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This paper studies stability of monetary steady states in a Trejos-Wright
random matching model of money with the money holding set {0, 1, 2} and a
cost of carrying money. Three steady states are generic: pure-strategy full-
support steady state; mixed-strategy full-support steady state; and non-full-
support steady state. Stability analysis shows that both full-support steady
states are stable and determinate. The non-full-support steady state is stable
and indeterminate if there is a sufficiently small positive carrying cost. The
non-full-support steady state becomes unstable if the carrying cost is zero.
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1. INTRODUCTION

Trejos and Wright (1995) show the existence of a monetary steady state
in a random matching model under the assumption that an agent’s money
holding is in {0, 1}. In the same model, for consumer take-it-or-leave-it
offers and for money holdings in {0, 1, · · · , B}, Lee, Wallace and Zhu (2005)
show that a full-support monetary steady state with a strictly increasing,
concave value function is robust when a small carrying cost for money is
introduced. By way of a variant of the neutrality argument, the result also
implies the robustness of the non-full-support steady states in which all
agents treat bundles of money, each bundle being B/l ∈ N units, as the
smallest unit held and traded.

* The author especially thank Neil Wallace for his guidance and ecouragement. I am
also grateful to the participants of the Cornell-Penn State macro workshop for helpful
comments and discussion.
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Among the questions that Lee, Wallace and Zhu (2005)’s existence result
leaves open are the following. First, are their full-support steady states
unique? Second, do their steady states have a unique optimal strategy
(pure-strategy) or multiple optimal strategies (mixed-strategy)? Third, are
full-support steady states stable? Fourth, are the non-full-support steady
states stable? The smallest set of money holdings for which these questions
arise is {0, 1, 2}, the smallest set for which the distribution of money hold-
ings over people depends on the trades that are made. For this set, Huang
and Igarashi (2015) address all but the first questions when the carry cost
is zero. This paper provides robust analysis on these existence and stability
properties when the cost of carrying money is introduced.

Under a condition that is weaker than Lee, Wallace and Zhu (2005)’s
sufficient conditions, a full-support steady state exists. Both pure-strategy
and mixed-strategy full-support steady states exist generically and any full-
support steady state is stable. We also show that any full-support steady
state is determinate, a missing result in Huang and Igarashi (2015).

The non-full-support steady state, which necessarily has the support of
{0, 2}, is unstable, but becomes stable and indeterminate if a small positive
cost of carrying money is introduced. Lomeli and Temzelides (2002) shows
in the B = 1 case that the non-monetary steady state is stable and inde-
terminate, and that this property is robust to the introduction of a small
carrying cost. This result and ours suggest that the dynamic equilibria
around the non-full-support steady in the B = 2 economy is not a simple
“translation” of dynamic equilibria of those steady states in the B = 1 case.
The two-unit bound, although restrictive, at least, provides conjecture for
the general case.

2. THE ZHU (2003) MODEL

The model is that of Zhu (2003), where a small carry cost is introduced.
Time is discrete, dated as t ≥ 0. There is a non-atomic unit measure of
infinitely-lived agents, and a consumption good that is perfectly divisible
and perishable. Each agent maximizes the discounted sum of expected
utility with a discount factor β ∈ (0, 1). Utility in a period is u(c)−q, where
c ∈ R+ is the amount of good consumed and q ∈ R+ is the amount of good
produced. u : R+ → R is continuously differentiable, strictly increasing
and strictly concave. Also, u(0) = 0, u′(∞) = 0 and u′(0) is sufficiently
large but finite. These assumptions imply that there is a unique x̄ > 0 such
that u(x̄) = x̄.

There exists a fixed stock of indivisible money that is perfectly durable
and that can potentially serve as a medium of exchange. Storing each unit
of money in each period incurs a disutility γ > 0, that in the model we
assume to be sufficiently small. There is a bound on individual money
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holdings, denoted B ∈ N, so the individual money-holding set is B ≡
{0, 1, · · · , B}. Let m ∈ (0, 1) denote the per capita stock of money divided
by the bound on individual money holdings so that the per capita stock is
Bm.

In each period, agents are randomly matched in pairs. With probability
1/N , where N ≥ 2, an agent is a consumer (producer) and the partner is a
producer (consumer). Such meetings are called single-coincidence meetings.
With probability 1 − 2/N , the match is a no-coincidence meeting.1 In
all meetings, the agents’ money holdings are observable, but any other
information about an agent’s trading history is private.

Consider a date-t single-coincidence meeting between a consumer (po-
tential buyer) with i units of money (pre-trade) and a producer (potential
seller) with j units of money (pre-trade), an (i, j)-meeting. If i > 0 and
j < B, the meeting is called a trade meeting. In trade meetings, the
consumer makes a take-it-or-leave-it offer. (There are no lotteries.) The
producer accepts or rejects the offer. If the producer rejects it, both sides
leave the meeting and go on to the next date.

