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Asset Pricing and Microcaps

Yuming Li*

I study the pricing power of the microcap stocks with characteristics in-
cluding accruals, new share issues, momentum and volatility, in addition to
asset growth and profitability. After adjusting for the market excess return,
I find that the return spreads formed from microcap stocks subsume the pric-
ing power of those formed from other stocks. A microcap-based factor model
outperforms many alternative models. The results are consistent with what
MacKinlay and Pastor (2000) find that the additional factor that completes
the pricing job of a factor model is a portfolio weighted towards mispriced
securities.
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1. INTRODUCTION

Researchers in the last few decades have documented that the average
returns on common stocks associated with a large number of characteristics
are not explained by the market-based CAPM or the three-factor model
of Fama and French (1993). Recently, Hou, Xie and Zhang (HXZ, 2015)
propose a four-factor model inspired by the q-theory of investment, which
consists of the market excess return, the size factor, the investment factor
and the profitability factor. Motivated by a valuation model in which the
market value of a firm is the present value of its future dividends, which
are related to future investment and profitability, Fama and French (2015)
enhance their three-factor model to a five-factor model with alternative
investment and profitability factors. Stambaugh and Yuan (2017) propose
a four-factor mispricing factor model, by constructing two factors from a
set of 11 prominent characteristics (anomalies) unexplained by the CAPM
or the Fama-French (1993) three-factor model.

While other researchers mostly examine their models’ abilities to explain
anomalies by using portfolios formed from univariate sorts on individual
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characteristics, Fama and French (2015, 2016) find that the cross section
of average returns on portfolios formed from bivariate sorts on both size
(market capitalization) and one of the many characteristics still pose a
challenge to their five-factor model, or the model augmented by a momen-
tum factor. The most serious challenge is that microcap stocks, which are
stocks in the bottom size quintile, are extremely mispriced by the five or
six-factor model. As Fama and French (2008) note, microcap stocks ac-
count for a substantial number of stocks, so it is important to find a model
that can better explain the average returns on microcaps. MacKinlay and
Pastor (2000) show that when a risk factor is missing from an asset pricing
model, the missing factor that completes the pricing job of the missing
factor model is a portfolio weighted towards mispriced securities. The pre-
ceding literature suggests that it is important to compare the pricing power
of the microcap stocks with that of non-microcap stocks.

Barillas and Shanken (2017) show that a traded factor is redundant if
the intercept (alpha) in the regression of the factor on other factors is zero.
Li (2018) explores the link between the alpha- and risk priced-based ap-
proaches to testing the statistical significance of the additional factor. I
find that when long-short return spreads on non-microcap stocks are re-
gressed on those of microcap stocks and the market excess return, the
alphas are statistically insignificant. The regressions are performed with
multiple characteristics including accruals, new share issues, momentum
and volatility, in addition to asset growth and profitability. The result
suggests that factors formed from non-microcap stocks are no longer nec-
essary once factors formed from microcap stocks are included. I find that
an asset pricing model with factors formed from microcap stocks outper-
forms many alternative models, including models with factors formed from
non-microcap stocks and existing models in the literature.

Fama and French (2018) analyze variations of the Fama French five and
six factor models. The variations they consider include forming factors
using small stocks below the NYSE size median. Their small stock factors
contain much larger stocks than the bottom size quintile considered in
this paper. The superior performance of the microcaps-based model with
multiple characteristics contrasts sharply from what they find that their
base model that combines small and big stocks in its spread factors performs
as well as their small stock model. One contribution of this paper is to
illustrates that using microcap stocks that are smaller than stocks below the
NYSE size median can make a significant difference, because the evidence
in this paper shows that microcap stocks subsume the pricing power of
non-microcap stocks, but not vice versa.

The existence of hundreds of anomalies (Harvey, Liu and Zhu, 2016)
makes it increasingly dif?cult to have a parsimonious model that can ac-
count for patterns in average returns in the cross section. Like most of
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the preceding researchers, I conduct model comparisons based on a limited
number of anomalies examined in the recent literature. Moreover, there are
quite a few papers that combine multiple characteristics or use the result-
ing combination portfolios in factor models, including the work of Light,
Maslov and Rytchkov (2017) and Green, Hand and Zhang (2017). While
the results of this paper concerning multiple characteristics are largely con-
sistent with those found by other researchers, the motivation and construc-
tion method of factors are quite different.

The reminder of the article is organized as follows. In the next section, I
discuss the motivation for my factor construction and estimation method. I
then describe the data sources and the factor construction. I then examine
the pricing power of microcap stocks. Finally, I conduct tests of various
models with different characteristics, before conclusions.

2. THE MODEL

Consider each factor model as a linear regression of N excess returns, Rj

on a vector of factors, Fj :

Rj = αj + βjFj + εj , j = 1, 2, . . . , J (1)

where Rj , εj , and αj are N ×1 vectors, Fj is a Kj ×1 vector of factors and
βj is an N ×Kj matrix of factor loadings. The residual vector εj has zero
means and an invertible covariance matrix, Σj . In equation (1), each excess
return is the difference between the return on a portfolio and the riskfree
asset, or between returns on two portfolios (return spread). Throughout
this paper, I only consider spread factors as differences in returns.

Let Sh(Fj) denote the Sharpe ratio of a mean-variance efficient frontier
that can be constructed from the factors Fj and the riskfree asset, and
Sh(Rj , Fj) denote the Sharpe ratio of a frontier that can be constructed
from Rj , Fj and the riskfree asset. Then exact factor pricing with αj =
0 is equivalent to the equality of the frontiers, or, Sh(Fj) = Sh(Rj , Fj)
(Huberman and Kandel, 1987, p878). Gibbons, Ross, and Shanken (GRS,
1989) show that, a quadratic form of αj is the difference between two
squared Sharpe ratios:

α′
jΣ

−1αj = Sh2(Rj , Fj)− Sh2(Fj). (2)

