanding field of behavioral public eco-
nomics, whose central focus is on public policy while the individual prefer-
ences differ from social ones, for example, O’Donoghue and Rabin (2003)
on optimal paternalistic taxes which the government imposes to correct
individuals’ behavior regarding consumption of harmful goods, Sheshinski
(2003) on faulty individuals’ decision making, where restricting individuals’
choices leads to welfare improvements, and Kanbur, Pirttila, and Tuomala
(2006) on non-welfarist optimal taxation.

In Section 2, we model taxation problem under income uncertainty when
the individuals apply the PT. In Section 3, we introduce the FOA, its
sufficient condition and how it is developed for inseparable value functions
between income and effort. Some concluding remarks are presented in
Section 4.

2. BASIC MODEL

Assuming that the individuals make decisions according to the PT, and
the government according to the EUT, this section models taxation under
income uncertainty. In the PT, the value functions are defined on deviations
from the reference points, generally concave for gains and convex for losses,
and steeper for losses than for gains (Kahneman and Tversky (1979)).

When the individual does not know what income he or she will receive
for each possible level of effort as in Mirrlees (1971, 1974, 1976), the in-
dividual’s gross income, z, depends randomly on effort, y. For a single
individual or all ex-ante identical individuals of heterogenous skill levels
unobservable to others, income differences are not coming from differences
in innate skills as in Mirrlees (1971, 1974, 1976), but from any given level
of effort. The government and the individuals here perceive the same dis-
tribution of income z and effort y. Let f(z, y) and F (z, y) be the density
and distribution functions of income z given that effort y is undertaken
by the individual. Similar to Kanbur, Pirttila, and Tuomala (2008), we
assume f(z, y) and F (z, y) not only positive for ∀z, and ∀y, but also twice
continuously differentiable.

Assumption 1 f(z, y) > 0,
∫
f(z, y)dz = 1 and F (z, y) > 0, for ∀z, and

∀y.
Assumption 2 f(z, y) and F (z, y) are twice continuously differentiable

with respect to every income z and effort y, also Fyy(z, y) > 0.
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Note that Fyy(z, y) > 0 is called the convexity of the distribution function
condition (CDFC henceforth) in Mirrlees (1976), Rogerson (1985), Jewitt
(1988), Alvi (1997).

Let g(z, y) =
fy(z,y)
f(z,y) be likelihood ratio, we assume the likelihood ratio

monotone with respect to income z.

Assumption 3 ∂g(z,y)
∂z > 0.

Assumption 3 is called the monotone likelihood ratio condition (MLRC
henceforth) in Mirrlees (1976), Rogerson (1985), Jewitt (1988), Alvi (1997).

Let x = z − T (z) be the income after tax, x̄ the exogenous reference
income for the individual, and x̃ = x− x̄ the change over the income after
tax from the income reference which may be formulated historically or from
comparison with other individuals.

In our situation, the individuals are risk-averse with value function over
income and effort, their values depend on their gains and loss, and they are
more loss aversion to loss than to gains, hence the value function e(x− x̄, y)
has following characteristics.

Assumption 4

∂e

∂x̃
> 0, (1)

∂2e

∂x̃2
> 0, ∀x < x̄; (2)

∂2e

∂x̃2
= 0, x = x̄; (3)

∂2e

∂x̃2
< 0, ∀x > x̄. (4)

For an additively separable value function between income and effort,
the value function can be simplified e(x− x̄, y) = ẽ(x− x̄)− y without loss
of generality, when units of efforts are properly chosen. Here there was no
reference point for effort in our models at this stage, since reference point for
effort can not change working method along the additively separable value
function, but it is much complicated for general inseparable formulation,
see, Alvi (1997), for example. Since the individuals could lose from working
less or more than the reference effort, we here concentrate on the value
function with the reference point merely for income.

For mathematical simplicity and the FOA works at least for income over
the reference income in our situation including inseparable value functions,
we need following assumption.