For each k ∈ B, let wtk be the expected discounted value of holding k
units of money prior to date-t matching. Using wtk, the consumer’s problem
in an (i, j)-meeting is

max
p∈Γ(i,j),q∈R+

{u(q) + βwt+1
i−p} (1)

s.t. − q + βwt+1
j+p ≥ βw

t+1
j , (2)

where Γ(i, j) ≡ {p ∈ B|p ≤ min{i, B − j}} is the set of feasible payments.
As (2) holds with equality in the solution, the consumer’s problem reduces
to

f t(i, j) ≡ max
p∈Γ(i,j)

{u
(
βwt+1

j+p − βw
t+1
j

)
+ βwt+1

i−p}

pt(i, j) = argmax
p∈Γ(i,j)

{u
(
βwt+1

j+p − βw
t+1
j

)
+ βwt+1

i−p}. (3)

Because the solution set pt(i, j) may be multi-valued, Zhu introduces ran-
domization. The behavior λt assign probability λt(p; i, j) to trading p units
of money in (i, j)-meeting. The distribution λt(·; i, j) is the (consumer’s)
optimal strategy if it has the support in pt(i, j).

For each z ∈ B, let πtz denote the fraction of agents holding z units of
money at the start of period t, so that πt is a probability distribution over

1One foundation is that there are N types of agents and N types of consumption
goods, that type-n agents can only produce type-n goods and only consume type-(n+1)
goods only, and that the money is symmetrically distributed across the types.
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B with mean Bm. Given strategy λt, the law of motion for πt+1 can be
expressed as

πt+1
z =

N − 2

N
πtz +

2

N

B∑
i=0

B∑
j=0

πtiπ
t
j

λt(i− z; i, j) + λt(z − j; i, j)
2

. (4)

The second term of (4) tells us who in the single-coincidence meetings will
end up with z units: consumers who originally had i units and spent i− z
units, and producers who originally had j units and acquired z − j units.

The value function wt satisfies the Bellman equation

wti =
N − 1

N
βwt+1

i +
1

N

B∑
j=0

πtjf
t(i, j)− γi, (5)

The first term on the r.h.s. corresponds to either entering a no-coincidence
meeting or becoming a producer who is indifferent between trading or not.
When i = 0, equation (5) reduces to wt0 = βwt+1

0 , so the only nonexplosive
case is wt0 = 0,∀t. For this reason, we focus on equilibria in which the value
from owning no money is always zero and let wt ≡ (wt1, · · · , wtB). Finally,
we allow the free disposal of money and consider equilibria in which agents
are not willing to throw away money. That is, the value function must be
nondecreasing in every period:

wti ≥ wti−1, for i = 1, · · ·B, and wt0 = 0. (6)

Definition 2.1. Given π0, an equilibrium is a sequence {(πt, wt)}∞t=0

that satisfies (3)-(6). A tuple (π,w) is a monetary steady state if (πt, wt) =
(π,w) for t ≥ 0 is an equilibrium and w 6= 0. Pure-strategy steady states
are those for which (3) has a unique solution. Other steady states are called
mixed-strategy steady states.

3. STEADY STATES FOR B = {0, 1, 2}

We consider the simplest economy where the dynamics in money-holding
distribution could occur: an economy with B = {0, 1, 2}. Three monetary
steady states are generic. The first one is a steady state with the support
of {0, 2}, called a non-full-support steady state. They can be constructed
by treating the bundle of two units of money as one unit as in Trejos and
Wright (1995), the case B = 1. Paying two units in a (2, 0)-meeting and
one unit in other trade meetings is the optimal strategy at the steady state.
The value of holding one unit, w1, is the smaller of the two solutions to the
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Bellman equation (7), while w2 is the largest of the two solutions to (8).

w1 =
N +m− 1

N
βw1 +

1−m
N

u(βw1)− γ (7)

w2 =
N +m− 1

N
βw2 +

1−m
N

u(βw2)− 2γ (8)

When γ is strictly greater than zero but sufficiently small, w1 is strictly
positive and the value function is strictly increasing. When γ = 0, the
steady state has a step value function. This property is similar to the
observation in an overlapping generation model, where the non-monetary
steady state equilibrium is eliminated by the cost of carrying money, and
will play a role in altering the stability of the non-full-support steady state.

The other two are the only full-support steady states in B = 2 economy.
One has paying one unit in all meetings as the unique optimal and, thus,
is pure-strategy. The other one has agents indifferent between one-unit
payment and two-unit payment in a (2, 0)-meeting, and is mixed-strategy.
The following says that all three steady states are generic.

Proposition 1. Generically, all pure- and mixed-strategy steady states,
and non-full-support steady state exist.

Huang and Igarashi (2015) shows the existence of the three steady states
for an economy with B = {0, 1, 2} and γ = 0. Proposition 1 implies that
such an existence is robust when a small cost of carrying money is intro-
duced.