All alphas in equation (2) collapse to zero, if and only if the difference
between the two squared Sharpe ratios vanishes, or equivalently, the two
frontiers merge into one. Suppose the goal is to minimize the difference
between the squared Sharpe ratios in the right side of equation (2). Barillas
and Shanken (2017) argue that, the test assets used to evaluate the models
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should be augmented by the factors from the other models. If the set of
test assets Rj are just the factors in other models under consideration, then
(Rj , Fj) and hence Sh2(Rj , Fj) become common for all models, regardless
of the test assets. Since each factor model prices the factors in its own model
perfectly with zero alphas, testing each model against all factors in other
models is equivalent to testing each model against a complete model that
includes the factors in all models under consideration, including the model
to be tested. As a result, this type of test can be viewed as a nested test.
An alternative way of the model comparison is to use test assets Rj = R,
which contains all portfolios used to construct the factors in all models
under consideration. Since in this case, Sh2(Rj , Fj) = Sh2(R), Sh2(Rj , Fj)
are common for all models under consideration, just like the case when the
test assets include all factors in other models. Whenever Sh2(Rj , Fj) are
common for all models, the goal of minimizing the difference between the
squared Sharpe ratios in the right side of equation (2) is equivalent to the
goal of maximizing the squared Sharpe ratio, Sh2(Fj), of the factor model.
In what follows, I include the two types of test assets in comparing factor
models.

Consider a benchmark model, such as the CAPM or the three-factor
model of Fama and French (1993). This model can be described in the same
way as equation (1) with j = B. An exact pricing implies that each element
of the mispricing vector αB is zero. MacKinlay and Pastor (2000) show that
if exact pricing does not hold due to a missing factor, then there is a unique
portfolio of assets that can be combined with the factor portfolios FB to
form a tangency portfolio. The unique portfolio is orthogonal to the factor
portfolios and when it is added to the benchmark model, the mispricing
vanishes. They further show that if the residual covariance matrix of the
extended model with the additional orthogonal factor is assumed to be
diagonal and proportional to the identity matrix, then the weights on the
assets in the portfolio are proportional to the mispricing vector in the
benchmark model. They argue that their result justifies using the spread
factors like SMB and HML because these portfolios essentially assume long
positions in stocks with positive alphas and short positions in stocks with
negative alphas in the CAPM. Following this argument, I form spread
factors, like most of the literature. However, I take into consideration of
microcap stocks, which are most mispriced, and multiple characteristics in
factor construction.

3. DATA AND FACTORS

3.1. Data Description

To compare with the recent literature, especially Fama and French (2015,
2016), I use data on the value-weighted portfolios formed by Fama and
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French (2015, 2016) to construct factors and limit the sample period to
January 1967?December 2015 (588 months). The data are provided by
Kenneth French. The breakpoints use only NYSE stocks, but the sample
is all NYSE, Amex, and NASDAQ stocks. The portfolios are formed from
5× 5 quintile sorts: first on market equity (size), and then on each of the
following characteristics: growth in total assets (AG), accruals (AC), net
share issues (NI), operating profitability (OP ), prior (2-12 month) return
(PR), the variance of daily returns (V ar), the variance of daily residuals
(RV ar) in the Fama-French (1993) three-factor model, or the book-to-
market ratio (B/M). For the sake of consistency, portfolios formed from
sorts with negative or zero net share issues (repurchases) are excluded.
The first- and the second-pass sorts are independent for all characteristics,
except that the second pass sorts on V ar and RV ar are conditional on size
quintile. Portfolios are formed at the end of June each year, except for PR,
V ar and RV ar, which are formed monthly.1 See Appendix for a detailed
description of the definitions of the characteristics.

I also use data on five factors in the model of Fama and French (FF-5,
2015). The data on the five factors are also provided by Kenneth French.
The five factors are the value-weighted return on a market portfolio in ex-
cess of the riskfree rate (MKT ), the return on a small stock portfolio minus
the return on a big stock portfolio (SMB), the return on a conservative
investment (asset growth) portfolio minus the return on an aggressive in-
vestment portfolio (CMA), the return on a portfolio of stocks with robust
operating profitability minus the return on a portfolio of stocks with weak
operating profitability (RMW ), and the return on a portfolio of stocks with
high B/M ratios minus the return on a portfolio of stocks with low B/M
ratios (HML). Except for MKT , Fama and French (2015) construct the
factors from six value-weighted portfolios formed from 2 × 3 sorts on size
and a characteristic such as B/M , AG or OP . All three portfolios, CMA,
RMW and HML, are formed at the end of June each year.

Other data include factors in the q-factor model of HXZ (q-4, 2015): The
data are provided by Lu Zhang. The size factor (ME) is the difference
between the return on a small stock portfolio and the return on a big
stock portfolio. The investment (I/A) factor is the difference between the
return on a low I/A portfolio and the return on a high I/A portfolio. The
profitability (ROE) factor is the difference between the return on a high
ROE portfolio and the return on a low ROE portfolio. The three factors
are constructed from value-weighted portfolios formed from 2× 3× 3 sorts
on ME, I/A, and ROE. While the I/A factor is formed at the end of June
each year, the ROE factor is formed monthly.

1Another characteristic used by Fama and French (2016) is the market beta, βM , in
the market model. Given the lack of difference between average returns on low and high
βM portfolios, I exclude βM in factor constructions and subsequent analyses.
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Finally, I use data, provided by Yu Yuan, on the factors in the mispricing
factor model of Stambaugh and Yuan (M-4, 2017), who use 2 × 3 sorts
on size and another sorting variable to construct a size factor and two
mispricing factors: MGMT and PERF . Unlike Fama and French (2015),
who use a single characteristic, Stambaugh and Yuan (2017) use the average
stock rankings with respect to a cluster of 11 characteristics as a sorting
variable. MGMT is based on a cluster of six characteristics: net stock
issues, composite equity issues, accruals, net operating assets, asset growth,
and investment to assets. PERF is based on a cluster of five characteristics:
distress, O-score, momentum, gross profitability, and return on assets. As
Stambaugh and Yuan (2017) construct their size factor differently by using
only stocks not used in forming MGMT and PERF , I denote their size
factor as SMB′. Both MGMT and PERF are formed monthly.