Assumption 5

∂e(x̃, y)

∂y
< 0, (5)
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∂2e(x̃, y)

∂x̃∂y
≥ 0. (6)

Let δe be degree of the individuals’ loss aversion, i.e. δe =
∂2e(x̃,y)

∂2x̃
∂e(x̃,y)

∂x̃

. We

have following characteristics in accordance with empirical facts.
Assumption 6

∂δe
∂y

> 0, ∀x < x̄; (7)

∂δe
∂y

= 0, x = x̄; (8)

∂δe
∂y

< 0, ∀x > x̄. (9)

The incentive individuals choose effort y to maximize expectation of their
value functions ∫

e(x− x̄, y)f(z, y)dz. (10)

Assumption 7

y ∈ argmax
t

∫
e(x− x̄, t)f(z, t)dz. (11)

The budget constraints run as follows for sufficiently large identical pop-
ulation with independent and identically distributed states of nature.

Assumption 8 ∫
(z − x)f(z, y)dz = 0. (12)

Subject to the individuals’ optimization constraints (11) and the budget
constraints (12), the government maximizes expected utility∫

v(x− x̄)f(z, y)dz. (13)

The government’s utility function has following characteristics.
Assumption 9

dv(x̃)

dx̃
> 0; (14)

d2v(x̃)

dx̃2
≤ 0. (15)
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The government has access to nonlinear taxation, the individual’s utility
depends randomly on effort under income uncertainty, however, the aim of
taxation is to transform resources from the highly skilled to the less skilled
in an efficient way, given that incomes not skills are observable. A taxation
is Pareto optimal if no taxation exists which gives the government and the
individuals more higher expected value.

Definition 2.1. A taxation T is said to be Pareto optimal if it solves
the following program:

max
T

∫
v(x− x̄)f(z, y)dz (16)

subject to ∫
(z − x)f(z, y)dz = 0, (17)

and

y ∈ argmax
t

∫
e(x− x̄, t)f(z, t)dz. (18)

Definition 2.2. Program (16-18) is called Pareto-optimization pro-
gram.

In the following, we will define relaxed Pareto-optimization program. To
clearly distinguish program (16-18) from the relaxed Pareto-optimization
program, the Pareto-optimization program (16-18) is sometimes referred
to as the unrelaxed Pareto-optimization program.

It is difficult to analyze the Pareto-optimization program (16-18), since
the incentive compatibility constraint for the individuals, i.e.

y ∈ argmax
t

∫
e(x− x̄, t)f(z, t)dz (19)

is in fact a continuum of constraints∫
e(x− x̄, y)f(z, y)dz ≥

∫
e(x− x̄, t)f(z, t)dz (20)

for every effort t.
If we can replace (19) with the stationary effort for the incentive com-

patible individuals, i.e∫
[ey(x− x̄, y)f(z, y) + e(x− x̄, y)fy(z, y)]dz = 0, (21)
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where ey(x−x̄, y) and fy(z, y) denote the partial derivatives of the functions
e(x − x̄, y) and f(z, y) respectively with respect to the second variable y.
Thus the solution can be calculated by the FOA.

In place of (21) for (19), it enlarges the constraint set, since all the
stationary points are included instead of merely global maxima. The re-
sulting program (22-23-24) is referred to as the relaxed program, since the
constraint set (19) has been relaxed.

Definition 2.3. The following program

max
T

∫
v(x− x̄)f(z, y)dz (22)

subject to ∫
(z − x)f(z, y)dz = 0, (23)

and ∫
[ey(x− x̄, y)f(z, y) + e(x− x̄, y)fy(z, y)]dz = 0 (24)

is called the relaxed Pareto-optimization program.

3. EQUILIBRIUM TAX

The solutions between the unrelaxed program (16-18) and the relaxed
program (22-23-24) are not always the same even in the EUT, as Mirrlees
(1975, 1976, 1997), Rogerson (1985), Jewitt (1988), and Alvi (1997) pointed
out. Particularly, the necessary condition to solve the relaxed program (22-
23-24) may not even the one to solve the unrelaxed program (16-18).

