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Robust Non-Zero-Sum Asset Allocation Games Under Relative

Wealth Concerns

Huainian Zhu, Sihan Huang, and Ning Bin*

This paper considers the non-zero sum stochastic differential asset alloca-
tion game problem between two competitive institutional investors, who are
concerned with the potential model ambiguity and aim to seek the robust
optimal asset allocation strategy. The two investors’ decisions influence each
other through the investors’ relative wealth concerns. By applying the dynamic
programming principle, explicit solutions for the robust equilibrium asset allo-
cation strategies are obtained under the representative case of constant relative
risk aversion (CRRA) utility. Finally, we provide some numerical studies and
draw some economic interpretations.
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1. INTRODUCTION

Portfolio selection problem, pioneered by Markowitz (1952) and Mer-
ton (1971), is about the optimal wealth allocation among different assets
with risk management and stochastic modeling. The model parameters
in the dynamics of the asset returns are usually assumed to be fixed and
known. Implicitly, the model uncertainty or parameter ambiguity was ig-
nored. Unfortunately, the model uncertainty is unavoidably present due
to the estimation error or lack of knowledge of the underlying probabil-
ity. Some early empirical studies (see Merton, (1980); Cochrane, (1997))
have suggested that the drift parameters of stochastic models, particularly
the expected risk premium, are difficult to estimate with precision from
historical data. This introduces a significant amount of model ambiguity
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that economic agents have to contend with. Furthermore, Ellsberg (1961)
experimentally shows that individuals are not only averse to risk but also
to ambiguity. Therefore, it is reasonable to assume that the decision maker
is concerned about the model misspecification. Anderson et al. (2003)
quantifies model misspecification (uncertainty) with a statistical theory of
detection, which links between robustness and model detection. Maenhout
(2004) studies the portfolio and consumption problems with ambiguity and
proposes an innovative characterization of the ambiguity aversion, which
preserves wealth independence and analytical tractability of the decisions.
Luo (2017) provides a tractable continuous-time, constant absolute risk
aversion-Gaussian framework to explore how the interactions of fundamen-
tal uncertainty, model uncertainty and state uncertainty affect strategic
consumption-portfolio rules and precautionary savings in the presence of
uninsurable labor income. Zeng et al. (2018) discusses a derivative-based
optimal investment strategy for an ambiguity-adverse pension investor who
faces not only risks from time-varying income and market return volatility
but also uncertain economic conditions over a long time horizon. Sun et
al. (2019) studies the robust investment and reinsurance problem with a
defaultable bond. Yan et al. (2020) solves for the robust time–consistent
mean-variance portfolio selection problem on multiple risky assets under a
principle component stochastic volatility model. Yang et al. (2020) stud-
ies a robust portfolio optimization problem under a multi-factor volatility
model. Luo et al. (2023) constructs a recursive utility version of a canon-
ical Merton model with uninsurable labor income and unknown income
growth to study how the interaction between two types of uncertainty due
to ignorance affects strategic consumption-portfolio rules and precaution-
ary savings. These works consider the equivalent priors which are based on
the Girsanov’s theorem. Different from them, Rieder and Wopperer (2012)
assumes the market price of risk process is unknown and studies the robust
consumption-investment strategy under the worst case. While the above
literature only considers single-agent optimization problems.

Recently, the studies on dynamic asset allocation with relative wealth
concerns have been very popular, (see Basak and Makarov, 2014; Espinosa
and Touzi, 2015). There are two natural arguments for studying dynamic
asset allocation under relative wealth concerns. On the one hand, inter-
preting agents as fund managers, relative wealth concerns can describe the
competition among fund managers (see Lacker and Zariphopoulou, 2019;
Kraft et al., 2020). On the other hand, if we interpret the agents in our
model as household investors, then relative wealth concerns fit naturally
with models of keeping up with the Joneses (see Abel, 1990); this line of
literature directly incorporates the social aspects of investment and con-
sumption decisions.
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The individual research on model uncertainty or dynamic asset alloca-
tion with relative wealth concerns has already attracted people’s atten-
tion. However, their incorporation is not studied thoroughly yet. Recently,
Wang et al. (2019, 2021) investigate non-zero-sum stochastic differential
investment and reinsurance games between two ambiguity-averse insurers
under the expected utility maximization and the mean–variance criterion,
respectively. Li et al. (2024) consider the non-zero-sum stochastic differ-
ential investment and reinsurance game problem between two ambiguity-
averse insurers with common shock. These works open up a new path
of stochastic differential game theory. However, the worked-out examples
with the existing frameworks assume deterministic volatility, which exclude
the stochastic volatility models.

