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Quantifying Diseconomies Of Scale For Mutual Funds

Ying Liao, Cuixia Li, Lei Jiang, and Liang Peng*

The fund size is highly persistent and correlated with risk factor loadings.
Hence, it is unrealistic to assume constant diseconomies of scale over a long
time. The traditional two-step method underestimates the uncertainty of dis-
economies of scale. We propose a one-step procedure with a random weighted
bootstrap method to infer diseconomies of scale using rolling windows, which
effectively solves the problems. Our empirical analysis using actively-managed
U.S. equity mutual funds supports diseconomies of scale, and simulations show
that our rigorous method outperforms the two-step one in terms of precise es-
timating uncertainty.
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1. INTRODUCTION

By assuming diseconomies of scale in actively-managed mutual funds,
Berk and Green (2004) find that fund managers cannot outperform the
factor benchmarks in the equilibrium. Since then, several papers use this
crucial assumption in mutual fund researches; see Dangl, Wu and Zechner
(2008), Stoughton, Wu and Zechner (2011), and Brown and Wu (2016).
Therefore, it is essential to estimate and quantify diseconomies of scale
using the sample of actively-managed U.S. equity mutual funds. Starting
from Chen et al. (2004), researchers use a two-step procedure to estimate
the marginal effect of the total net asset on fund future performance as the
measure of diseconomies of scale. More specifically, Chen et al. (2004) first
estimate fund alpha in time-series regressions based on popular benchmarks
such as the one-factor model in Jensen (1968), the three-factor model in
Fama and French (1993), and the four-factor model in Carhart (1997). The
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second step regresses alpha on the total net asset (TNA) of mutual funds
in the previous month, together with other control variables such as fund
flow and fund family size. They report the time-series averages of the slope
coefficients in Fama and MacBeth (1973) regressions and the corresponding
t-statistics adjusted for serial correlation using the method in Newey and
West (1987) with lags of order three. Based on the signs of the coefficients
and the corresponding t-statistics, they conclude that a fund with a higher
TNA underperforms one with a smaller TNA significantly. Later, Edelen,
Evans and Kadlec (2007), Christoffersen, Keim and Musto (2008), and Yan
(2008) also find supporting evidence on diseconomies of scale by using a
similar procedure. Recently, Pdstor, Stambaugh and Taylor (2015) argue
that, because of the unobservable skill of fund managers, there is an omitted
variable bias in estimating the TNA’s effect on fund future performance.
They propose to employ fixed effects panel regression instead of Fama and
MacBeth (1973) regressions in the second step and find no evidence of
diseconomies of scale. The contradictory evidence about the strength of
the diseconomy of scale in the literature motivates us to investigate the
traditional two-step procedure carefully. Chen, Hribar and Melessa (2018)
find that this two-step regression framework leads to incorrect inference
in accounting research because of bias in estimating the coefficient and its
standard error. In this paper, we notice two additional unique econometric
properties of the variables in the study of diseconomies of scale in mutual
funds, the highly persistent fund size and the correlation between risk factor
loadings and the fund size.

Pollet and Wilson (2008) show that, when funds become bigger, fund
managers tend to buy big stocks, which increases the average holding stock
size of their funds. Busse, Chordia, Jiang and Tang (2019) find that to
avoid high trade costs, funds with a large TNA tend to hold big stocks
even after controlling fund styles. Both papers indicate that the total net
asset of mutual funds is positively correlated with the stock size held by
funds. By construction, big stocks have lower Small Minus Big (SMB)
Betas. Therefore, we expect that big funds have smaller exposures to the
SMB factor. Furthermore, Yan (2008) finds that big funds tend to hold
stocks with a lower book to market ratio, making the High Minus Low
(HML) Beta lower than that of small funds. Given this stylized evidence
on the correlation between the fund size and factor loadings, when using
the two-step procedure as in Chen et al. (2004), the estimation error for
fund performance in the first step accumulates to the second step, leading
to a severely biased inference of diseconomies of scale for mutual funds!.
The simulation study in Section 4 well supports this argument.

IP4stor, Stambaugh and Taylor (2015) and Zhu (2018) directly subtract the Morn-
ingstar benchmark return from fund return without estimating Beta to calculate fund
performance.
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Furthermore, because skills of mutual fund managers cannot be observed
and effectively controlled and are positively correlated with both fund size
and fund performance, Péstor, Stambaugh and Taylor (2015) employ fixed
effects panel regression to solve the omitted variable bias issue in the second
step. Their t-statistics use the heteroskedasticity-robust variance estima-
tion but ignore the uncertainty of estimating fund performance in the first
step. Because most funds have a small sample size (ranging from tens to
hundreds) compared to the larger number of available funds (more than
3000), their method may underestimate the variance. For fixed effects
regression, Stock and Watson (2008) provide a bias corrected variance es-
timation, Cameron, Gelbach and Miller (2008) propose bootstrap methods
for estimating the variance, Petersen (2009) surveys methods for comput-
ing the variance in finance, and Gongalves (2011) studies the moving blocks
bootstrap method. However, we can not apply these variance estimations
to the two-step procedure in Chen et al. (2004) and Péstor, Stambaugh and
Taylor (2015) because we have to take into account both the fixed effects
in the second step and the uncertainty of obtaining benchmark-adjusted
returns in the first step.