3.2. Factor Construction

After describing the data sources, I move to factor constructions. Some
notation is necessary. Let Rj(Yj) denote the return on a portfolio formed
from 5× 5 quintile sorts on size and a characteristic, Y . Subscript i refers
to a size quintile and j refers to a Y quintile, i, j = 1, . . . , 5. Size and
Y are in ascending orders. Following Fama and French (2015, 2016), size
quintile 1 refers to microcap stocks, or simply microcaps and size quintile 5
refers to megacap stocks, or simply megacaps. To maintain nonnegativity
of average spreads as much as possible, I define long-short return spreads
for each of the size quintiles:

(Low-high) Si(Y ) = Ri(Y1)−Ri(Y5) for Y = AG,AC,NI, V ar,RV ar;(3)
(High-low) Si(Y ) = Ri(Y5)−Ri(Y1) for Y = OP,PR,B/M. (4)

Fama and French (2018) argue that, if the test assets in equation (2)
include all assets, then the model with the highest Sharpe ratio is the
best one since its squared Sharpe ratio is closest to that produced by all
assets. Equation (2) implies that the model with the highest Sharpe ratio
produces the lowest pricing errors for all assets. The Sharpe ratio of each
factor model is the average excess return on a portfolio of factors in the
model divided by the volatility (standard deviation) of the portfolio return.
This suggests that there are two considerations in choosing the factors. The
first is to the average factor returns and the second is to the risk of the
factors. To increase the average returns, I include microcap spreads to
form factors. To lower the risk of the factors, I average return spreads over
characteristics to effectively diversify the risks. I now describe the details
of factor construction.
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I define an investment-related factor and a profitability-related factor as
follows:

INVIJ =


1
I

∑I
i=1(Si(AG)), J = 1

1
2I

∑I
i=1(Si(AG) + Si(AC)), J = 2

1
3I

∑I
i=1(Si(AG) + Si(AC) + Si(NI)), J = 3

(5)

PPRIJ =


1
I

∑I
i=1(Si(OP )), J = 1

1
2I

∑I
i=1(Si(OP ) + Si(PR)), J = 2

1
3I

∑I
i=1(Si(OP ) + Si(PR) + Si(V ar)). J = 3

(6)

In equations (5)-(6), the factors combine return spreads from up to six
characteristics and size quintiles from one to I, I ≤ 5 including microcaps.

The factor, INVI3, can be regarded as a broad-based investment factor,
since the three characteristics in equation (5) capture information about
firms’ growth in total assets, changes in working capital and changes in
capital expenditure through net share issues. As discussed in the section
on the valuation model, the expected stock return is negatively related to
accruals when operating profitability is a proxy for total earnings. Equa-
tion (4) suggests that accruals can be either subtracted from operating
profitability (to form cash profitability) or added into the change in book
equity. Instead of replacing operating profitability with cash profitability, I
treat accruals separately from operating profitability here and use accruals
to form a broad-based investment factor since accruals reflect the invest-
ment in the short-term assets like the operating working capital, which is
current assets (excluding cash and marketable securities) minus current li-
abilities (excluding short-term debt).2 Titman, et al. (2004), Cooper, et
al. (2008), and Polk and Sapienza (2009) document the negative relation
between investment and average return. Sloan (1996) finds that low re-
turns are associated with high accruals, similar to low returns associated
with total asset growth.

As discussed earlier (see equation (5)), new share issues (NI) offer sup-
plemental information about the change in equity that is not reflected in
AG and AC. This is especially important for leveraged firms paying no
or fixed dividends. Ritter (1991) and Loughran and Ritter (1995) show
that, the underpricing of initial public offerings is a short-run phenomenon,
and in post-issue years, equity issuers underperform matching non-issuers
with similar characteristics. The negative relation between new share is-
sues and average future returns is consistent with the relation predicted by

2Ball et al (2016) define components of the working capital accruals to include changes
in accounts receivable, inventory, prepaid expenses, deferred revene, accounts payable,
and accrued expenses.
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the valuation equation (2), given everything else including dividends. The
difference between short- and long-run stock performance after new share
issues is also consistent with the implication of the valuation model (2) and
hence suggests that the new share issues may also offer information about
the variation of expected returns. As NI mainly reflects equity investment
through external financing it is grouped together along with AG and AC
rather than profitability.

The second factor, PPRI3, is measures profitability, performance and
risk. Haugen and Baker (1996), Fama and French (2006) and Novy-Marx
(2013) find that average stock return is positively related to expected prof-
itability. HXZ (2015) show that their profitability factor formed from most
recent quarterly earnings explains the average return on the momentum
portfolio. Novy-Marx (2015) argues that the stock price momentum is
explained by the profitability factor in the q-factor model because the fac-
tor reflects momentum in firm fundamentals. As I use the profitability
variable, OP , that is based on annually rather than quarterly updated
earnings, adding the variable, PR, helps to capture the momentum in firm
fundamentals like earnings.

Jegadeesh and Titman (1993) document that stock price exhibits mo-
mentum in the intermediate horizon but the stock price performance tends
to be reversed in the long run. Liu and Zhang (2008) conclude that
risk plays an important role in driving momentum profits. Daniel and
Moskowitz (2016) show that momentum portfolios crash in panic states,
following market declines and when market volatility is high. The behavior
of the momentum portfolios is in accord with the valuation model (2) with
time-varying expected returns. As a result, returns on the size- and prior
return-sorted portfolios provide insights about the variation of expected
returns, in addition to momentum in firm fundamentals.

Ang et al. (2006) ?nd that stocks with highly volatile returns tend to
have low average returns whether volatility is measured as the variance
of daily returns or as the variance of the residuals from the Fama-French
(1993) three-factor model. Jiang et al. (2009) document that idiosyncratic
volatility is inversely related to future earning shocks. Moreno and Ro-
dríguez. (2015) document that idiosyncratic volatility anomaly is related
to investment and profitability. Therefore, the negative relation between
average returns and the volatility is consistent with the positive relation
between average returns and future earnings in the valuation model. As the
volatility of total stock returns (expected plus unexpected) contain informa-
tion about the variation of expected returns, the size- and volatility-sorted
portfolios also provide insights about the variation of expected returns.
Returns on the prior return- and volatility-sorted portfolios are among the
most mispriced and difficult to explain, as documented by Fama and French
(2016).
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INVI3 and PPRI3 are broader measures of investment and profitability
than CMA and RMW used by Fama and French (2015) or I/A factor or
ROE factor used by HXZ (2015), who construct each factor based only
on one characteristic. Most of the additional characteristics like NI, PR
and V ar may capture the time variation of expected returns. Since the
return spreads in the right side of equations (3)-(4) are less than perfectly
correlated, averaging the spreads lowers the volatility of each of the two
factors through the benefit of diversification and increases the Sharpe ratios
of the factors.