In multi-player games, the intertwining of relative wealth concerns and
uncertainty makes it difficult for traditional models to effectively deal with
complex investment environments in reality, so this paper fills a research
gap by investigating the robust non-zero sum stochastic differential asset
allocation game under a stochastic volatility model driven by an affine-
form square-root factor process. Our model includes relative wealth con-
cerns, model uncertainty, and stochastic volatility as critical features. The
investors have access to an incomplete financial market consisting of one
risk-free asset and one risky asset described by a stochastic volatility model
driven by an affine-form square-root factor process, which is a more gen-
eralized model and encompasses the geometric Brownian motion (GBM),
constant elasticity of variance (CEV) model, Heston model as special cases.
Applying the techniques of stochastic dynamic programming, we derive the
HJBI equations for the asset allocation games. Explicit expressions for the
robust equilibrium asset allocation strategies that maximize the expected
power utility of the terminal wealth relative to that of his competitor and
corresponding optimal value functions are obtained. We also provide some
special cases of our model and explore the economic implications from nu-
merical examples.

Compared with existing literature, the main contributions of this paper
is twofold. First, the impact of model uncertainty on optimal asset alloca-
tion strategy is investigated, which is not considered by Kraft et al. (2020),
where the authors studied the strategic interaction between two CRRA in-
vestors who can invest into stock market. However, it is important for
a decision-maker to consider parameter ambiguity and stochastic uncer-
tainty because return levels of investment securities are difficult to obtain.
Our numerical studies show that an ambiguity-averse investor would prefer
more conservative investment strategy than an ambiguity-neutral investor.
Second, we extend the robust asset allocation model in Zeng et al. (2018),
where only a single investor was considered, to a continuous-time game
framework by taking multiple investors’ relative wealth concerns into ac-
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count. The key reason for formulating non-zero-sum stochastic differential
game is that there are always several competing investors in the market in
reality, and they often assess their performance against a relative bench-
mark of their competitors. Therefore, we derive the Nash equilibrium asset
allocation strategy of a non-zero-sum game in this paper. Numerical stud-
ies demonstrate that the relative wealth concern makes each investor riskier
than that without competition, which are reflected in the increased expo-
sure on risky asset. We also find that the investor’s optimal strategy is
affected by her competitor’s ambiguity aversion level. More precisely, the
competitor’s ambiguity-averse attitude makes the investor more conserva-
tive by diminishing the proportion invested in the stock market.

The rest of the paper is organized as follows. Section 2 formulates the
robust non-zero-sum stochastic differential game between two CRRA in-
vestors. In Section 3, we derive the HJBI equations for the robust op-
timization problem. Explicit expressions for Nash equilibrium strategies
and corresponding optimal value functions are obtained, and the verifica-
tion theorem is provided as well. Section 4 dicusses some special cases of
our model. Detailed numerical simulations are conducted in Section 5 to
demonstrate the results. Finally, Section 6 concludes the paper with some
suggestions for future research.

2. ASSUMPTION AND PROBLEM FORMULATION

2.1. Preferences and asset price dynamics

We consider a continuous-time setup on the time span [0, T ] where two
institutional investors optimize their dynamic asset allocation strategies.
Uncertainty is represented by a filtered probability space (Ω,F ,F,P), where
F := {Ft : t ∈ [0, T ]} is generated by a two-dimensional standard Brownian
motion (W1(t),W2(t)), T > 0 is a finite constant representing the invest-
ment time horizon; Ft denotes the information available until time t; and
P is a reference measure.

Each of the two investors aims to maximize expected utility of a weighted
average of absolute and relative terminal wealth. Relative terminal wealth
is measured with respect to the other investor’s wealth. Therefore, this
benchmark is endogenous. Possible interpretations of such a setting might
be that the investors are competing fund managers that are concerned
about the total value of assets under management, both in absolute terms,
but also relative to the other fund’s assets.