FIG. 1. Scatter and autocorrelation plots.
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Using the fund (wficn=100019) with the maximal sample size in our dataset (467 ob-
servations), we plot the fund returns, market excess returns, and the lagged logTNAs in
the upper panels, and the autocorrelation functions for each series in the bottom panels.

Finally, it is problematic to use long time-series and assume the con-
stant marginal effect of fund size on performance because the commonly
used fund size measure, logarithm of TNA (logTNA), is highly persistent.
We illustrate the persistence using the fund with wficn = 100019, which
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FIG. 2. Estimates and p-values for testing zero coefficient of the lagged logTNA.

For each fund with the maximal sample size (467 observations) in our dataset, we regress
the fund returns by the market excess returns and the lagged logTNAs and plot the
least squares estimates by circles and the instrumental variable estimates in Kostakis,
Magdalinos and Stamatogiannis (2015) by stars in the upper panels and the p-values in
the bottom panels, which are computed from the standard t-test (denoted by circles)
and the instrumental variable test in Kostakis, Magdalinos and Stamatogiannis (2015)
(denoted by stars) for testing zero coefficient of the lagged logTNA. The horizontal line is
y = 0.1, indicating that points below the line reject the null hypothesis of zero coefficient
at the 10% level.

starts from February 1980 and has the maximal sample size (467 observa-
tions) in our dataset. We plot its returns, the market excess returns and
logTNAs, and their autocorrelation functions in Figure 1, which shows that
the fund returns and market excess returns are stationary, but the logTNAs
are nonstationary. This motivates Pastor, Stambaugh and Taylor (2015)
and Zhu (2018) to employ an instrumental variable method to study the
diseconomies of scale by treating the logTNAs as a unit root process. Un-
fortunately, the instrumental variable method in Pastor, Stambaugh and
Taylor (2015) shows insignificant diseconomies of scale empirically, while
Zhu (2018) shows that the diseconomies of scale are significant. Below we
explain the problems of using instrumental variable methods, requiring a
long time series, and the simulation setup in the two papers.

The model in the above two papers assumes that the fund return is
linear to both the market excess return and lagged logTNA. Because the
significant nonstationary predictor, the fund size, in a linear model can
not be linearly correlated with the stationary fund return, the coefficient
of the lagged logTNA must be zero if the model is well-specified. To con-
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firm this, for each fund with the maximal sample size (467 observations)
in our dataset, we regress the fund returns by the market excess returns
and lagged logTNAs, estimate the coefficient of the lagged logTNA by the
Least Squares Estimation (LSE) and the Instrumental Variable Estimation
(IVX) in Kostakis, Magdalinos and Stamatogiannis (2015), and compute
the p-values for testing zero coefficient of the lagged logTNA by the stan-
dard t-test and the IVX test in Kostakis, Magdalinos and Stamatogiannis
(2015). From Figure 2, the IVX test shows insignificant diseconomies of
scale except one fund under the four-factor model, and the t-test shows
insignificance for most funds. The finding is in line with our argument that
the regressor in a linear model can not be nonstationary if the dependent
variable is stationary. Because the panel regression in Pastor, Stambaugh
and Taylor (2015) and Zhu (2018) assumes that the coefficient of the lagged
logTNA is independent of both funds and time, significant diseconomies of
scale concluded from Zhu (2018) must hold for each fund, which contra-
dicts Figure 2. In other words, when we use a long time series required
by the IVX methods and a large number of funds in panel regression, it is
unrealistic to assume that the coefficient of the lagged logTNA is constant.
This assumption that the diseconomies of scale have a dynamic feature
in our sample from 1980 to 2018 is consistent with the empirical observa-
tion in the mutual fund industry that both the number of mutual funds
and the total net asset under management change dramatically over time
with big increase after 2000 (Elton and Gruber, 2013). Péstor and Stam-
baugh (2012) and Péstor, Stambaugh and Taylor (2015) also find when the
fund industry extends, it is hard for individual funds to generate outper-
formance, and small funds have less chance to outperform the large funds.
However, the theory behind the instrumental variable methods in Pastor,
Stambaugh and Taylor (2015) and Zhu (2018) requires that both the time-
series sample size and the number of funds go to infinity. Furthermore,
in the simulations, Pdstor, Stambaugh and Taylor (2015) and Zhu (2018)
regress the fund returns by the lagged logTNAs and regress the difference
of logTNAs by the fund returns (with other fund characteristics as control
variables). Because the second regression implies that the logTNAs at time
t depend on the fund returns at time ¢, it is hard to believe the fund re-
turns at time ¢ only depend on the lagged logTNAs rather than the current
logTNA at time ¢. When the logTNAs are a unit root process, the first
regression assumes that fund returns are a unit root process, which implies
from the second regression that the differences of logTNAs are a unit root
process, i.e., logTNAs are not the unit root.