To construct the size factor SMB∗, I first define a size spread for each
characteristic Y

SMB(Y ) =
1

3

4∑
j=2

(R1(Yj)−R5(Yj)), (7)

and then average the spreads over six characteristics:
SMB∗ =

1

6
(SMB(AG)+SMB(AC)+SMB(NI)+SMB(OP )+SMB(PR)+SMB(V ar)).

(8)
The construction of the size factor here uses only microcaps and megacaps,
unlike other researchers who use small and big stocks which together ac-
count for stocks in all size quintiles. The purpose is to increase the average
return on the factor. Following Stambaugh and Yuan (2017), I exclude
the lowest and highest characteristic quintiles that are used to calculate
the spreads and the resulting factors INVI3 and PPRI3, so that the size
factor is neutral to extreme fluctuations in characteristics.

Following most of the literature, portfolio returns are evaluated before
transaction costs, which tend to be negatively related to the firm size,
but positively related to portfolio rebalancing frequencies. To mitigate
the concern of transaction costs, all portfolios used as test assets or used
to construct factors are value-weighted. While the profitability factor in
the q-factor model of HXZ (2015) and all of the 11 anomaly variables in
the mispricing factor model of Stambaugh and Yuan (2017) are formed
monthly, the factors in this paper are constructed from portfolios formed
annually, except for those related to momentum and volatility.

3.3. Summary Statistics for Spreads and Factors

Panel A of Table 1 presents the average and standard deviation of the
return spread for each size quintile and each characteristic. Except for AC,
the average spreads for seven characteristics are highest for microcaps. For
example, for AG, the average spread is 62 bps for microcaps but 33 bps for
megacaps. For PR, the average spread is 1.38 percent for microcaps but 62
bps for megacaps. For V ar and RV ar, the average spreads for microcaps
are 1.30-1.32 percent but only 4-7 bps for megacaps. Of special interest is
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that, for five characteristics: NI, PR, V ar, RV ar and B/M, the average
spreads are inversely related to size.

TABLE 1.
Summary Statistics for Return Spread for Each Size Quintile

Panel A. Average and standard deviation, %
Average for size quintile Standard deviation for size quintile

Y 1 2 3 4 5 1 2 3 4 5
AG 0.62 0.39 0.36 0.25 0.33 2.34 2.73 2.96 3.37 3.54
AC 0.28 0.18 0.27 0.02 0.38 1.66 2.07 2.44 2.43 3.19
NI 0.66 0.56 0.53 0.33 0.27 3.16 3.33 3.57 3.54 3.10
OP 0.32 0.40 0.41 0.23 0.18 3.22 3.36 3.61 3.23 3.42
PR 1.38 1.07 0.95 0.83 0.62 4.89 5.22 5.63 6.01 6.09
V ar 1.30 0.68 0.38 0.28 0.04 6.69 6.37 6.12 6.17 5.42
RV ar 1.32 0.77 0.46 0.37 0.07 6.42 5.97 5.75 5.75 4.70
B/M 0.86 0.50 0.53 0.20 0.22 4.15 4.13 4.37 4.21 4.21

Panel B. Correlation for microcaps (size quintile 1)
AG AC NI OP PR V ar RV ar

AC 0.47
NI 0.08 0.09
OP −0.49 −0.21 0.58
PR 0.01 0.06 0.05 0.05
V ar −0.14 −0.01 0.63 0.52 0.37
RV ar −0.13 −0.01 0.65 0.54 0.36 0.99
B/M 0.21 0.06 0.76 0.43 0.01 0.61 0.62
The breakpoints use only NYSE stocks, but the sample is all NYSE, Amex, and NASDAQ stocks.
The portfolios are formed from 5×5 quintile sorts: first on market equity (size), and then on each
of the following characteristics (Y ): growth in total assets (AG), accruals (AC), net share issues
(NI), operating profitability (OP ), prior (2-12 month) return, (PR), the variance of daily returns
(V ar), the variance of daily residuals (RV ar) in the Fama-French (1993) three-factor model, or
the book-to-market ratio (B/M). For the sake of consistency, portfolios formed from sorts with
negative or zero net share issues (repurchases) are excluded. Portfolios are formed at the end of
June each year, except for PR, V ar and RV ar, which are formed monthly. Ri(Yj) is the return
on a portfolio in size quintile i and Y quintile j. The return spread, Si(Y ), for size quintile i and
characteristic Y is constructed as follows:

(Low-high) Si(Y ) = Ri(Y1)−Ri(Y5) for Y = AG,AC,NI, V ar,RV ar; (3)
(High-low) Si(Y ) = Ri(Y5)−Ri(Y1) for Y = OP,PR,B/M. (4)

Size and Y are in ascending orders. The sample period is January 1967 — December 2015 (588
months).

The standard deviations tell an opposite story. The standard deviations
of the spreads for microcaps are the lowest for four characteristics: AG, AC,
OP , and PR. and. For example, for AG, the standard deviation is 2.34
percent for microcaps but 2.73-3.54 percent for non-microcaps. For AC, the
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standard deviation is 1.66 percent for microcaps but 2.07-3.19 percent for
non-microcaps. More strikingly, for characteristics: AG and AC, standard
deviations increase with size. For other four characteristics: NI, V ar,
RV ar and B/M , standard deviations do not show much variability across
the size quintiles, despite the enormous differences in the average spreads
between microcaps and megacaps. The summary statistics here show that
microcaps tend to have high average spreads and low standard deviations.

FIG. 1. Average Return Spread per unit of Standard Deviation.
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Microcap refers to size quintile 1 and megacap refers to size quintile 5. Characteristic
is growth in total assets (AG), operating profitability (OP ), prior (2-12 month) return,
(PR), accruals (AC), net share issues (NI), the variance of daily returns (V ar), book-to-
market (B/M), or the variance of daily residuals (RV ar) from the Fama-French (1993)
three-factor model. The sample period is January 1967 — December 2015 (588 months).