Each investor derives utility from an average over her own wealth and
her relative wealth level at time T , aggregated via a constant elasticity
Cobb-Douglas function. This average is embedded into a CRRA utility
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function:

Ui(xi, xj) =
1

1− γi

(
xθii (xi/xj)

1−θi
)1−γi

=
1

1− γi

(
xix

θi−1
j

)1−γi
, (1)

where γi > 0, γi 6= 1 denotes the i−th investor’s relative risk aversion, and
θi ∈ [0, 1] measures the weight on terminal wealth. Therefore, 1 − θi is
the weight on the relative wealth concerns. Specifying the investor’ utility
functions as in Eq.(1) ensures that each investor’s terminal wealth is strictly
positive, so both versions of relative performance xi/xj , for i 6= j ∈ {1, 2}
are well-defined. Throughout this paper we assume that

γi + γj > 1. (2)

This assumption allows for levels of risk aversion below unity as docu-
mented by Koijen (2014), but puts a lower bound on the agents’ overall
risk aversion to ensure that the portfolio decisions are well-defined. Note
that for θi = θj = 1 the agents have ordinary CRRA preferences without
relative wealth concerns; on the other hand, if θi = θj = 0 both investors’
utilities are solely determined by their relative performance.

To focus on the effect of relative wealth concerns, there are no infor-
mational or skill-related differences between the two investors, and both
have access to the same investment opportunities defined by two primitive
assets. One is a risk-free asset whose price process evolves over time as

dB(t) = r(t)B(t)dt, B(0) = 1, (3)

where r(t) > 0 is the risk-free interest rate at time t, satisfying that r(·) :
[0, T ]→ R+ is a deterministic and uniformly bounded function. The other
one is a risky asset, whose price process is described by

dS(t) = S(t) [µ(t)dt+ σ(t)dW1(t)] , S(0) = s0 > 0, (4)

where {W1(t)}t∈[0,T ] is a standard Brownian motion, µ(t) and σ(t) > 0 are
the appreciation rate and the volatility of the risky asset at time t, respec-
tively. Similar to Shen and Zeng (2015), we assume that {µ(t)}t∈[0,T ] and

{σ(t)}t∈[0,T ] are F−predictable processes, which are continuous bounded

deterministic functions or stochastic processes, and {µ(t)}t∈[0,T ], {σ(t)}t∈[0,T ]

rely on the market price of risk {ϑ(t)}t∈[0,T ] directly, i.e.,

ϑ(t) :=
µ(t)− r(t)

σ(t)
, ∀t ∈ [0, T ], (5)

{ϑ(t)}t∈[0,T ] is related to a stochastic factor process {α(t)}t∈[0,T ] as

ϑ(t) = λ
√
α(t), ∀t ∈ [0, T ], λ ∈ R0 := R \ {0} . (6)
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and {α(t)}t∈[0,T ] satisfies the following Markovian, affine-form and square-
root model:

dα(t) = κ [δ − α(t)] dt+
√
α(t) [k1dW1(t) + k2dW2(t)] , α(0) = α0 ≥ 0,

(7)
where κ, δ, k1, k2 are all positive constants and {W2(t)}t∈[0,T ] is an-

other standard Brownian motion on (Ω,F , {Ft}t∈[0,T ] ,P), independent of

{W1(t)}t∈[0,T ]. Besides, we assume that the solution to square-root model

(Eq.(7)) is almost surely non negative for any t ∈ [0, T ]. Particularly, we do
specify the structures of {µ(t)}t∈[0,T ] and {σ(t)}t∈[0,T ]in several examples
to facilitate the understanding of our modeling framework.

Example 2.1. [CEV model] If r(t) = r, µ(t) = µ, and σ(t) = σS`(t),
where r > 0, µ > 0, σ > 0, and ` ∈ R such that µ 6= r, then the risky asset
price is given by the CEV model:

dS(t) = S(t)
[
µdt+ σS`(t)dW1(t)

]
, S(0) = s0 > 0. (8)

Here ` is called the elasticity parameter of the risky asset. Applying Itô’s
formula to S−2`(t), then

dS−2`(t) = 2`µ

[(
`+

1

2

)
σ2

µ
− S−2`(t)

]
dt− 2`σS−`(t)dW1(t). (9)

If we set α(t) = S−2`(t), κ = 2`µ, δ =
(
`+ 1

2

)
σ2

µ , k1 = −2`σ, k2 = 0, and

λ = µ−r
σ , then it is not difficult to see that the CEV model is a special

case of the model given by Eqs.(4)-(7). In this case, the market price of
risk is ϑ(t) = µ−r

σ

√
α(t) = µ−r

σS`(t)
. Note that the risky asset price is always

non negative in the CEV model and the reachability of the boundary {0}
depends on the value of `. Hence, we do not need to impose any additional
conditions on ` ∈ R such that the stochastic factor α(t) = S−2`(t) is well
defined and non negative. Particularly, when ` = 0, the price model reduces
to the GBM motion model or the Black–Scholes model.