This paper uses more rigorous one-step fixed effects panel regression
with a short time window such as three years, where the loadings of risk
factors change with funds, but the coefficients of fund characteristics are
independent of funds for measuring the marginal effect of TNA on fund
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performance. Hence, we overcome the econometric issues and can provide
a dynamic picture of diseconomies of scale. This specification is similar to
that in Chordia, Goyal and Shanken (2019) with individual stocks as test
assets and in Busse, Jiang and Tang (2020) for quantifying how much fund
factor loadings and characteristics can explain cross-sectional variation of
mutual fund returns. Because we have to estimate some parameters and
the fixed effects based on individual funds and other parameters based on
all funds, it becomes nontrivial to estimate the asymptotic covariance of
the estimators for the coefficients relating to fund characteristics. Using a
short time series, the asymptotic theory for the employed inference should
be valid when the number of funds goes to infinity. This paper uses a
random weighted bootstrap method to quantify the uncertainty by allow-
ing both fixed and divergent time-series sample size. Our simulation study
shows that the one-step procedure significantly outperforms the traditional
two-step procedure in terms of both mean squared error and coverage prob-
ability when diseconomies of scale do exist.

Applying the one-step procedure to the actively-managed U.S. equity
mutual funds from January 1980 to December 2018 with a moving window
of three years or five years, we find that the traditional two-step procedure
underestimates the uncertainty of diseconomies of scale compared with the
proposed one-step procedure, and both methods show significant disec-
onomies of scale consistent with Zhu (2018). To empirically justify the
dynamics of diseconomies of scale, we use the t-test for two independent
samples to test no difference in the coefficient of the lagged logTNA in
the #th data window and the last data window. We notice that the inde-
pendence assumption is problematic for two overlapping windows. Never-
theless, the p-values indicate that the null hypothesis of constant effect is
rejected for most pairs, supporting that it is unrealistic to assume a con-
stant coefficient of the lagged logTNA in panel regression when using long
time series.

We organize this paper as follows. Section 2 describes the traditional two-
step procedure and our one-step procedure for examining diseconomies of
scale. Section 3 applies the one-step procedure to quantify diseconomies
of scale in actively-managed U.S. equity mutual funds and compare the
results with the two-step procedure. Section 4 uses simulated data to show
that the one-step procedure outperforms the two-step procedure. Section
5 concludes. Theoretical derivations are put into the Appendix.

2. QUANTIFICATION OF DISECONOMIES OF SCALE

This section provides a detailed description of the traditional two-step
procedure and our one-step procedure for estimating and quantifying dis-
economies of scale in active mutual fund management.
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For the ith fund at time ¢, Y;; is the fund’s excess return, and X, ; is a
di-dimensional control vector, including fund total net asset, fund family
size, fund turnover, and others. In particular, we let the first element
of X;: denote the logarithm of the fund’s total net asset and the rest
elements be any other explanatory variables. We use F'; to denote the dy
factor benchmarks such as those in Jensen (1968), Fama and French (1993),
and Carhart (1997). To study diseconomies of scale on fund performance,
researchers such as Chen et al. (2004) first employ a factor model to get the
benchmark-adjusted return (often called fund managers’ skill) and then use
this benchmark-adjusted return to fit fixed effect panel regression, which
results in the following model:

Yii=ai+ B Fi+eand o+ =p +7 X1 + Uiy (1)

fort=14a;,---,T;+a;,and i =1,--- ,n, where ¢; + and U, ; are random
errors with means zero, «; is constant, but u; could be random. Here,
we use a; to allow funds with a different observation window and A" to
denote the transpose of the matrix or vector of A. The interest is to infer
~ and quantify the estimation uncertainty, especially for the coefficient of
the fund total net asset, which is the measure of diseconomies of scale.

Under the above model, researchers often use a two-step inference pro-
cedure to estimate «. The first step estimates a; and 3; by the least
squares estimation based on data from the #th fund, giving estimators
&, @Z—, and é; for oy, B3;, and €4, respectively. The second step uses
{di"_éi,t = Y;’t _BZFt = ].-I—G,Z',"' ,Ti—i—ai,i = ]., ,TL} to fit fixed
effects panel regression and get the estimator 4 for «, see Pastor, Stam-
baugh and Taylor (2015). Because big funds tend to hold big stocks (Pollet
and Wilson, 2008 and Busse, Chordia, Jiang and Tang, 2019) and stock
with low book to market ratio (Yan, 2008), it means that those funds have
lower Small Minus Big (SMB) Betas and High Minus Low (HML) Beta.
Therefore, this two-step inference is biased since F'; and X;;_; are corre-
lated, and it is difficult to quantify the estimation uncertainty when we use
monthly data, where the number of mutual funds is around 3000 and much
larger than the sample size of most funds ranging from tens to hundreds.

This paper uses the following one-step fixed effects panel regression to
investigate diseconomies of scale on fund performance:

Y;‘,t = Oéi+,6;—Ft+’)’TXi,t—l+Ui,t, t=14a;, -, Ti+a;, i =1,--- ,n, (2)

which combines the two equations in (1). An important advantage is that
inference based on (2) will consider the dependence between F'; and X; ;1.
Here, a; could be random, and the interest is to infer . Chordia, Goyal and
Shanken (2019) use similar specifications in the stock market by controlling
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both factor exposures and stock characteristics in cross-sectional regression
with individual stocks as test assets. Busse, Jiang and Tang (2020) use a
similar specification to quantify the fraction of the cross-sectional variance
of mutual fund returns explained by factor loadings and fund holdings.
Greenaway-McGrevy, Han and Sul (2012) study the above model when we
do not observe {F,;} and bothn - cc and Ty = --- =T, =T — .
Because this model involves some parameters depending on ¢ and some
parameters independent of ¢, we first estimate «;’s and 3,’s based on indi-
vidual funds as a function of 4. Then we estimate « by using all funds.
Put 0; = (o;,3])" and F; = (1,F])". The least squares estimators

solve the following score equations

Tita; T TRV P

t=1+ai{Y;’t -9 Xi,t—l - 01 Ft}Ft =0 for i = 13 L2 (3)