Figure 1 illustrates the average spread per unit of standard deviation for
each of the five size quintiles and each of the nine characteristics. Except
for OP , microcaps have the highest average spread per unit of standard
deviation among all size quintiles. The disparity between microcaps and
non-microcaps is quite substantial for most characteristics. The results
suggest that using the spreads for microcaps to construct factors can po-
tentially increase the Sharpe ratios associated with the factors. Panel B of
Table 1 presents the cross correlations between the spreads for microcaps.
The highest correlation (0.99) is between spreads formed from V ar and
RV ar-sorted portfolios. Given this nearly perfect correlation, it is unnec-
essary to include low and high RV ar portfolios in constructing factors.
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TABLE 2.
Summary Statistics for Factors

Panel A. Investment- and profitability-related factors in the C-4 model
INV11 INV12 INV13 PPR11 PPR12 PPR13

Average 0.625 0.453 0.521 0.322 0.851 1.002
Std. dev. 2.340 1.721 1.631 3.216 2.991 3.759
Sharpe 0.267 0.263 0.319 0.100 0.285 0.267
t-stat 6.47 6.38 7.75 2.43 6.90 6.46

INV51 INV52 INV53 PPR51 PPR52 PPR53

Average 0.392 0.310 0.363 0.310 0.639 0.605
Std. dev. 2.240 1.500 1.600 2.633 2.994 3.299
Sharpe 0.175 0.206 0.227 0.118 0.214 0.183
t-stat 4.24 5.01 5.50 2.85 5.18 4.45

Panel B. Factors in other models
FF-5 q-4 M-4 FF-5 q-4 M-4
CMA I/A MGMT RMW ROE PERF

Average 0.323 0.411 0.606 0.258 0.561 0.706
Std. dev. 2.031 1.882 2.892 2.292 2.53 3.798
Sharpe 0.159 0.218 0.210 0.113 0.222 0.186
t-stat 3.85 5.30 5.08 2.73 5.38 4.51

C-4 FF-5 q-4 M-4
SMB∗ SMB ME SMB′

Average 0.404 0.243 0.305 0.429
Std. dev. 4.016 3.090 3.100 2.895
Sharpe 0.101 0.079 0.098 0.148
t-stat 2.44 1.91 2.39 3.59

Panel C. Correlation between pairs of size factors
SMB∗ SMB ME

SMB 0.958
ME 0.934 0.974
SMB′ 0.906 0.942 0.926
The factor model (C-4) consists of four factors: MKT , SMB∗, INVIJ and PPRIJ . MKT
is the excess return on the value-weighted market portfolio. SMB∗ (see eq. (8)) is difference
in returns between smallest and biggest size quintiles, averaged over middle three quintiles of
six characteristics. INVIJ (see eq. (5)) is the average of return spreads from size quintile 1
to I (I = 1, 5), including up to J (J ≤ 3) characteristics: asset growth (AG), accruals (AC)
and net share issues (NI). PPRIJ (see eq. (6)) is the average of return spreads from size
quintile 1 to I, including up to J characteristics: operating profitability (OP ), prior return
(PR) and variance of daily return (V ar). CMA and RMW are, respectively, the investment
and profitability factors in the five-factor model of Fama and French (FF-5, 2015). I/A and
ROE are alternative investment and profitability factors in the q-factor model of HXZ (q-4,
2015). MGMT and PERF are mispricing factors in the model of Stambaugh and Yuan (M-4,
2017). SMB, ME and SMB′ are size factors in other models. The HML factor in the FF-5
model is not reported. The Sharpe ratio of each factor is the average divided by the standard
deviation. The sample period is January 1967 — December 2015 (588 months).
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In Table 2, I present summary statistics for four factors in the pro-
posed (characteristics) model (C-4) along with factors in competing mod-
els. Panel A reports the average, the standard deviation, the Sharpe ratio
(the average divided by the standard deviation), and the t-statistic for each
factor in the C-4 model and panel B reports the statistics for the factors
in the FF-4, q-4 and M-4 models. Panel C reports the correlations be-
tween pairs of size factors. Given the same sample size, the t-statistic is
proportional to the ratio of the average return to the standard deviation.
As a result, a high t-statistic associated with a factor is indicative of a high
Sharpe ratio.

I report summary statistics for the investment- and profitability-related
factors for microcaps (I = 1) or all size quintiles (I = 5) for each given sub-
set of one to three characteristics for each factor. The investment-related
factor (INV1J) with microcaps only tends have a much higher average (52-
63 bps) than the factor (INV5J) that includes all size quintiles (31-39 bps),
while the difference in the standard deviation is relatively small. As a re-
sult, the Sharpe ratio of the microcap factor (0.267-0.319) is higher than
that of the factor formed on all size (0.175-0.227). It is intriguing to note
that the standard deviation of INVI3 is lower than that of INVI1, and the
Sharpe ratio of INVI3 is higher than that of INVI1 for I = 1, 5.3

The results tell a similar story for the profitability-related factor, PPRIJ .
The average and the Sharpe ratio are higher for factors formed on micro-
caps only than those formed on all size, in most cases. The Sharpe ratio is
higher with three characteristics than with just one. The Sharpe ratios of
the factors in the C-4 model with I = 1 and J ≥ 2 are higher than those
of the corresponding investment (management) orr profitability (perfor-
mance) factors INV51, in other models. The factor, in the C-5 model, is
close to the factor, CMA, in the FF-5 model. Similarly, the factor, PPR51

is close to the factor, RMW . However, since the factors in the C-5 model
here are formed from 5 × 5 sorts while the factors in the FF-5 model are
from 2 × 3 sorts, the factors here exhibit somewhat higher Sharpe ratios
mostly because the factors here are weighted more towards small stocks,
even though they are all formed from stocks of all market capitalizations
and formed on the same characteristics, AG and OP . The factors in the
C_4 model, however, are more difficult to compare with those in other
models (q-4 and M-4) because of differences in sorting variables and port-
folio formation frequencies.