The proof of this and all other proofs appear in Section 5. The proof
finds a pure-strategy steady state for a β sufficiently close to one, and
a mixed-strategy steady state for a β of intermediate value. Intuitively,
for a β sufficiently close to one, each unit of money tends to have value
large enough, so that in a (2, 0)-meeting, paying all two units is too much
and becomes suboptimal. As β decreases from one, the value of money
is depreciated and it is more likely that one unit of money is not enough
to induce the optimal production in a (2, 0)-meeting. The critical point
corresponds to a β of intermediate magnitude. The proof has the details
of finding different steady states for different β.

4. STABILITY

Our stability criterion is asymtoptic stability.

Definition 4.1. A steady state (π,w) is locally stable if there is a
neighborhood of π such that for any initial distribution in the neighbor-
hood, there is an equilibrium path such that (πt, wt) → (π,w). A locally
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stable steady state is determinate, if for each initial distribution in this
neighborhood, there is only one equilibrium that converges to it.

This definition of stability only requires convergence of some equilibria,
not all equilibria. This is because there are always equilibria that do not
converge to a given monetary steady state. In particular, a non-monetary
equilibrium always exists from any initial condition.

Notice that the above definition of local stability implies that the valued-
money steady state in the Trejos-Wright {0, 1} model is stable, because
there is no ‘neighborhood’ of the steady state. Also, for that model, the
only non-explosive path converging to that steady state is the one in which
the value of money remains constant, which implies determinacy of that
steady state. The following is our stability results for the {0, 1, 2} economy.

Proposition 2. Generically, both full-support steady states are locally
stable and determinate, while the non-full-support steady state is locally
stable and indeterminate. If the cost of carrying money is eliminated, the
non-full-support steady state becomes unstable.

The proof starts from a first-order difference equation in (πt1, w
t
1, w

t
2) that

is derived from the B = 2 version of (4)-(5). In this system, only πt1 has
an exogenous initial value and is a ‘predetermined’ variable. Proving the
stability of the pure-strategy steady is standard (see Lucas et. al (1989)).
We show that the stable manifold is one-dimensional.

The stability analysis of the mixed-strategy steady state considers a dy-
namical system with a control variable. The proof find an equilibrium that
jumps onto the steady state at t = 1, if the initial distribution is sufficiently
close to the steady state distribution. The convergent path is unique, be-
cause the indifference condition between trading one unit and two units in
a (2, 0)-meeting is not preserved by the Bellman equation off the steady
state generically.

Proving the stability of the non-full-support steady state is not standard.
The idea is borrowed from Huang and Igarashi (2014). There is a unique
feature of any convergent path. The convergence of πt1 is slow, because there
is no inflow into holdings of 1 unit and because the outflow, which comes
from (1,1)-meetings, approaches zero as the frequency of such meetings
goes to zero. This implies that the dominant root that determines the
speed of convergence is equal to one.

As Huang and Igarashi (2014) shows, when γ = 0, the steady state is on
the boundary of the state space. Hence, even if the system appears to be
convergent, we have to check that the convergence is such that πt1, wt1 ≥ 0,
using the eigenvector that corresponds to the dominant unit root, and this
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condition fails. Such properties do not occur when γ > 0 is sufficiently
small and hence the instability of the non-full-support steady state is not
robust when the carrying cost is introduced.

The non-monetary steady state in the overlapping generation model is
also on the boundary of the state space. The presence of a postive cost of
carrying money does not alter its stability properties, because the value of
money always approaches the steady state value from wt1 ≥ 0.

5. PROOFS

Before turning to the proofs, we set out some steady state consequences
that we use in the proofs. It is helpful to express π0 and π2 in terms of π1

using
∑
πi = 1 and

∑
iπi = Bm:

(π0, π2) = (1−m− π1

2
,m− π1

2
)

where π1 ∈ Π ≡ [0, 2 min{m, 1−m}]. (9)

Throughout this paper, the dependence of π on π1 is kept implicit to
simplify the notations. The steady-state law of motion implies

(π1)2λ(1; 1, 1) = π0π2λ(1; 2, 0), (10)

which equates outflows from holdings of 1 (the lefthand side) to inflows
into holdings of 1 (the righthand side). The Bellman equations are

w1 =
n− 1 + π2

n
βw1 +

π0

n
max[u(βw1), βw1] (11)

+
π1

n
max[u(βw2 − βw1), βw1]− γ, and

w2 =
n− 1 + π2

n
βw2 +

π1

n
max[{u(βw2 − βw1) + βw1}, βw2]

+
π0

n
max[u(βw2), {u(βw1) + βw1}, βw2]− 2γ. (12)

Lemma 1 could be viewed as an existence result of mixed-strategy steady
state.

Lemma 1. Let

δπ1 ≡
(1− π2)β

[n(1− β) + (1− π2)β]
2 (13)

2The subscript in δπ1 emphasizes the dependence on π1.
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π∗1 ≡ (
√

1 + 12m(1−m)− 1)/3. (14)

and

x =
δπ1

1− π2
[π0u(x) + π1u

(
δπ1x−

δπ1

1− π2
nγ

)
− nγ] ≡ f(x, π1). (15)

Suppose fx(0, 0) > 1 > fx(0, π∗1) when γ = 0. There exists a sufficiently
small γ > 0 such that a mixed-strategy full-support steady state exists.