> ZtT:lriL{th " X1 —O0[F} X1 =0,

which gives 4 = Q,, 18, and

Ti+a; Tit+a; Ti+a; Ti+a;

= =T -1 — — — —1 — ~

=( Y, FF)™ Y Y F (), FF)' Y FX, .4
t=14a; t=14a; t=14a; t=14a;

fori=1,---,n, where Q, =>21" 1 Q,, ;, Sn =211 Sni,

Ti+a; Ti+a; Ti+a; Ti+a;
_ _ o _
Z Xiﬂf—lX;‘r,t—l_( Z Xi,t—lFt)( Z F.F,) 1( Z FtX;r,t—l)v
t=14+a; t=14+a; t=1+a; t=1+a;
and
Ti+a; Ti+a; Ti+a; Ti+a;
_ _
> YiaXiia—( Y, XiaFD)( Y FF)TH( Y YidFy).
t=14a; t=14a; t=14a; t=14a;
Write
Q (’S/ ’?}) T, T; T,
— +a; ita; =T ai o ETy—1 ta;
- Zz 1{Zt11+a Ui Xi—1— ( t;1+ai Xi’tlet)( t:1+1ai FtFt) ( t;1+ai

Ti+a; Ti+a; n Tita; 1 pT\—11
- Zi:l thliaz z,t{Xz,tfl - (Zszlj_ai Xi,sles)(Zszliai FSF;—) lFt}'

Put 2, = Y7, Q, where Q,,; = 3,14 E(U? )W, W7, and

Ti+a; Ti+a;
e
Wi,t— i,t— 1_ § Xzs lF ( E Fst) Ft-
s=1+4a; =1+a;

Uit Fy)}
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Under some regularity conditions (see Stock and Watson (2008) or Ar-
relano (2003)), there exists some § > 0 such that as n — oo,

/37, Ti © Q being nonsingular, Y7, B(||Q,:/ 37—, Tl|'+°) — 0,

Qu/ X, Ti 2 Q being nonsingular, Y7, E(1Qi/ o), T5['+) = 0,
n Ti+a; n

S BUIC S, U W/ S5 il P} = 0,

ﬁ@n(’? -) i N(0, ).
(4)

The conditions above allow some or all of T;’s to be finite. This is consistent
with the empirical observation in mutual funds that the number of monthly
returns for each fund ranges from tens to hundreds and is much smaller
than the number of funds around 3000.

Note that we do not copy the existing regularity conditions for ensuring
(4). Instead, we use (4) to prove that the proposed random weighted
bootstrap method below is valid for quantifying the uncertainty of 4.

To quantify the uncertainty of 4, a heteroskedasticity-robust covariance
estimator for €,, is

n  Tita;

Q. =) Y W, Wi,

i=1 t=14a;

where Ui)t =Y A4 X1 — 9:13‘,5 fort =1+a;,---,T; +a; and i =
1,---,n. When F; =0 and T} .=T, =T is fixed, (2, — Q,)/(nT)
does not converge to zero in probability, and Stock and Watson (2008)
propose a bias corrected covariance estimation. Because we use monthly
fund returns to evaluate mutual fund performance, T;’s are much smaller
than n, which makes the approximation error of Q, - Q, non-negligible.
Instead of generalizing the idea in Stock and Watson (2008) and Cameron,
Gelbach and Miller (2008) to our setting, where some parameters depend
on individual funds, this paper uses a random weighted bootstrap proce-
dure to quantify the uncertainty of 4. For dealing with heteroscedastic
errors, Jing, Ying and Wei (2001) apply the random weighted bootstrap
method to estimating equations, and Zhu (2016, 2019) apply the random
weighted bootstrap procedure to time series models. Chiang, James and
Wang (2005) and Zheng et al. (2018) argue that the random weighted
bootstrap method is more computationally efficient than other bootstrap
methods. Below we adopt the random weighted bootstrap procedure to
our one-step panel regression.

Step 1) Draw a random sample 8% for i = 1,--- ,n from a distribution
with mean one and variance one, say a standard exponential distribution.
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Step 2) Solve the following random weighted score equations

t=1+a;

> 0 tT;Jlriil{th Y X1 —O0]F} X, 41 =0.

{ (Sf Titai {Yviyt — ’)’TXi7t_1 — Ozpt}Ft = 0 fOI‘ 7= ]., e, N,
Denote this resulted least squares estimator of « by ’Ayb.
Step 3) Repeat the above two steps B times to get {’?b}le.

Using the above procedure, we estimate the asymptotic covariance of 4 by

Therefore, we can construct a two-sided confidence interval for v; of the
jth element of 4 with level a € (0,1) by using the normal approximation
method, which gives

Y4 (a) = (3 — 21-(1-a)/2045» Vi + Z1—(1-a)/2075)5

where z, denotes the a-th quantile of the standard normal distribution.
When the distribution of 4; is a bit away from a normal distribution, one
can use the empirical distribution of the bootstrap sample. More specifi-
cally, put AjJ, = ’A)/;) — "S/j for b = 1, 7B7 and let Aj,B:l S S Aj,B:B
denote the order statistics of Aj1,---,A; g. Then, we construct the two-
sided confidence interval for 7, at the level a as

Ii(a) = (95 — A} B:[B(1+a)/2)s Vi — DjB:B(1-a)/2])-

THEOREM 1. Suppose (4) hold. Then,

L 0. —4) 4 NO0,Q) asn— .