In fact, the FOA is not necessarily valid, as Mirrlees (1975, 1997) point-
ed out in the conventional setting, since it might lead to a local optimum
instead of a global one. Necessary and/or sufficient conditions for the
FOA are explored in Mirrlees (1976), Rogerson (1985), Jewitt (1988), Alvi
(1997) for optimal taxation in the EUT. For the separable utility function
in the EUT, sufficient conditions are the MLRC and CDFC, but still no
sufficient and necessary condition exists for the separable utility function
even in the EUT. Therefore it is challenging, in the PT, to deal with this
Pareto-optimization program for general value functions including insepa-
rable value functions between income and effort.
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Taking multipliers λ and α respectively for the constraints (23) and (24),
the Lagrangian runs as follows

L =

∫
{v(x̃)f(z, y)+α[

∂e(x̃, y)

∂y
f(z, y)+e(x̃, y)

∂f(z, y)

∂y
]+λ(z−x)f(z, y)}dz,

(25)
where the Lagrangian depends on T, y, λ, α if x̄ is exogenous. Recalling

the likelihood ratio g(z, y) =
∂f(z,y)

∂y

f(z,y) , we yield the first-order condition with

respect to x (point-wise optimization) as follows.

dv(x̃)

dx̃
+ αg

∂e(x̃, y)

∂x̃
+ α

∂2e(x̃, y)

∂x̃∂y
= λ. (26)

Dividing both sides by dv(x̃)
dx̃ yields

1 + αg
∂e(x̃,y)

∂x̃
dv(x̃)
dx̃

+ α

∂2e(x̃,y)
∂x̃∂y

dv(x̃)
dx̃

=
λ

dv(x̃)
dx̃

. (27)

Following Jewitt (1988), Laffont and Martimort (2002) and Kanbur, Pirt-
tila, and Tuomala (2008), the following result is obtained.

Lemma 1.

Cov(v(x̃),
1

dv(x̃)
dx̃

) =
α

λ
[Cov(v(x̃), g(z, y)

∂e(x̃,y)
∂x̃

dv(x̃)
dx̃

) + Cov(v(x̃),

∂2e(x̃,y)
∂y∂x̃

dv(x̃)
dx̃

)],

(28)
where Cov(A,B) denote covariance between A and B.

Proof. Dividing (27) by λ, multiplying it with the density function f
and integrating over the support [z, z] yields

1

λ
+

α

λ

∫ ∂e(x̃,y)
∂x̃

dv(x̃)
dx̃

gfdz +
α

λ

∫ ∂2e(x̃,y)
∂y∂x̃

dv(x̃)
dx̃

fdz =

∫
1

dv(x̃)
dx̃

fdz, (29)

given
∫
f(z, y)dz = 1. Applying (27) gives

1
dv(x̃)
dx̃

−αg

λ

∂e(x̃,y)
∂x̃

dv(x̃)
dx̃

−α

λ

∂2e(x̃,y)
∂y∂x̃

dv(x̃)
dx̃

+
α

λ

∫ ∂e(x̃,y)
∂x̃

dv(x̃)
dx̃

gfdz+
α

λ

∫ ∂2e(x̃,y)
∂y∂x̃

dv(x̃)
dx̃

fdz =

∫
1

dv(x̃)
dx̃

fdz.

(30)
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Multiplying both sides by vf , integrating over the support [z, z], and
reorganizing yields

Cov(v(x̃),
1

dv(x̃)
dx̃

) =
α

λ
[Cov(v(x̃), g(z, y)

∂e(x̃,y)
∂x̃

dv(x̃)
dx̃

) + Cov(v(x̃),

∂2e(x̃,y)
∂y∂x̃

dv(x̃)
dx̃

)],

(31)

Corollary 1. For the separable value functions between income and
effort, i.e. e(x− x̄, y) = ẽ(x− x̄)− y,

Cov(v(x̃),
1

dv(x̃)
dx̃

) =
α

λ
Cov(v(x̃), g(z, y)

∂e(x̃,y)
∂x̃

dv(x̃)
dx̃

). (32)

Proof. For e(x− x̄, y) = ẽ(x− x̄)− y,

∂e(x̃, y)

∂y
= −1, (33)

∂2e(x̃, y)

∂y∂x̃
= 0. (34)

The result follows from the substitution of them into Lemma 1.