Finally, a comparison of the size factors reveals that the new size factor,
SMB∗, has an average of 40 bps, higher than the average of SMB (24
bps) and the average of ME (31 bps), and similar to the average of SMB′

3For factors INVIJ and PPRIJ (I = 2, 3, 4), which are formed from size quintiles
1-I, the results lie between those for factors formed from microcaps and those for factors
formed from all size quintiles. As a result, I omit the results for I = 2, 3, 4, to save space.
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(43 bps). However, the high standard deviation of SMB∗ (4.02 percent)
implies a t-statistic of 2.44, which implies a significant factor return at the
5 percent level. The t-statistic of SMB∗ is higher than the t-statistic of
SMB (1.91) or ME (2.39) but lower than that of SMB′ (3.59). All pairs
of size factors are highly correlated (0.91 or higher). Even though SMB∗

is constructed like SMB′, it is more correlated with SMB (0.96) and ME
(0.93) than SMB′ (0.91). In the rest of paper, the results are not sensitive
to the choice of the size factor, as in the previous studies.

4. PERFORMANCE COMPARISONS

4.1. Pricing Power of Microcaps vs. Non-microcaps

Given the evidence on the difference between microcap spreads and non-
microcap spreads, it is of interest to compare the pricing powers of microcap
stocks and non-microcap stocks. I first examine how the microcap return
spread, S1(Y ), explain the return spreads, Si(Y ) of other size quintile i =
2, . . . , 5. Motivated by Barillas and Shanken (2017), in panel A of Table 3,
I report the results of estimating following equation:

Si(Y ) = αi + βiMMKT + γiSi(Y ) + εi, i = 2, . . . , 5 (9)

In equation (9), the microcap return spread is the one of the independent
variables while the return spread of one of the other size quintiles is the
dependent variables. Y refers to each of the six characteristics that are
included in constructing the investment- or profitability-related factors:
growth in total assets (AG), accruals (AC), net share issues (NI), oper-
ating profitability (OP ), prior (2-12 month) return, (PR), the variance of
daily returns (V ar). Adding other characteristics like B/M or RVar does
not change the results in any significant way. I control the market excess
return in the right side of equation (9). The size factor is omitted without
changing the estimate of the alpha in the equation in any significant way.
Each of the error term εi has a mean of zero. If microcap stocks subsume
the pricing power of non-microcap stocks, then αi = 0, i = 2, . . . , 5; which
says that average non-microcap spreads should be explained by the average
market excess return and the average microcap spreads:

Si(Y ) = βiMMKT + γiS1(Y ), i = 2, . . . , 5 (10)

I estimate equation (9) for each characteristic individually or all charac-
teristics jointly. The results are qualitatively similar for most character-
istics. To save space, I report the results of estimating of the system of
equations for all six characteristics with cross-equation restrictions on all
coefficients by the method of seemingly unrelated regressions (SUR). I do
the exercise for the full sample period: January 1967 — December 2015.
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To check the robustness of the results to different sample periods, I repeat
the exercise for two equally divided subperiods (294 months).

TABLE 3.
The Pricing Power of Microcap vs. Non-Microcap Return Spreads

Size quintile i

2 3 4 5
Panel A. Si(Y ) = αi + βiMMKT + γiS1(Y ) + εi (9)

Full: 1967:1-2015:12
αi 0.069 (1.48) 0.075 (1.31) −0.012 (−0.19) 0.080 (1.25)
βiM −0.092 (−9.20) −0.117 (−9.39) −0.126 (−8.91) −0.154 (−10.99)

γi 0.735 (63.21) 0.663 (49.28) 0.563 (39.17) 0.448 (29.92)
1967:1-1991:6

αi 0.055 (0.93) 0.121 (1.89) −0.066 (−1.03) 0.024 (0.30)
βiM −0.074 (−6.16) −0.054 (−4.11) −0.047 (−3.57) −0.099 (−6.05)

γi 0.707 (38.12) 0.666 (29.16) 0.533 (22.43) 0.387 (15.16)
1991:7-2015:12

αi 0.053 (0.77) 0.037 (0.42) 0.083 (0.80) 0.154 (1.66)
βiM −0.122 (−7.58) −0.177 (−8.57) −0.238 (−9.90) −0.220 (−10.22)

γi 0.751 (49.77) 0.649 (38.09) 0.569 (31.65) 0.469 (25.26)
Panel B. S1(Y ) = αi + βiMMKT + γiSi(Y ) + εi (10)

Full: 1967:1-2015:12
αi 0.306 (7.25) 0.376 (7.83) 0.503 (9.59) 0.510 (9.50)
βiM 0.007 (0.78) −0.021 (−1.99) −0.028 (−2.43) −0.058 (−4.89)

γi 0.653 (60.19) 0.524 (46.80) 0.423 (36.04) 0.288 (24.45)
1967:1-1991:6

αi 0.317 (6.00) 0.336 (6.39) 0.478 (8.55) 0.500 (8.54)
βiM 0.006 (0.51) −0.027 (−2.46) −0.049 (−4.25) −0.060 (−4.96)

γi 0.572 (34.81) 0.447 (28.17) 0.352 (21.02) 0.202 (13.61)
1991:7-2015:12

αi 0.320 (5.05) 0.409 (5.20) 0.474 (5.51) 0.492 (5.68)
βiM 0.001 (0.07) −0.013 (−0.70) −0.005 (−0.23) −0.049 (−2.38)

γi 0.691 (47.16) 0.565 (35.10) 0.460 (28.12) 0.340 (19.65)
The return spreads, are for size quintile i and the following six characteristics (Y ): growth in
total assets (AG), accruals (AC), net share issues (NI), operating profitability (OP ), prior
(2-12 month) return, (PR), the variance of daily returns (V ar). MKT is the excess return
on the value-weighted market portfolio. The system of equations for all six characteristics
are estimated with cross-equation restrictions on all coefficients by the method of seemingly
unrelated regressions. In the parentheses are t-statistics.

Interestingly, as shown in panel A, the estimates of the loadings γi of
S1(Y ) are all positive and significant at very low levels for all three periods.
They are inversely related to the size, implying that return spreads for
smaller size quintiles behave more like the microcap return spread than
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bigger size quintiles. They are greater than 0.7 for size quintile 2 and less
than 0.5 for size quintile 5. The estimates of the market beta, βiM , are all
negative and significant, though much smaller in magnitude as compared
to the estimates of the loadings γi. Most importantly, the alphas are all
small and statistically insignificant at the 10 percent level for all three
periods. For instance, for the full period, the alphas range from −1.2 bps
to 8 bps. As a result, average return spreads on microcap stocks along with
the average market return explain those of non-microcap stocks. In other
words, microcap stocks subsume the pricing power of non-microcap stocks.