Vi T

Using (4), an application of standard asymptotic theory leads to

1
—=—=Q.,(3" = %) 5 N(0,Q) as n — o,

vV E?:1 1;

which ensures that the above variance estimation and confidence intervals
are asymptotically correct. Again, we do not require 7; — 0o as n — oo.
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3. EMPIRICAL ANALYSIS

We obtain the sample of actively-managed U.S. mutual funds from Jan-
uary 1980 to December 2018 from the Center for Research in Security Prices
(CRSP) Survivorship Bias Free Mutual Fund Database. The variables of
interest are monthly net returns and the total net asset (TNA) at the end
of each month. To measure fund performance, we use Jensen (1968) mar-
ket factor model, Fama and French (1993) three-factor model, and Carhart
(1997) four-factor model to estimate alpha based on monthly fund returns.
The factors, including CRSP value-weighted excess market return (Mktrf),
size (SMB), book-to-market (HML), and momentum (UMD), are obtained
from Ken French’s website?.

TABLE 1.
Summary statistics.
All Small Group2 Group3  Group4 Big Small-Big t-statistic
NoF 1149 230 230 230 230 229

Net  0.9235 0.9858 0.9358 0.8978 0.9051 0.8902 0.096 2.89
TNA  1.0651 0.0379 0.1064 0.2580 0.6509 4.2803 -4.242 -32.64
Age 17.2727 11.3945 14.5323 15.6644  19.0528 25.7563 -14.362 -121.97
FamTNA 98.5892 36.1972 52.2037 85.1416 115.6269 204.0239 167.827 -18.77
Turnover 80.5873 94.8255 86.0332 83.5474  76.0341 62.4041 32.421 43.26
Flow  0.6575 1.7573 0.5904 0.4904 0.3176 0.1251 1.632 20.08
Expense  1.1436 1.3390 1.2248 1.1712 1.0700 0.9166 0.427 104.24

For all actively-managed U.S. equity funds with at least 24 valid observations from January 1980 to December
2018, we sort all funds by TNA into five groups each month, report the time-series average number of funds
in each portfolio, the time-series averages of the monthly cross-sectional means for the fund characteristics in
each portfolio, and the difference in means between the two extreme portfolios including the total net asset
($ billion), fund age (in years), fund family size ($ billion), net return, turnover, flow, and expense ratio (in
percentage point). These variables are defined in Section 3.

Fund characteristics for each share class, such as fund expense ratio and
turnover, are from CRSP too. We define fund flow as the monthly net
growth in fund assets beyond capital gains and dividends. We aggregate
variables in different share classes based on the unique identifier of “wficn”
in “MFLINK1” provided by Wharton Research Data Services. The fund-
level total net asset is the sum of TNA across different share classes of
the fund. The net return, expense ratio, turnover ratio, and flow are the
TNA-weighted averages of them across all fund share classes, respectively.
Fund age is the age of the oldest share class in the fund. Fund family size
is the TNA summation of each fund in a fund family (excluding the fund
itself). We assume that funds with the same management company name
belong to the same fund family. These variables are commonly used in the

2https:/ /mba.tuck.dartmouth.edu/pages/faculty/ken.french /datalibrary.html
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FIG. 3. Estimates, standard deviations, and t-statistics based on three-year data.
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Using every three-year data, we plot the estimates (upper panels), standard deviations
(middle panels), and t-statistics (bottom panels) for testing zero coefficient of the lagged
logTNA computed from the two-step method (marked by circles) and from the one-step
method (marked by stars). The horizontal line is y = —1.645, indicating that points
below this line reject the null hypothesis of zero coefficient at the 10% level.

scale and performance literature. We winsorize the expense ratio, turnover
ratio, and flow at 0.5% to avoid extreme values. In the regressions, we
take the logarithm for TNA, turnover, fund age, and fund family size. We
impose the filters to narrow our sample down to the actively-managed U.S.
equity mutual funds based on Kacperczyk et al. (2008). Furthermore, we
also exclude funds with an average percentage of common stocks lower than
80% of the total net asset. We identify index funds, ETF, and other pas-
sive funds using their names and the CRSP index fund identifier following
Busse and Tong (2012) and Ferson and Lin (2014). We exclude funds with
the following Investment Objective Codes in the Thomson Reuters Mutual
Fund Holdings database: International, Municipal Bonds, Bond and Pre-
ferred, Balanced, and Metals. Following Elton et al. (2001), we exclude
funds with less than $15 million in TNA, and we address incubation bias
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FIG. 4. The number of funds in each of three-year data windows.
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‘We plot the number of actively-managed U.S. funds in our sample for each of the three-
year data windows.