Lemma 2. α > 0 holds trivially for x < x̄ and also if a combination
of the government’s risk aversion and the individuals’ loss aversion is less

than −dv(x̃)
dx̃ for x > x̄.

Proof. Dividing both sides of equality (26) by ∂e(x̃,y)
∂x̃ , multiplying

f(z, y), integrating over the support [z, z] yields

λ

∫
f(z, y)
∂e(x̃,y)

∂x̃

dz =

∫ dv(x̃)
dx̃

∂e(x̃,y)
∂x̃

f(z, y)dz + α

∫ ∂2e(x̃,y)
∂x̃∂y

∂e(x̃,y)
∂x

f(z, y)dz. (35)

Inserting λ from Lemma 1 into it, and reorganizing yields

α[Cov(v(x̃), g(z, y)
∂e(x̃,y)

∂x̃
dv(x̃)
dx̃

)

∫
f(z, y)
∂e(x̃,y)

∂x̃

dz (36)

+Cov(v(x̃),

∂2e(x̃,y)
∂y∂x̃

dv(x̃)
dx̃

)

∫
f(z, y)
∂e(x̃,y)

∂x̃

dz (37)
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−Cov(v(x̃),
1

dv(x̃)
dx̃

)

∫ ∂2e(x̃,y)
∂x̃∂y

∂e(x̃,y)
∂x̃

f(z, y)dz] (38)

= Cov(v(x̃),
1

dv(x̃)
dx̃

)

∫ dv(x̃)
dx̃

∂e(x̃,y)
∂x̃

f(z, y)dz. (39)

Since dv(x̃)
dx̃ > 0, and d2v(x̃)

dx̃2 < 0, v(x̃) and 1
dv(x̃)
dx̃

co-vary consistently, i.e.

Cov(v(x̃),
1

dv(x̃)
dx̃

) > 0. (40)

Since dv(x̃)
dx̃ > 0, and ∂e(x̃,y)

∂x̃ > 0, then
∫ dv(x̃)

dx̃
∂e(x̃,y)

∂x̃

f(z, y)dz > 0.

For x > x̄, dv(x̃)
dx̃ > 0, ∂e(x̃,y)

∂x̃ > 0, δe(x̃, y) < 0, and δv(x̃) > 0,

∂3e(x̃, y)

∂x̃2∂y
=

∂δe(x̃, y)

∂y

∂e(x̃, y)

∂x̃
+ δe(x̃, y)

∂2e(x̃, y)

∂x̃∂y
≤ 0, (41)

but a combination of the government’s risk aversion and the individuals’

loss aversion is less than −dv(x̃)
dx̃ , i.e.

v(x̃)δv(x̃) + v(x̃)δe(x̃, y) < −dv(x̃)

dx̃
. (42)

For x < x̄, dv(x̃)
dx̃ > 0, ∂e(x̃,y)

∂x̃ > 0, δe(x̃, y) > 0, and δv(x̃) > 0,

∂3e(x̃, y)

∂x̃2∂y
=

∂δe(x̃, y)

∂y

∂e(x̃, y)

∂x̃
+ δe(x̃, y)

∂2e(x̃, y)

∂x̃∂y
≥ 0, (43)

but a combination of the government’s risk aversion and the individuals’

loss aversion is trivially bigger than −dv(x̃)
dx̃ , i.e.

v(x̃)δv(x̃) + v(x̃)δe(x̃, y) > −dv(x̃)

dx̃
. (44)