The proof uses the intermediate value theorem. The process involves
checking whether some strict inequality conditions hold at both end of an
interval, corresponding to λ(1; 2, 0) = 0 and λ(1; 2, 0) = 1. Then we show
that all these strict inequalities are robust to the introduction of a small
carrying cost.

Proposition 1 of Huang and Igarashi (2015) provides a necessary and
sufficient condition for the existence of full-support steady states in the
model with γ = 0. Our proposition 1 says that both pure-strategy and
mixed-strategy steady states are robust to the introduction of carrying
cost.

The proof starts out by considering γ = 0. To find the pure-strategy
steady state for this case, we consider a β sufficiently close to one. We
guess the pure strategy of the steady state. With this strategy, we can
solve the Bellman equation and the law of motion, and then check whether
the solutions imply the optimality of the guessed strategy. This process
is mathematically equivalent to checking certain strict inequalities. The
same set of strict inequalities still hold, when γ > 0 is sufficiently small.
To show the existence of a mixed-strategy steady state, we find a suitable
β of intermediate value so that the strict inequatity condition in Lemma 1
holds.

Proof. [Proof of Proposition 1] We are going to construct a pure-
strategy steady state with a one-unit payment being optimal in all trade
meetings, and a mixed-strategy steady state with a two-unit payment also
being optimal in (2, 0)-meeting. The corresponding inequalities are

(1, 1)-meeting u(βw2 − βw1) > βw1 (16)

(1, 0)-meeting u(βw1) > βw1 (17)

(2, 1)-meeting u(βw2 − βw1) > βw2 − βw1 (18)

(2, 0)-meeting u(βw1) + βw1 ≥ u(βw2) (19)

& u(βw1) + βw1 > βw2. (20)

Our pure-strategy steady state has strict inequality in (19), while the
mixed-strategy steady state has equality in (19). With these inequalities,
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the Bellman equation (11)-(12) is equivalent to (15) and (13) with

x = βw1 (21)

δπ1
x− δπ1

1− π2
nγ = βw2 − βw1. (22)

The pure strategy steady state has π1 = π∗1 . Let β → 1 and γ = 0. (15)3

approaches x = u(x). The l.h.s. and r.h.s. of (19) approaches u(x) +x and
u(2x), respectively. Concavity of u implies

u(2x) < u(x) + x.

(19) holds with strict inequality in the limit. Claim A.1 implies (16)-(18)
and (20). Overall, the positive solution to (15)-(13) satisfies (16)-(20) with
strict inequality in (19).

Then γ > 0 is introduced. For a β sufficiently close to one and a suf-
ficiently small γ > 0, the continuity implies that (16)-(20) still hold with
strict inequality in (19). We have a pure-strategy full-support steady state.

Then we use Lemma 1 to find a mixed-strategy steady state. One con-
dition in the lemma is fx(0, π∗1) < 1 when γ = 0, which is equivalent to

u′(0) <
1− π∗2

δπ∗1 (π∗0 + π∗1δπ∗1 )
≡ Jβπ∗1 . (23)

Another condition in the lemma is fx(0, 0) > 1 when γ = 0, equivalent
to

u′(0) >
1

δ0
= Jβ0. (24)

As β increases from zero toward one, both δπ∗1 and δ0 increase from zero
to one, and hence Jβπ∗1 and Jβ0 decrease from +∞ to 1.

Some algebra gives

Jβπ∗1 − Jβ0 =
n(1− β)

β
· π∗1n(1− β) + βπ∗1π

∗
0

[π∗0n(1− β) + β(1− π∗2)2](2− 2m)
> 0.

Therefore, we can find a β∗ of intermediate value so that the open interval
(Jβ0, Jβπ∗1 ) contains u′(0). Lemma 1 applies.

Finally, the non-full-support steady state has λ(2; 2, 0) = 1 and Bellman
equation becomes (7) and (8). It is not hard to see that for sufficiently large
u′(0) and sufficiently small γ > 0, each of these two equations has two solu-
tions. Let the steady state w1 be the smaller solution to (7) and w2 be the

3It is not difficult to ensure that a positive solution to (15) exists; u′(0) > 1 for
instance.
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larger solution to (8). And it is not hard to check that (w1, w2) implies the
optimality of the strategy for this steady state. Hence a non-full-support

steady state exists.

Then, the remaining are devoted to the stability analysis. The following
lemma specifies the strategy near the steady state so that the difference
equation can be derived from the Bellman equation and Law of motion.
It says that the optimal trades resemble the steady-state trades near the
steady state.