following Evans (2010). We restrict funds with a minimal sample size 24
and fit the model (2). In Table 1, for each month, we sort funds in our sam-
ple by the total net asset of the previous month into quintiles. Quintile 1
contains funds with the lowest TNA (Small), and Quintile 5 contains funds
with the highest TNA (Big). We report the average monthly net returns,
fund sizes, fund age (in years), fund family size, turnover, flow, and expense
ratio in each portfolio. The corresponding t-statistic to test the difference
in means is provided for each characteristic. First of all, the average fund
size is about 1 billion USD in our sample. Also, the average total net asset
of funds in the smallest quantile is 38 million USD with the equal-weighed
average of net return of 0.99% a month. In contrast, the net return of
the largest 20% funds is 0.89%. We could see a clear decreasing trend of
returns from small funds to big funds, with a significant positive difference
in returns between the two extreme TNA portfolios (0.10%). Furthermore,
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FIG. 5. P-values for testing the difference based on the ith three-year data window
and the last one to be zero.
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Using estimates in the ith three-year data window and the last three-year data window,
we plot the p-values of the t-test for two independent samples computed from the two-
step method (marked by circles) and from the one-step method (marked by stars). The
horizontal line is y = 0.1, indicating that points below this line reject the null hypothesis
of no difference in the coefficient of the lagged logTNA at the 10% level.

the table shows that small funds are younger in smaller fund families with
higher turnover, higher inflow, and larger expense ratios, which all match
the results from Chen et al. (2004).

As argued in the introduction, the persistence of the logTNA makes it
unrealistic to assume a constant coefficient of the lagged logTNA in panel
regression if we use long time series. Hence, we apply the panel regres-
sion to data with a moving window of three years and five years. To
estimate and quantify diseconomies of scale, we consider the one-factor,
three-factor, and four-factor models, and calculate estimates, standard de-
viations, and t-statistics by using our one-step inference and the random
weighted bootstrap method with B = 5000 repetitions. For a comparison
purpose, we also calculate these quantities using the two-step approach in
Pastor, Stambaugh and Taylor (2015) with the heteroskedasticity-robust
covariance matrix estimation in Stock and Watson (2008). The t-statistic is
the ratio of estimate to its standard deviation. A calculation of the variance
inflation factor (VIF) shows that severe multicollinearity exists between to-
tal net asset of funds and other fund characteristics, including fund age,
fund family size, turnover, flow, and expense ratio. For example, the VIFs
based on the fund with wficn=100019 are 28.99, 1.78,2.96, 2.42, 263.16, and
156.25 for the logTNA, expense ratio, log of turnover ratio, fund flow, log
of fund age, and log of fund family size, respectively. Therefore, due to the
multicollinearity issue, we use logTNA as the only independent variable in
the panel regression.

Using every three-year data, we plot the estimates, standard deviations,
and t-statistics for our one step procedure (marked by stars) and the two-
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FIG. 6. Estimates, standard deviations, and t-statistics based on five-year data.

Using every five-year data, we plot the estimates (upper panels), standard deviations
(middle panels), and t-statistics (bottom panels) for testing zero coefficient of the lagged
logTNA computed from the two-step method (marked by circles) and from the one-step
method (marked by stars). The horizontal line is y = —1.645, indicating that points
below this line reject the null hypothesis of zero coefficient at the 10% level.

step approach in Pastor, Stambaugh and Taylor (2015) (marked by circles)
in Figure 3, which shows that the estimates of the two approaches are sim-
ilar, the standard deviations from the one-step procedure are bigger than
those from the two-step method, and the absolute t-statistics from the two-
step procedure are larger than those from the one-step procedure. Hence,
the two-step procedure underestimates the asymptotic variance compared
with the one-step procedure. Overall, we conclude that, although both
methods confirm the diseconomies of scale over the sample from 1980 to
2018, our method is more precise in estimating uncertainty and the strength
of diseconomies of scale. We also plot the number of funds in each of the
three-year moving windows in Figure 4. To confirm the dynamic feature
of diseconomies of scale, we check whether the t-statistics in two differ-
ent three-year data windows are significantly different. We use the t-test
for two independent samples, i.e., the difference between the estimates in
the ith three-year data window and the last three-year data window di-
vided by the squared root of the sum of their variances. We notice that
the independence assumption is problematic for two overlapping windows.
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FIG. 7. The number of funds in each of five-year data windows.
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We plot the number of actively-managed U.S. funds in our sample for each of the five-
year data windows.

Nevertheless, Figure 5 indicates that most of the pairs are significantly
different.

Using every five-year data, we plot the estimates, standard deviations,
and t-statistics in Figure 6. Figure 7 plots the number of funds in each of
the five-year moving windows, and Figure 8 plots the p-values of the t-test
for testing no difference in the coefficient of the lagged logTNA between
the ith five-year data window and the last five-year data window. Again,
we conclude that the two-step procedure underestimates the asymptotic
variance compared with the one-step procedure, and it is unrealistic to
assume a constant coefficient of the lagged logTNA in panel regression.
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FIG. 8. p-values for testing no difference based on two five-year data windows.
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Using estimates in the i#th three-year data window and the last three-year data window,
we plot the p-values of the t-test for two independent samples computed from the two-
step method (marked by circles) and from the one-step method (marked by stars). The
horizontal line is y = 0.1, indicating that points below this line reject the null hypothesis
of no difference in the coefficient of the lagged logTNA at the 10% level.

4. SIMULATION STUDY

This section investigates the finite sample performance of the employed
one-step procedure to ensure that conclusions made for our mutual fund
data above are sound. For a comparison purpose, we also implement
the two-step approach in Pastor, Stambaugh and Taylor (2015) with the
heteroskedasticity-robust covariance matrix estimation in Stock and Wat-
son (2008), which ignores the uncertainty in the first step.