On either case,

Cov(v(x̃), g(z, y)
∂e(x̃,y)

∂x̃
dv(x̃)
dx̃

)

∫
f(z, y)
∂e(x̃,y)

∂x̃

dz + Cov(v(x̃),

∂2e(x̃,y)
∂y∂x̃

dv(x̃)
dx̃

)

∫
f(z, y)
∂e(x̃,y)

∂x̃

dz

(45)

> Cov(v(x̃),
1

dv(x̃)
dx̃

)

∫ ∂2e(x̃,y)
∂x̃∂y

∂e(x̃,y)
∂x

f(z, y)dz. (46)
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Hence, α > 0.

Differentiate (26) with respect to z, and reorganize to obtain dx̃
dz as fol-

lows.

Lemma 3.

dx̃

dz
= −

α∂g(z,y)
∂z

∂e(x̃,y)
∂x̃

α∂3e(x̃,y)
∂x̃2∂y + d2v(x̃)

dx̃2 + αg(z, y)∂
2e(x̃,y)
∂x̃2

. (47)

Proof. Differentiating (26) with respect to z yields

dx̃

dz
[α

∂3e(x̃, y)

∂x̃2∂y
+

d2v(x̃)

dx̃2
+αg(z, y)

∂2e(x̃, y)

∂x̃2
] = −α

∂g(z, y)

∂z

∂e(x̃, y)

∂x̃
. (48)

Reorganizing it yields

dx̃

dz
= −

α∂g(z,y)
∂z

∂e(x̃,y)
∂x̃

α∂3e(x̃,y)
∂x̃2∂y + d2v(x̃)

dx̃2 + αg(z, y)∂
2e(x̃,y)
∂x̃2

. (49)

Corollary 2. For the separable value functions between income and
effort, i.e. e(x− x̄, y) = ẽ(x− x̄)− y,

dx̃

dz
= −

α∂g(z,y)
∂z

∂e(x̃,y)
∂x̃

d2v(x̃)
dx̃2 + αg(z, y)∂

2e(x̃,y)
∂x̃2

. (50)

Proof. For e(x− x̄, y) = ẽ(x− x̄)− y,

∂3e(x̃, y)

∂x̃2∂y
= 0. (51)

The result follows from the substitution of it into equality (47).

Lemma 4.

dx̃

dz
> 0 (52)

holds trivially for x > x̄, but for x < x̄ if the government’s risk aversion
sufficiently out-weights a combination of the individuals’ loss aversion and
their partial derivative with respect to effort.
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Proof. Recalling Lemma 3,

dx̃

dz
= −

α∂g(z,y)
∂z

∂e(x̃,y)
∂x̃

α∂3e(x̃,y)
∂x̃2∂y + d2v(x̃)

dx̃2 + αg(z, y)∂
2e(x̃,y)
∂x̃2

. (53)

Since d2v(x̃)
dx̃2 = −δv(x̃)

dv(x̃)
dx̃ , ∂2e(x̃,y)

∂x̃2 = δe(x̃, y)
∂e(x̃,y)

∂x̃ , ∂3e(x̃,y)
∂x̃2∂y = ∂δe(x̃,y)

∂y
∂e(x̃,y)

∂x̃ +

δe(x̃, y)
∂2e(x̃,y)

∂x̃2 , and equality (26) holds,

dx̃

dz
=

α∂g(z,y)
∂z

∂e(x̃,y)
∂x̃

δv(x̃)
dv(x̃)
dx̃ − δe(x̃, y)(λ− dv(x̃)

dx̃ )− α∂δe(x̃,y)
∂y

∂e(x̃,y)
∂x̃

. (54)

According to Assumption 3, 4, and 9,

∂g(z, y)

∂z
> 0, (55)

∂e(x̃, y)

∂x̃
> 0, (56)

dv(x̃)

dx̃
> 0. (57)

Recalling equality (26), and α > 0 from Lemma 2,

λ− dv(x̃)

dx̃
> 0. (58)