Lemma 2. Along any equilibrium convergent to any of the three steady
states, trading one unit is strictly preferred in (1, 0)-, (1, 1)- & (2, 1)-
meetings. For (2, 0)-meeting, we have:

i) in the pure strategy steady state, one-unit payment is strictly preferred.
ii) in the non-full-support steady state, two-unit payment is strictly pre-

ferred.
iii) in the mixed-strategy steady state, the agents are indifferent between

one- and two-unit payment.

The proof of Proposition 2 linearizes the dynamical system. The eigen-
value of the linearized system tells us the speed of convergence, and the
associated eigenvector tells us the limiting behavior of state variables.4

The stability analysis on the pure-strategy steady state and mixed-strategy
steady state involves matrix computations.

Because randomization occurs in (2, 0)-meeting, the linearized system for
the mixed strategy is a dynamical system with a control variable, the trade
in this meeting. The analysis involves finding a sequence of such variable
so that the state variable converges and satisfies the indifference condition
in Lemma 2.

Proof (Proof of Proposition 2). Lemma 2 gives all the strategies for
all steady states. We can construct a dynamical system from the law of
motion and the Bellman equation under each strategy. The following is the
common form of the three dynamical systems:

πt+1
1 = πt1 −

2(πt1)
2

n
+

2

n

(
1−m− πt1

2

)(
m− πt1

2

)
ηt (25)

wt1 =
n− 1 + πt2

n
βwt+1

1 +
πt0
n
u(βwt+1

1 ) +
πt1
n
u(βwt+1

2 − βwt+1
1 )− γ (26)

wt2 =
n− 1 + πt2

n
βwt+1

2 +
πt0
n

max[u(βwt+1
1 ) + βwt+1

1 , u(βwt+1
2 )]

+
πt1
n
[u(βwt+1

2 − βwt+1
1 ) + βwt+1

1 ]− 2γ, (27)

4The subsection “dominant eigenvector” in Luenberger (1979) says that trajectory
will be parallel to the eigenspace spanned by the dominant eigenvectors.
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where ηt = λt(1; 2, 0). Denote (25) by πt+1
1 = Φ(ηt, πt1) : [0, 1] × Π → Π

and (26)-(27) by wt = φ(ηt, πt1, w
t+1) : [0, 1] × Π ×W → W , where wt ≡

(wt1, w
t
2) and W ≡ {(w1, w2)|0 ≤ w1 ≤ w2}. In the vicinity of each of the

steady states, we implicitly solve wt+1 as a function of (ηt, πt1, w
t) to obtain

wt+1 = Ψ(ηt, πt1, w
t) : Π×W →W . The joint system is(

πt+1
1

wt+1

)
=

(
Φ(ηt, πt1)

Ψ(ηt, πt1, w
t)

)
. (28)

The three linearized systems, associated with different steady states respec-
tively, share the same form:(

∆πt+1
1

∆wt+1

)
= A

(
∆πt1
∆wt

)
+

(
Φη
0

)
∆ηt, (29)

where

A ≡
[

Φπ O
−(φw)−1φπ (φw)−1

]
. (30)

This matrix is generically invertible, confirming that applying the im-
plicit function theorem to solve wt+1 is valid. Along any convergent path,
we approximate the system (28) by its linearized version (29).

Note that ∆ηt = 0 near the pure-strategy steady state. Lemma 3 implies
that A for the pure-strategy full-support steady state has only one eigen-
value less than one in absolute value. Therefore the pure-strategy steady
state has a one-dimensional stable manifold. Because we have one initial
condition (or restriction), this steady state is locally stable and determi-
nate.

Next, we consider the mixed-strategy steady state. It is going to be
shown that the Bellman equation (26)-(27) is not consistent generically
with the indifference condition (A.6), whose linearized version is

[u′(βw∗1) + 1]∆wt1 = u′(βw∗2)∆wt2. (31)

In what follows, we view the linearized system (29) as a dynamical system
with a single input variable, ∆ηt. We will find a sequence {∆ηt}∞0 such
that the equilibrium path satisfies (31) for all t ≥ 1.

Let ∆η(z), ∆π1(z) and ∆w(z) be the z-transforms5 of {∆ηt}∞0 , {∆πt1}∞0
and {∆wt}∞0 respectively. By (29), ∆π1(z) and ∆w(z) are functions of
∆η(z): (

∆π1(z)

∆w(z)

)
= [Iz −A]−1[

(
Φη
0

)
∆η(z) +

(
∆π0

1

∆w0

)
z]. (32)

5The z-transform of a sequence of numbers {yt} is Y (z) =
∑∞
t=0

yt
zt

. Please refer to
Subsection 8.2-8.4 in Luenberger (1979) for detailed discussion.
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Applying z-transform to (31) for t ≥ 1 and then substituting (32) into it,
we have(

0 u′(βw∗1) + 1 −u′(βw∗2)
)

[Iz −A]−1[

(
Φη
0

)
∆η(z) +

(
∆π0

1

∆w0

)
z]

= [u′(βw∗1) + 1]∆w0
1 − u′(βw∗2)∆w0

2. (33)

Lemma 4 implies that (33) holds as an identity only if ∆η(z) = ∆η0

and hence ∆ηt = 0 for all t ≥ 1. Therefore the only possible convergent
path must jump into the steady state at t = 1. By (32), the path has(∆π0

1

∆w0

)
= −A−1

(
Φη
0

)
∆η0, where ∆π0

1 is given by the initial condition, and
∆ηt = ∆πt1 = ∆wt1 = ∆wt2 = 0 for all t ≥ 1. This path satisfies (29)
and (31), and thus it is an equilibrium. The mixed-strategy steady state is
locally stable and determinate generically.