We draw random samples from the following panel regression with 1000
repetitions:

Yvi,t:ai"*"yXi,tfl +ﬁth+Ui,ta t= ]-7 7Tia Z:]-v » 1, (5)

where n = 3073 is the total number of funds, and T; is the sample size
of the ith fund in our real dataset analyzed in Section 4 below. Figure 9
plots the sample sizes for each of these 3073 funds ranging from tens to
hundreds.

To have a setting close to our real dataset, we fit the above model to the
real dataset with F'y = (Fy1,---,F;4)" being the benchmarks in the four-
factor model and X ; being the logarithm of the total net asset. Figure 10
plots the least squares estimates for o; and 8; = (B;1,-- -, Bi4)"-

Further, using the data for the first fund, we estimate the means and co-
variance of {(X1 4, Fi1,- - ,Ft74)7}tT;1 and the mean and variance of resid-
uals {U; 4} ,. Using these estimates, we independently generate random

samples for {(X;, Fi1,--- , Fra)™ fff(Tl’m T from the multivariate nor-
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FIG. 9. Sample sizes of the 3073 mutual funds from January 1980 to December
2018.
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FIG. 10. Least squares estimates for a; and B; = (85,1, - ,Bi,4)” based on the
3073 mutual funds from January 1980 to December 2018.
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for {Ujy :t =1,---,T;,i = 1,---,n} from N(0,0.984%), and set X;,; =
Z; + Xy, where Z; ’'s fort =1,--- ,T;,i =1,--- ,n are independent random
variables with the standard exponential distribution function. Finally, we
generate Y;;’s from the model (5) with v = —0.4, —0.3, —0.2, —0.1, and 0.

TABLE 2.
Simulation results for the unbalanced panel regression.
One-step =y Mean SD RMSE  Estimated SD  11¥4(0.9) I{¥4(0.95)
-0.4 -0.400007 0.000187 0.000187 0.000183 0.895 0.937
-0.3  -0.300007 0.000187 0.000187 0.000183 0.895 0.937
-0.2  -0.200007 0.000187 0.000187 0.000183 0.895 0.937
-0.1  -0.100007 0.000187 0.000187 0.000183 0.895 0.937
0 -0.000007  0.000187  0.000187 0.000183 0.895 0.937
Two-step v Mean SD RMSE  Estimated SD  11¥4(0.9) I{¥4(0.95)
-0.4 -0.390683 0.000293 0.009322 0.000202 0 0
-0.3  -0.293014 0.000250 0.006991 0.000192 0 0
-0.2  -0.195345 0.000215 0.004660 0.000184 0 0
-0.1 -0.097676 0.000191 0.002332 0.000180 0 0
0 -0.000007  0.000183  0.000183 0.000178 0.895 0.937

We report the mean, standard deviation, and root mean squared error of 4 and the average of the
estimated standard deviations by the random weighted bootstrap method in the upper panel. We also
compute these quantities by using the two-step inference in Péstor, Stambaugh and Taylor (2015) and
the heteroskedasticity-robust covariance matrix estimation in Stock and Watson (2008), respectively,
in the lower panel. We compute the coverage probabilities of the one-step and two-step approaches
based on the normal approximation method.

Based on these simulated data, we compute our estimator 4 and the
standard deviation estimator by the random weighted bootstrap method
with B = 10000. We also calculate the two-step estimator for v in Péstor,
Stambaugh and Taylor (2015) and the heteroskedasticity-robust covariance
matrix estimation in Stock and Watson (2008). The t-statistic is the ratio
of the estimator to its standard deviation. Using these 1000 repetitions,
Table 2 reports the means, standard deviations, and root mean squared
errors of these two estimators, the averages of these two standard devia-
tion estimators, and the coverage probabilities of the normal approximation
confidence intervals based on the t-statistics. As the distribution of 4 —+ is
independent of 7, the quantities for the one-step approach are the same ex-
cept the average of 4. Results in Table 2 show that the employed one-step
procedure works very well in terms of both point estimation and interval
estimation. In contrast, the two-step approach in Pastor, Stambaugh and
Taylor (2015) has a significant bias for v # 0 by comparing the simulated
standard deviation with the root mean squared error and becomes worse
as |y| is larger. Moreover, the heteroskedasticity-robust covariance ma-
trix estimation in Stock and Watson (2008) severely underestimates the
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asymptotic variance, leading to zero coverage probability for the intervals
constructed from the two-step approach.

TABLE 3.
Simulation results for the balanced panel regression with n = 3073.
One-step  ~ Mean SD RMSE  Estimated SD  I1¥4(0.9) I{¥4(0.95)
-0.4 -0.400006 0.000321 0.000321 0.000321 0.903 0.945
-0.3  -0.300006 0.000321 0.000321 0.000321 0.903 0.945
-0.2  -0.200006 0.000321 0.000321 0.000321 0.903 0.945
-0.1  -0.200006 0.000321 0.000321 0.000321 0.903 0.945
0 -0.000006 0.000321 0.000321 0.000321 0.903 0.945
Two-step v Mean SD RMSE  Estimated SD  I1¥4(0.9) I{¥4(0.95)
-0.4  -0.372798 0.000880 0.027216 0.000398 0 0
-0.3  -0.279600 0.000688 0.020412 0.000358 0 0
-0.2  -0.186402 0.000510 0.013608 0.000325 0 0
-0.1  -0.093204 0.000363 0.006806 0.000304 0 0
0 -0.000006  0.000299  0.000299 0.000297 0.900 0.942

We set the number of time-series observations to be 60 for all funds and the number of funds to be
3073, report the mean, standard deviation, and root mean squared error of 4 and the average of the
estimated standard deviations by the random weighted bootstrap method in the upper panel. We also
compute these quantities by using the two-step inference in Péstor, Stambaugh and Taylor (2015) and
the heteroskedasticity-robust covariance matrix estimation in Stock and Watson (2008), respectively,
in the lower panel. We compute the coverage probabilities of the one-step and two-step approaches
based on the normal approximation method.