For x > x̄, dv(x̃)
dx̃ > 0, ∂e(x̃,y)

∂x̃ > 0, δe(x̃, y) < 0, ∂δe(x̃,y)
∂y < 0, and

δv(x̃) > 0, then

dx̃

dz
> 0. (59)

For x < x̄, dv(x̃)
dx̃ > 0, ∂e(x̃,y)

∂x̃ > 0, δe(x̃, y) > 0, ∂δe(x̃,y)
∂y > 0, and

δv(x̃) > 0, but the government’s risk aversion sufficiently out-weights a
combination of the individuals’ loss aversion and their partial derivative
with respect to effort, i.e.

δv(x̃)
dv(x̃, y)

dx̃
− δe(x̃, y)(λ− dv(x̃)

dx̃
)− α

∂δe(x̃, y)

∂y

∂e(x̃, y)

∂x̃
> 0, (60)

then

dx̃

dz
> 0. (61)
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Lemma 5. (1) For x < x̄, α
λ > 0 holds trivially;

(2) For x > x̄, if the government’s risk aversion sufficiently out-weights
a combination of the individuals’ loss aversion and their partial derivative
with respect to effort, and out-weights a combination of the individuals’ loss

aversion and ∂g(z,y)
∂x̃ , α

λ > 0.

Proof. Since dv(x̃)
dx̃ > 0, and d2v(x̃)

dx̃2 < 0, v(x̃) and 1
dv(x̃)
dx̃

co-vary consis-

tently, i.e.

Cov(v(x̃),
1

dv(x̃)
dx̃

) > 0. (62)

For x < x̄, dv(x̃)
dx̃ > 0, ∂e(x̃,y)

∂x̃ > 0, δe(x̃, y) > 0, and δv(x̃) > 0, then

∂g(z, y)

∂x̃
+ g(z, y)δe(x̃, y) + g(z, y)δv(x̃) > 0. (63)

Hence, v(x̃) and g(z, y)
∂e(x̃,y)

∂x̃
dv(x̃)
dx̃

co-vary consistently, i.e. Cov(v(x̃), g(z, y)
∂e(x̃,y)

∂x̃
dv(x̃)
dx̃

) >

0 holds.
For x > x̄, dv(x̃)

dx̃ > 0, ∂e(x̃,y)
∂x̃ > 0, δe(x̃, y) < 0, and δv(x̃) > 0, but the

government’s risk aversion sufficiently out-weights a combination of the

individuals’ loss aversion and ∂g(z,y)
∂x̃ , i.e.

∂g(z, y)

∂x̃
+ g(z, y)δe(x̃, y) + g(z, y)δv(x̃) > 0. (64)

Hence, v(x̃) and g(z, y)
∂e(x̃,y)

∂x̃
dv(x̃)
dx̃

co-vary consistently, i.e. Cov(v(x̃), g(z, y)
∂e(x̃,y)

∂x̃
dv(x̃)
dx̃

) >

0 holds.
For x < x̄, dv(x̃)

dx̃ > 0, ∂e(x̃,y)
∂x̃ > 0, δe(x̃, y) > 0, ∂δe(x̃,y)

∂y > 0, δv(x̃) > 0,

and ∂2e(x̃,y)
∂x̃∂y > 0, then

∂δe(x̃, y)

∂y

∂e(x̃, y)

∂x̃
+ δe(x̃, y)

∂2e(x̃, y)

∂x̃∂y
+ δv(x̃)

∂2e(x̃, y)

∂x̃∂y
> 0. (65)

Hence, v(x̃) and
∂2e(x̃,y)

∂x̃∂y
dv(x̃)
dx̃

co-vary consistently, i.e. Cov(v(x̃),
∂2e(x̃,y)

∂y∂x̃
dv(x̃)
dx̃

) > 0

holds.
For x > x̄, dv(x̃)

dx̃ > 0, ∂e(x̃,y)
∂x̃ > 0, δe(x̃, y) < 0, ∂δe(x̃,y)

∂y < 0, δv(x̃) > 0,

and ∂2e(x̃,y)
∂x̃∂y > 0, but the government’s risk aversion sufficiently out-weights

a combination of the individuals’ loss aversion and their partial derivative
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with respect to effort, i.e.