Finally we consider the non-full-support steady state, which has ηt = 0.
By Lemma 5, the matrix A has a unit eigenvalue, due to the law of motion.
In the context of the discrete-time dynamical system theory, the unit root
is a “border” case in which the higher-order terms should be examined. In
our case, the higher-order term seems to imply unit-root convergence (i.e.,
Figure 1). Lemma 5 implies a two dimensional stable manifold. When
γ > 0 is sufficiently small, the initial condition on π0

1 imposes one restriction
on the convergent paths, and reduces the degree of freedom by one. The
steady state is locally stable and indeterminate.

When γ = 0, this steady state is on the boundary of the state space
Π×W , which makes it necessary to explicitly study the limiting behavior
by looking at the eigenspace of (30)6. It turns out that keeping the entire
convergent path in the space becomes problematic. In particular, unit root
convergence implies that the convergent trajectory of (πt1, w

t
1, w

t
2−w2) will

be parallel to the eigenspace spanned by the eigenspace of (A.11) associated
with the unit eigenvalue7. By Lemma 5, πt1 and wt1 will eventually have dif-
ferent signs, contradicting πt1, w

t
1 > 0 for all t. Therefore, the steady state is

not stable.

6. CONCLUDING REMARKS

We show that both the pure-strategy and mixed-strategy full-support
steady states are generic. They are stable and determinate generically.
The non-full-support steady state has a strictly increasing value function

6Note that this analysis is not needed for the pure-strategy full-support steady state
because that steady state is in the interior of Π×W .

7See Subsection “Dominant Eigenvector” on page 165 of Luenberger (1979).
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FIG. 1. Law of motion

πt+1
1 = Ψ(πt

1)

πt
1

πt+1
1

π0
1

45o

if there is a sufficiently small carrying cost, namely γ > 0. Such a feature
alters its stability.

Given our result, several reasonable conjectures could be made. For a
higher bound, the existence of both types of full-support steady state is
generic. For values of parameters that lead to lower values of money (i.e.,
high n, low β and high m), randomizations may occur. When γ > 0
is sufficiently small, the stability of a non-full-support steady state will
depend on the stability of the associated full-support steady state.8

APPENDIX A

Claim A.1. Suppose γ = 0. For any π1 ∈ (0, π∗1 ], the solution to
equations (15)-(13) satisfies (16)-(18) and (20).

Proof. Suppose by way of contradiction that (16) does not hold:

u(βw2 − βw1) = u

(
(1− π2)β

n(1− β) + (1− π2)β
βw1

)
≤ βw1.

8Huang and Igarashi (2014) is an attempt to generalise the instability of non-full-
support steady states (Proposition 2) to a general bound case when γ = 0.
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Then, we have

βw1 <
π0β

n(1− β) + π0β
u(βw1)

< u

(
π0β

n(1− β) + π0β
βw1

)
< u

(
(1− π2)β

n(1− β) + (1− π2)β
βw1

)
= u(βw2 − βw1),

where substituting the supposition into (15) gives the first inequality, and
u(0) = 0 and strict concavity of u imply the second. This is a contradiction
and thus (16) should hold.

Inequality (20) follows from

u(βw1) > u(βw2 − βw1)

> βw1

> βw2 − βw1,

where the first and the third inequalities are by (13) and the second is
(16).

Suppose by way of contradiction that (17) does not hold: u(βw1) ≤ βw1.
Then (16) implies βw2 − βw1 > βw1. Combining this with (20) gives
u(βw1) > βw1, which is a contradiction.

Suppose by contradiction that (18) does not hold: u(βw2−βw1) ≤ βw2−
βw1. Then (20) implies βw2−βw1 ≤ βw1. But (16) and supposition imply

βw2 − βw1 > βw1, which is a contradiction.

Proof (Proof of Lemma 1). Start with γ = 0. Because fx(0, 0) >
1 > fx(0, π∗1), the intermediate value theorem implies that there exists
π̄1 ∈ (0, π∗1) such that 1 = fx(0, π̄1) and 1 < fx(0, π1) for all π1 ∈ [0, π̄1).
With limx→∞ fx(x, π1) = 0, there is a unique positive solution, denoted by
xπ1

, to (15) for each π1 ∈ [0, π̄1). (13) defines δπ1
as a function of π1.