Next, we study balanced panel regression with n = 3073 and n = 300 but
fixing the number of time-series observations at 60 for all funds. The rest
of the settings is the same as above. Like Table 2, we calculate and report
the estimates, standard deviations, and coverage probabilities in Table 3
for n = 3703 and Table 4 for n = 300, which show that the employed
one-step procedure performs very well, but the two-step approach has a
significant bias and zero coverage probability for v # 0, and it is worse
than the corresponding results in Table 2, which has a larger sample size
for many funds.

In summary, the used one-step approach with the random weighted boot-
strap method works very well for panel data regardless of the time series
being longer or shorter. Without taking into account the dependence be-
tween predictors in the first step and the second step, the two-step approach
in Péstor, Stambaugh and Taylor (2015) is biased, especially for panel data
with shorter periods, and ignoring the uncertainty in the first step leads to
very inaccurate confidence intervals.



QUANTIFYING DISECONOMIES OF SCALE FOR MUTUAL FUNDS 21

TABLE 4.
Simulation results for the balanced panel regression with n = 300.
One-step v Mean SD RMSE  Estimated SD  11¥4(0.9) I{¥4(0.95)
-0.4 -0.400010 0.000974 0.000974 0.001026 0.878 0.933
-0.3  -0.300010 0.000974 0.000974 0.001026 0.878 0.933
-0.2  -0.200010 0.000974  0.000974 0.001026 0.878 0.933
-0.1  -0.100010 0.000974 0.000974 0.001026 0.878 0.933
0 -0.000010  0.000974  0.000974 0.001026 0.878 0.933
Two-step v Mean SD RMSE  Estimated SD  I1¥4(0.9) I{¥4(0.95)
-0.4 -0.372804 0.001623 0.027245 0.001275 0 0
-0.3  -0.279605 0.001355 0.020440 0.001145 0 0
-0.2  -0.186407 0.001126 0.013640 0.001042 0 0
-0.1  -0.093208 0.000965 0.006860 0.000975 0 0
0 -0.000009  0.000908  0.000908 0.000952 0.911 0.961

We set the number of time-series observations to be 60 for all funds and the number of funds to be
300, report the mean, standard deviation, and root mean squared error of 4 and the average of the
estimated standard deviations by the random weighted bootstrap method in the upper panel. We also
compute these quantities by using the two-step inference in Péstor, Stambaugh and Taylor (2015) and
the heteroskedasticity-robust covariance matrix estimation in Stock and Watson (2008), respectively,
in the lower panel. We compute the coverage probabilities of the one-step and two-step approaches
based on the normal approximation method.

5. CONCLUSIONS

Whether large funds significantly underperform the small ones has re-
ceived considerable attention in the mutual fund industry. In this paper,
we argue that the two-step procedure in Chen et al. (2004) and Péstor,
Stambaugh and Taylor (2015) underestimates the estimation uncertainty
for diseconomies of scale. Further, the instrumental variable methods in
Péstor, Stambaugh and Taylor (2015) and Zhu (2018) require a long time
series theoretically and make it unrealistic to assume constant coefficient
of the lagged logTNA in panel regression. To solve these problems, we use
a one-step model and inference with a random weighted bootstrap method
to fit fixed effects panel regression for a short time window. A simula-
tion study shows that the employed one-step procedure outperforms the
traditional two-step procedure in terms of interval estimation. An appli-
cation to actively-managed U.S. equity mutual funds from 1980 to 2018
with a moving window of three-year or five-year data shows that the tradi-
tional two-step approach underestimates the standard deviation compared
with the one-step procedure. Both methods find significant diseconomies
of scale. We find that the strength of diseconomies of scale in different
data windows varies significantly in most cases, which supports the time-
dynamic feature of diseconomies of scale.
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APPENDIX: PROOF OF THEOREM 1

Put
n Ti+a;
Q 25b Z Wltht 15
i=1 t=14a;
and write
Q (’3’ -9) .
Q.(Q., bIZ (67 = 1) t'J{iL gthi,t (A1)
+Q, (Q ) ' dIXdl)Zz 1 fllila UitWit,

where 14, x4, denotes the d; x d; identity matrix. By

T;+a;

Q' -Q, Zé”—l > WiaXj,

t=14a;

and (4), an application of the law of large numbers yields that as n — oo

b b
=11 =11

By (4) and the central limit theorem, we have

Ti+a;
Z @ -1 3 UnWie S NO,Q) asn o0, (A3)

\% Zz lTZ i=1 t=1+4a;

Hence, the theorem follows from equations (A.1)—(A.3).
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