∂δe(x̃, y)

∂y

∂e(x̃, y)

∂x̃
+ δe(x̃, y)

∂2e(x̃, y)

∂x̃∂y
+ δv(x̃)

∂2e(x̃, y)

∂x̃∂y
> 0, (66)

so v(x̃) and
∂2e(x̃,y)

∂x̃∂y
dv(x̃)
dx̃

co-vary consistently, i.e. Cov(v(x̃),
∂2e(x̃,y)

∂y∂x̃
dv(x̃)
dx̃

) > 0 holds.

According to Lemma 1, α
λ > 0 if

Cov(v(x̃), g(z, y)
∂e(x̃,y)

∂x̃
dv(x̃)
dx̃

) + Cov(v(x̃),

∂2e(x̃,y)
∂y∂x̃

dv(x̃)
dx̃

) > 0. (67)

As a consequence, for x < x̄, α
λ > 0 holds trivially; for x > x̄, if the gov-

ernment’s risk aversion sufficiently out-weights a combination of the indi-
viduals’ loss aversion and their partial derivative with respect to effort, and

out-weights a combination of the individuals’ loss aversion and ∂g(z,y)
∂x̃ , α

λ >

0.

For the validity of the FOA to the relaxed Pareto-optimization program
(22-23-24), since x̃ = x − x̄ and x = z − T (z), where T (z) is the tax for
income z, the marginal tax rate (MTR henceforth) runs as follows due to
equality (47).

Lemma 6.

MTR = 1 +
α∂g(z,y)

∂z
∂e(x̃,y)

∂x̃

α∂3e(x̃,y)
∂x̃2∂y + d2v(x̃)

dx̃2 + αg(z, y)∂
2e(x̃,y)
∂x̃2

. (68)

Proof.

MTR ≡ dT (x)

dz
(69)

= 1− dx̃

dz
(70)

= 1 +
α∂g(z,y)

∂z
∂e(x̃,y)

∂x̃

α∂3e(x̃,y)
∂x̃2∂y + d2v(x̃)

dx̃2 + αg(z, y)∂
2e(x̃,y)
∂x̃2

. (71)

Corollary 3. For the separable value functions between income and
effort, i.e. e(x− x̄, y) = ẽ(x− x̄)− y,

MTR = 1 +
α∂g(z,y)

∂z
∂e(x̃,y)

∂x̃
d2v(x̃)
dx̃2 + αg(z, y)∂

2e(x̃,y)
∂x̃2

. (72)
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Proof. For e(x− x̄, y) = ẽ(x− x̄)− y,

∂3e(x̃, y)

∂x̃2∂y
= 0. (73)

The result follows from the substitution of it into Lemma 6.

Lemma 7. The expected value function of the government is concave in
effort y.

Proof.∫
v(x− x̄)f(z, y)dz = [v(x̃)F (z, y)]zz −

∫
dv(x̃)

dx̃

dx̃

dz
F (z, y)dz (74)

= v(x̃(z))−
∫

dv(x̃)

dx̃

dx̃

dz
F (z, y)dz, (75)

which is concave because of the CDFC, i.e. Fyy > 0.

To summarize,

Theorem 1. In nonlinear taxation under income uncertainty, when the
government makes decision upon the EUT, and the individuals make deci-
sions upon the PT, under Assumptions 1-9, the FOA is valid to the relaxed
Pareto-optimization program (22-23-24) for following two cases:
(1) for x < x̄ when the government’s risk aversion sufficiently out-weights
a combination of the individuals’ loss aversion and their partial derivative
with respect to effort;
(2) for x > x̄ when a combination of the government’s risk aversion and the

individuals’ loss aversion is less than −dv(x̃)
dx̃ , the government’s risk aver-

sion sufficiently out-weights a combination of the individuals’ loss aversion
and their partial derivative with respect to effort, and the government’s
risk aversion sufficiently out-weights a combination of the individuals’ loss

aversion and ∂g(z,y)
∂x̃ .