A necessary condition for the existence of x0 is fx(x0, 0) < 1, which in
turn implies

u′(x0) <
n(1− β)

β(1−m)
+ 1 =

1

δ0
. (A.1)

Then by the mean value theorem, we have

u(x0) + x0 − u(x0(1 + δ)) = x0 − u′(ξ)δ0x0, ξ ∈ (x0, x0(1 + δ))

> x0 − u′(x0)δ0x0

> 0, (A.2)
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where the second inequality follows from (A.1). Therefore (19) holds with
strict inequality when π1 = 0.

Then 1 = fx(0, π̄1) implies

n(1− β) + β(1−m+ π̄1

2 )

β(1−m+ π̄1

2 )

=

[
1−m− π̄1

2

1−m+ π̄1

2

+
βπ̄1

n(1− β) + β(1−m+ π̄1

2 )

]
u′(0), (A.3)

where the coefficient of u′(0) is proven to be smaller than one for any
n > 0. This implies

u′(0) >
n(1− β) + β(1−m+ π̄1

2 )

β(1−m+ π̄1

2 )
. (A.4)

Thus

u(xπ1) + xπ1 − u(xπ1(1 + δπ1))

xπ1

< 1− u′(xπ1(1 + δπ1))δπ1

→ 1− u′(0)
β(1−m+ π̄1

2 )

n(1− β) + β(1−m+ π̄1

2 )
< 0, as π1 → π̄1, (A.5)

where the first inequality follows from the concavity of u and the limit uses
limπ1→π̄1

xπ1
= 0. Therefore, we have u(xπ1

) + xπ1
< u(xπ1

(1 + δ)), for
π1 sufficiently close to π̄1. This inequality and (A.2) for π1 = 0 are strict,
and by continuity, a sufficiently small γ̄ > 0 exists so that they still hold
for any γ ∈ [0, γ̄]. Then for each γ, the intermediate value theorem can be
applied, and a π∗∗1 ∈ (0, π̄1) exists such that

u(xπ∗∗1 ) + xπ∗∗1 = u(xπ∗∗1 (1 + δπ∗∗1 )). (A.6)

For γ = 0, Claim A.1 implies that (π∗∗1 , xπ∗∗1 ) satisfies (16)-(18) and (20),
all of which are strict inequalities. Because (π∗∗1 , xπ∗∗1 ) depends on γ ∈ [0, γ̄]
continuously, a sufficiently small γ > 0 exists such that (16)-(18) and (20)
still hold. By the definition of π∗∗1 , (19) holds with equality. Thus a mixed-

strategy steady state exists.

Proof (Proof of Lemma 2). For the pure-strategy steady states, trading
one unit in all trade meetings is the strictly preferred strategy at the steady
state, so it is also optimal in its neighborhood.

For the mixed-strategy steady state, similar statement implies trading
one unit being the unique optimal in (2, 1)-, (1, 0)- and (1, 1)- meetings.
Our existence proof shows that generically this steady state involves the
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complete randomization over one-unit and two-unit payments in a (2, 0)-
meeting. Along any convergent paths starting from a sufficiently nearby
neighborhood, complete randomization and, hence, associated indifference
condition (see (A.6)) must also occur in (2, 0)-meeting eventually, because
πt will jump out of any sufficiently small neighborhood otherwise.

We can also pin down the optimal trading strategy that is constantly
played along a path that starts and remains near the non-full-support
steady state (π0

1 6= 0), if any such path exists. As is shown in the proof
of Proposition 1, trading one unit is strictly preferred in (1, 1)- and (2, 1)-
meetings, and paying two units is strictly preferred in (2, 0)-meetings at
(π,w). When γ > 0, trading one unit is strictly preferred in (1, 0)-meetings
at the steady state and hence it is also the unique optimal in its neighbor-
hood.

When γ = 0, the same strategy becomes weakly preferred at the steady
state but it will be the unique optimal in the neighborhood. The following
argument shows that λt(1; 1, 0) = 1 should be the case for all t ≥ 0. Because
the economy is close to but not equal to (π,w), we have πt1 > 0 for all
t ≥ 0 so (5) implies wt1 > 0 for all t > 0, because there is always a
positive probability that a consumer with one unit meets a producer with
one unit and the consumer can get a positive amount of utility from such
a meeting. A sufficiently large u′(0) implies u(x) > x for a sufficiently
small x > 0 and therefore u(βwt1) > βwt1 holds all along the path. So

in (1, 0)-meetings, paying one unit is strictly preferred along the path.

The following two lemmas are straightforward matrix computations.

Lemma 3. Jacobian A evaluated at each full-support steady state has
one eigenvalue strictly less than one, and two strictly greater than one in
absolute value.

Proof. Straightforward differentiation leads to

Φπ(η, π1) = 1− [4− η]π1 + η

n
(A.7)

φw =

 n−1+π2

n β + π0

n βu
′(βw1)− π1

n βu
′(β∆w) π1

n βu
′(β∆w)

1−π2

n β + π0

n βu
′(βw1)− π1

n βu
′(β∆w) n−1+π2

n β + π1

n βu
′(β∆w)

 ,

(A.8)
where ∆w ≡ w2 − w1. Because the top-right submatrix of A is a zero
matrix, one eigenvalue is given by (A.7), which is smaller than one for
both full-support steady states, and the other two eigenvalues are those of
(φw)−1, which are the reciprocals of the eigenvalues of φw. In what follows,
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we are going to show that the eigenvalues of φw are smaller than one in
absolute value.