The results in panel B of Table 3 are from estimating the following system
of equations by SUR:

S1(Y ) = αi + βiMMKT + γiSi(Y ) + εi, i = 2, . . . , 5. (11)

Here, the microcap return spread is the dependent variable while the mar-
ket excess return and the return spread for one of the other size quintiles
are the independent variables. Although the loadings on return spreads
are all positive and significant and the market betas are often negative
and significant for bigger size quintiles, the alphas here are all positive
and significant at the 1 percent level. The magnitudes of the alphas are
quite large compared with the average spreads reported in Table 1. For
instance, for the full period, the alphas range from 31 bps to 51 bps. In
the first subperiod, they range from 32-50 bps and the in the second sub-
period, they range from 32-49 bps. Overall, the results here imply that
non-microcap stocks do not subsume the pricing power of microcap stocks.
In other words, average return spreads of microcap stocks are largely unex-
plained by the average market excess return and the average return spreads
of non-microcap stocks.

4.2. Multivariate GRS Tests

I now report the results of multivariate GRS tests of the joint hypothesis
that all alphas in a factor model, R = α+βF +ε, in equation (1) are zeros.
The factor model (C-4) consists of four factors: MKT , SMB∗, INVIJ and
PPRIJ . Here I drop the subscripts in equation (1). GRS (1989) show that,
for a benchmark factor F , the statistic is related to the ratio of one plus
Sh2(R,F ) to one plus Sh2(F ), or equivalently, the percentage difference in
one plus the squared Sharpe ratios.4

In Table 4, I present the GRS statistics for various test assets. As dis-
cussed in an earlier section, one way to compare models is to use the factors

4The GRS statistic, F = (T−N−K)[N(T−K−1)]−1α′Σ−1α/ω11 has an F distribu-
tion with degrees of freedom N and T −N−K. ω11 is the (1,1)-element of (X′X)−1. X
is a T × (K+1) matrix, whose first column contains ones and the remaining K columns
contain factors. Here T is the number of monthly observations, N is the number of test
assets and K is the number of factors.
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TABLE 4.
Model Comparison based on GRS Tests

GRS for C-4 model Average absolute alphas, 1%
with (I, J) = A| · |, % Critical

Panel A. Test assets are INVI′J′ and PPRI;J′ for I ′ = 1, 5 and J ′ = 1, 2, 3, I ′ ̸= I and J ′ ̸= J

N (1,1) (1,2) (1,3) (1,1) (1,2) (1,3)
Other C-4 10 11.13 7.13 4.14 0.36 0.18 0.13 2.35

(5,1) (5,2) (5,3) (5,1) (5,2) (5,3)
Other C-4 10 16.22 11.59 10.76 0.43 0.25 0.21 2.35

Panel B. Tests assets are excess returns
(1,1) (1,2) (1,3) (1,1) (1,2) (1,3)

Size 1 40 6.75 5.57 4.68 0.22 0.23 0.12 1.63
Size 1-2 80 4.28 3.66 3.20 0.19 0.20 0.10 1.45
All size 200 2.59 2.33 2.13 0.14 0.16 0.10 1.33

(5,1) (5,2) (5,3) (5,1) (5,2) (5,3)
Size 1 40 8.34 6.91 6.73 0.22 0.20 0.14 1.63
Size 1-2 80 5.08 4.35 4.25 0.17 0.16 0.10 1.45
All size 200 2.92 2.62 2.56 0.14 0.12 0.11 1.33

Panel C. Test assets are CMA, RMW , I/A, ROE, MGMT and PERF

(1,1) (1,2) (1,3) (1,1) (1,2) (1,3)
FF/q/M 6 17.61 10.47 5.80 0.40 0.27 0.15 2.83

(5,1) (5,2) (5,3) (5,1) (5,2) (5,3)
FF/q/M 6 17.58 12.80 9.52 0.33 0.22 0.16 2.83
The table reports the GRS F-test of the joint hypothesis that all intercepts (alphas) are zero in equation:
R = α+ βF + ε. The factor model (C-4) consists of four factors: MKT , SMB∗, INVIJ and PPRIJ .
MKT is the excess return on the value-weighted market portfolio. SMB∗ is difference in returns
between smallest and biggest size quintiles, averaged over middle three quintiles of six characteristics.
INVIJ is the average of return spreads from size quintile 1 to I (I = 1, 5), including up to J (J ≤ 3)
characteristics: asset growth (AG), accruals (AC) and net share issues (NI). PPRIJ is the average of
return spreads from size quintile 1 to I and including up to J characteristics: operating profitability
(OP ), prior return (PR) and variance of daily return (V ar). CMA and RMW are, respectively, the
investment and profitability factors in the five-factor model of Fama and French (FF-5, 2015). I/A and
ROE are alternative investment and profitability factors in the q-factor model of HXZ (q-4, 2015).
MGMT and PERF are mispricing factors in the model of Stambaugh and Yuan (M-4, 2017). The
statistic with the lowest value (best) among all six models is highlighted in bold. N is the number
of test assets. The critical value is for the GRS F-statistic. The sample period is January 1967 —
December 2015 (588 months).

in other models under consideration as the set of test assets. For the fac-
tors, INVIJ and PPRIJ (I = 1, 5, J = 1, 2, 3), in equations (5)-(6), there
are six models and 12 different factors, plus two common factors, MKT
and SMB∗. Excluding the four factors in each model, there are 10 al-
ternative factors in other models. When testing against the 10 factors, a
low GRS statistic of a model is indicative of a small percentage difference
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between one plus the squared Sharpe ratio of the factors in the model and
one plus the squared Sharpe ratio of the factors in all of the six models.
In other words, when test assets are factors in other models, comparing
models based on the GRS statistics is equivalent to comparing them based
on the Sharpe ratios.

Panel A presents the GRS statistics for this set of test assets and the
average absolute alphas,A| · |. The statistic with the lowest value among
all six models is highlighted in bold. N is the number of test assets. The
critical values at the 1 percent level for the GRS statistics are presented in
the right column. Given the critical values, all models are rejected based on
the test statistics in the table at the 1 percent level. As Fama and French
(2015) argue, all models are rejected if the test has enough power, so the
focus is on the relative performance of the models. It is striking that for
each set of test assets, the model with (I, J) = (1, 3) produces the lowest
GRS statistic and the average absolute alpha, as shown in bold.