Moreover, the MTR is given by

MTR = 1 +
α∂g(z,y)

∂z
∂e(x̃,y)

∂x̃

α∂3e(x̃,y)
∂x̃2∂y + d2v(x̃)

dx̃2 + αg(z, y)∂
2e(x̃,y)
∂x̃2

. (76)

Proof. For the validity of the FOA to the relaxed Pareto-optimization
program (22-23-24), recalling Lemma 7, it suffices that
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(1) α > 0, hence, for all income x, the incentive constraints (22) hold;
(2) λ > 0, hence, for for all income x, the budget constraints (23) hold;
(3) Realized income x̃ should be increasing in income z for the individuals

to exert effort y, i.e., dx̃
dz > 0.

All are guaranteed by Lemma 2, 4, and 5.
For the validity of the FOA, the MTR is given by Lemma 6, i.e.

MTR = 1 +
α∂g(z,y)

∂z
∂e(x̃,y)

∂x̃

α∂3e(x̃,y)
∂x̃2∂y + d2v(x̃)

dx̃2 + αg(z, y)∂
2e(x̃,y)
∂x̃2

. (77)

It is not surprising that the sufficient condition is complicated for the
validity of the FOA, because of the inclusion of interactive terms between
income and effort as well as the dependence of the value functions on in-
separable variables between income and effort, and the individuals’ loss
aversion is hard to compare with the government’s risk aversion in general
domain of income for the inseparable value function between income and
effort. For the separable value functions between income and effort, for

example, e(x − x̄, y) = ẽ(x − x̄) − y, ∂2e(x̃,y)
∂y∂x̃ = 0, it reduces to Kanbur,

Pirttila and Tuomala (2008).
For x < x̄, the government and individuals’ valuation functions are con-

vex with respect to realized income x̃ according to Assumption 4. Hence
the Pareto-optimization Program (22)-(23)-(24) is relatively difficult to deal
with. For x < x̄ and the separable value function e(x− x̄, y) = ẽ(x− x̄)−y,
the FOA is invalid for optimal nonlinear taxation, the government may
turn for random schedule, see Arnott and Stiglitz (1988).

4. CONCLUSION

In this paper, we modeled taxation under income uncertainty applying
the PT developed by Kahneman and Tversky (1979), and obtained its suffi-
cient condition for the FOA to general value functions including inseparable
ones between income and effort.

Our results generalizes Oswald (1983) and Tuomala (1990) since we ana-
lyzed taxation with utility interdependence under income uncertainty, while
Oswald (1983) and Tuomala (1990) worked in the conventional setting with-
out income uncertainty.

Our results also generalizes Kanbur, Pirttila and Tuomala (2008), since
they only considered the separable value functions between income and
effort, but we treated general value functions including both separable and
inseparable ones.
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Some problems are still open. It is a challenge to check how the MTR
changes when risk aversion or loss aversion changes. This is because the
Lagrangian multipliers may change when changing the parameters, and the
value functions of the model.

It is also interesting to examine how the marginal tax rate increases or
decreases with income in general. The sign of the change in the MTR
remains ambiguous in general. Still no intuition has developed, to our
knowledge, for the third derivative of the value functions in the PT.

Recalling people’s uncertainty about their future productivity or realistic
restrictions on taxes, optimal taxation was developed given only minimal
restrictions on the set of possible tax instruments, or on the nature of shocks
affecting people in economy, which provides a connection between dynamic
optimal taxation and dynamic principal-agent theory. When people behave
according to the PT, in particular, with different attitudes to loss aversion,
the connection between dynamic optimal taxation and dynamic principal-
agent theory is worth discussion.
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