Note that the slope of the r.h.s. of (15) at the steady state βw1 should
be smaller than the slope of the l.h.s. Therefore we have

n(1− β) + (1− π2)β

β
> π0u

′(βw1) + π1
(1− π2)β

n(1− β) + (1− π2)β
u′(β∆w).

(A.9)

The eigenvalues of a general 2× 2 matrix

[
a b
c d

]
are given by

η+, η− =
a+ d±

√
(a− d)2 + 4bc

2
.

Because

(a− d)2 + 4bc

=
[π0

n
βu′(βw1)− 2

π1

n
βu′(β∆w)

]2
+4

[
1− π2

n
β +

π0

n
βu′(βw1)− π1

n
βu′(β∆w)

]
π1

n
βu′(β∆w)

=
[π0

n
βu′(βw1)

]2
+ 4

1− π2

n
β
π1

n
βu′(β∆w) > 0,

both eigenvalues are real. They are smaller than one in absolute value if
and only if a+d < 2 and (1−a)(1−d)− bc > 0. Checking these conditions
for (A.8) gives

1− a+ 1− d

= 2

(
1− n− 1 + π2

n
β

)
− π0

n
βu′(βw1)

> 2
n(1− β) + (1− π2)β

n
− π0

n
βu′(βw1)− π1

n

(1− π2)β

n(1− β) + (1− π2)β
βu′ (β∆w)

>
n(1− β) + (1− π2)β

n
> 0,
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(1− a)(1− d)− bc

=

(
1− n− 1 + π2

n
β − π0

n
βu′(βw1) +

π1

n
βu′(β∆w)

)(
1− n− 1 + π2

n
β − π1

n
βu′(β∆w)

)
−π1

n
βu′(β∆w)

[
1− π2

n
β +

π0

n
βu′(βw1)− π1

n
βu′(β∆w)

]
=

(n(1− β) + (1− π2)β)β

n2
×(

n(1− β) + (1− π2)β

β
− π0u

′(βw1)− π1
(1− π2)β

n(1− β) + (1− π2)β
u′(β∆w)

)
> 0,

where the last inequalities of the above two conditions follow from (A.9).
Therefore, the eigenvalues of (φw)−1 are greater than one in absolute
value

Lemma 4.
(

0 u′(βw∗1) + 1 −u′(βw∗2)
)

[Iz−A]−1
(

Φη
0

)
can be expressed

as a rational function. The denominator is a polynomial of degree three.
The numerator is of degree two and it has an constant term generically.

Proof. The rational function is

(
0 u′(βw∗1) + 1 −u′(βw∗2)

)
adj[Iz −A]

(
Φη
0

)
/ |Iz −A| .

The denominator is equal to (z − Φπ)
∣∣Iz − φ−1

w

∣∣, a polynomial of de-
gree three. By looking into the adjoint of matrix Iz − A and carrying
out the multiplication, we can show that the numerater is of degree two
and that the constant term is equal to

(
u′(βw∗1) + 1 −u′(βw∗2)

)
φπ ∗

(Φη
∣∣φ−1
w

∣∣). This constant is not equal to zero generically, because we
can always change u′(βw∗1) and u′(βw∗2) arbitrarily without changing the

values of u evaluated at a finite number of points and hence fixing φπ.

Lemma 5. Jacobian A evaluated at the non-full-support steady state has
a unit eigenvalue that is given by the law of motion, an eigenvalue strictly
less than one and an eigenvalue strictly greater than one. The first two
entries of any eigenvector associated with the unit eigenvalue have different
signs.
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Proof. Equation (A.7) computes the unit eigenvalue of the law of mo-
tion, which is also an eigenvalue of A. Then we compute

φπ =

[
r
s

]
≡
[

1
nu(βw2 − βw1)− 1

2n [u(βw1) + βw1]
1
n [u(βw2 − βw1) + βw1]− 1

2n [u(βw2) + βw2]

]
> 0

and

φw =

[
a′ 0
0 d′

]
≡ (A.10)

 (n−1+m)β
n + 1−m

n βu
′
(βw1) 0

0 (n−1+m)β
n + 1−m

n u
′
(βw2)β

 .
Because w2 is the biggest positive solution to (12), d′ ∈ (0, 1) holds. And

because w1 is the smallest positive solution to (11), a′ > 1 holds. We have

Aλ =

 1 0 0
−r/a′ 1/a′ 0
−s/d′ 0 1/d′

 . (A.11)

The associated eigenvector, which constitutes the base of the space, has
the form  1

−r
a′−1
s

1−d′

 .
Then we have −r

a′−1 < 0.
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