When INVIJ and PPRIJ are constructed from microcaps only (I = 1),
the GRS statistics are 11.13 (J = 1), 7.13 (J = 2) and 4.14 (J = 3).
However, when the two factors are constructed from stocks of all size (I =
5), the GRS statistics are 16.22 (J = 1), 11.59 (J = 2) and 10.76 (J = 3).
With a common critical value of 2.35, the results suggest that constructing
factors with microcaps only or adding more characteristics lowers the GRS
statistics and improve the performance of the models considerably. The
average absolute alphas, A| · |, confirm the findings. They are 0.36 (J = 1),
0.18 (J = 2), 0.13 (J = 3) (in percent) with I = 1; but 0.43 (J = 1), 0.25
(J = 2) and 0.21 (J = 3) with J = 5. It is interesting to note that the model
performance improves more noticeably when additional characteristics are
added in the microcaps-based models than the all size-based models. The
best performing model with the lowest GRS statistic or the lowest A| · | is
the microcaps-based model including all characteristics, (I, J) = (1, 3).

Alternatively, I use test assets including all portfolios used to construct
the factors in the models under consideration. Here a low GRS statistic of
a model is indicative of a small percentage difference between one plus the
squared Sharpe ratio of the factors in the model and one plus the squared
Sharpe ratio of the common test assets. In panel B, I report the results of
using 200 portfolios as the test assets, which include all portfolios formed
from bivariate 5 × 5 sorts on size and each of the eight characteristics
which contain the six characteristics used for factor construction described
earlier. To see the sources of improvements, I also report the results of
using 40 microcap portfolios in the bottom size quintile or 80 portfolios in
the bottom two size quintiles as the sets of test assets. Since both sets of
the test assets include all portfolios used to form the microcap factors, they
are useful for comparing microcaps-based models (I = 1, J = 1, 2, 3)
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With N = 40, 80 or 200, the results are fully consistent with those
obtained in panel A. Constructing factors with microcaps only or adding
more characteristics lowers the GRS statistics and improves the perfor-
mance of the models. The GRS statistics show that the improvements are
more apparent when N = 40 than when N = 80 or 200. For instance,
when N = 40, the GRS statistic declines from 6.73 for (I, J) = (5, 3) to
4.68 for (I, J) = (1, 3), while, when N = 200, the GRS statistic declines
only from 2.56 to 2.13. This implies that the microcaps-based model help
to improve the performance of the models for microcaps more than stocks
of all market capitalizations. The average absolute alphas are not strictly
monotonic with respect to I or J but they show dramatic declines when J
increases from 2 to 3. For example, when N = 40, declines from 23 bps for
(I, J) = (1, 2) to 12 bps for (I, J) = (1, 3); when N = 200, A| · | declines
from 16 bps to 10 bps. The results underscore the importance of the two
characteristics: new share issues and the variance of daily returns.5

To examine the sensitivity of the results to test assets, I use the invest-
ment and profitability factors in the FF-5 and q-4 models and the man-
agement and performance factors in the M-4 model. Since the factors in
the M-4 model are formed from 11 anomaly variables, this set of the six
test assets reveal the performance of the models for a large cross section
of assets. The results are presented in panel C. For the microcaps-based
models (I = 1), the GRS statistics are 17.61 for model (I, J) = (1, 1), 10.47
for model (I, J) = (1, 2) and 5.80 for model (I, J) = (1, 3). For the all size-
based models (I = 5), the GRS statistics are 17.58 for model (I, J) = (5, 1),
12.80 for model (I, J) = (5, 2) and 9.52 for model (I, J) = (5, 3). The
results further confirm the earlier finding that constructing factors with
microcaps only or adding more characteristics lowers the GRS statistics
and improve the performance of the models. The lowest GRS statistic
(5.80) and the lowest average absolute alpha (15 bps) both occur when
(I, J) = (1, 3), although the averages are not always consistent with the
GRS statistics, which take into account the residual covariance matrix.

5. CONCLUSIONS

I find that, return spreads on microcap stocks subsume the pricing power
of those of other non-microcap stocks. The performance of the model
significantly improves when the factors are formed with microcap stocks
than with broader-based stock portfolios. The results are consistent with
what MacKinlay and Pastor (2000) find that the additional factor that

5I also used test assets including 40 portfolios of each size quintile. The model with
(I, J) = (1, 3) has the lowest GRS statistic of 4.68 for size quintile 1, 2.02 for size quintile
2, ,2.42 for size quintile 3 and 1.55 for size quintile 4. The model with (I, J) = (1, 1) has
the lowest GRS statistic of 1.75 for size quintile 5.
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completes the pricing job of a factor model is a portfolio weighted towards
mispriced securities. One practical implication of the results here is that
the microcaps-based model should be useful in applications such as mutual
fund performance evaluation, especially for small-cap and mid-cap mutual
funds, since the improvement of the model performance is much greater
for small stocks than for big stocks. Another implication is that the factor
model that combine multiple characteristics in its factors should be used in
the performance evaluation or other studies that include samples of stocks
with various characteristics.

APPENDIX
The Definition of Characteristics

For portfolios formed in June of year t:
AG (investment) is the change in total assets from the fiscal year ending

in year t− 2 to the fiscal year ending in t− 1, divided by t− 2 total assets;
AC is the change in operating working capital per split-adjusted share

from the fiscal year-end in t− 2 to t− 1 divided by book equity per share
in t− 1;
NI is the change in the natural log of split-adjusted shares outstanding

from the fiscal year-end in t− 2 to the fiscal year-end in t− 1;
OP is annual revenues minus cost of goods sold, interest expense, and

selling, general, and administrative expenses divided by book equity for the
last fiscal year end in t− 1; and B/M is the book equity for the last fiscal
year end in t− 1 divided by market equity for December of t− 1.

For portfolios for month t formed at the end of month t− 1:
PR is prior (2-12) return;
V ar is estimated using 60 days (minimum 20) of lagged returns;
RV ar is estimated using 60 days (minimum 20) of lagged residuals in

the Fama-French (1993) three-factor model.
See the web site of Kenneth French for details.
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