Example 2.2. [Heston model] If r(t) = r, µ(t) = r + λα(t), σ(t) =√
α(t), k1 = σρ, and k2 = σ

√
1− ρ2, where r > 0, λ ∈ R0, σ > 0, and

ρ ∈ (−1, 1), then the risky asset’s price is governed by the Heston model: dS(t) = S(t)
[
(r + λα(t)) dt+

√
α(t)dW1(t)

]
, S(0) = s0 > 0,

dα(t) = κ [δ − α(t)] dt+ σ
√
α(t)

[
ρdW1(t) +

√
1− ρ2dW2(t)

]
, α(0) = α0 > 0,

(10)
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which is also a special case of the model given by Eqs.(4)-(7). Here, the
stochastic factor process {α(t)}t∈[0,T ] is the variance process, κ > 0 is the
mean-reversion rate, δ > 0 is the long-run level, σ0 is the volatility of
volatility, and ρ is the correlation coefficient between the risky asset’s price
and the variance. In this case, the market price of risk is ϑ(t) = λ

√
α(t).

It is required that the Feller condition is satisfied, i.e., 2κδ ≥ σ2
0 , such that

the variance α(t) > 0 for any t ∈ [0, T ].

2.2. Ambiguity

The above-mentioned framework is a traditional asset allocation model,
where each investor is assumed to be ambiguity neutral. However, in reality,
the investor is usually ambiguity averse and wants to guard herself against
worst-case scenarios. To incorporate ambiguity aversion into the investor’s
asset allocation problem, we assume that the reference model capturing
the knowledge of the investor’s ambiguity is described by the probability
measure P, but she is skeptical of this reference model and is willing to
consider some alternative models, which are defined by a class of probability
measures equivalent to P as follows:

Q := {Q|Q ∼ P} .

For each i ∈ {1, 2}, define φi := {φi(t) := (φi1(t), φi2(t))}t∈[0,T ], which

satisfies two conditions: (i) φi1(t) and φi2(t) are Ft−measurable for each

t ∈ [0, T ]; and (ii) E
{

exp
{

1
2

∫ T
0

[
φ2
i1(t) + φ2

i2(t)
]

dt
}}

<∞. We denote Φi

for the space of all such processes φi. Furthermore, we define a real-valued
process

{
Λφi(t)

}
t∈[0,T ]

as

Λφi (t) = exp

{
−
∫ t

0
φi1(s)dW1(s) −

1

2

∫ T

0
φ2i1(s)ds−

∫ t

0
φi2(s)dW2(s) −

1

2

∫ T

0
φ2i2(s)ds

}
.

(11)

Accordingly, Λφi(t) is a P−martingale. For each φi, a new alternative
measure Qi that is absolutely continuous with P on FT is defined by

dQi
dP

∣∣∣∣
FT

= Λφi(T ).

By Girsanov’s theorem, under the alternative measure Qi, we have

dWQi
1 (t) = dW1(t) + φi1(t)dt,

dWQi
2 (t) = dW2(t) + φi2(t)dt,

where WQi
1 (t) and WQi

2 (t) are one-dimensional standard Brownian mo-
tions. Furthermore, the dynamic price process S(t) of the risky asset and
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the stochastic factor process α(t) under Qi can be written as

dS(t) = S(t)
[
(µ(t)− φi1(t)σ(t)) dt+ σ(t)dWQi

1 (t)
]
, (12)

dα(t) =
[
κ (δ − α(t))−

√
α(t) (k1φi1(t) + k2φi2(t))

]
dt

+
√
α(t)

[
k1dWQi

1 (t) + k2dWQi
2 (t)

]
. (13)

2.3. Robust asset allocation game and optimality

Each investor aims to maximize the expected utility of her wealth at
terminal time T relative to that of her competitor under the worst-case
scenario of the alternative measure. Thus the robust optimization problem
for investor i ∈ {1, 2} is given by

sup
πi∈Πi

inf
Qi∈Q

EQi

[
Ui (Xi(T ), Xj(T )) +

∫ T

0

(
φ2
i1(s)

2Ψi1(s)
+

φ2
i2(s)

2Ψi2(s)

)
ds

]
,

(14)
subject to the dynamic budget constraint given by the stochastic differential
equation (SDE):

dXi(t)

Xi(t)
=

[
r(t) + πi(t)

(
µ(t)− r(t)− φi1(t)

µ(t)− r(t)
λ
√
α(t)

)]
dt

+πi(t)
µ(t)− r(t)
λ
√
α(t)

dWQi
1 (t). (15)

In Eqs.(14) and (15), Xi = {Xπi
i (t)}t∈[0,T ] is investor i’s assets wealth,

and the set Πi denotes investor i’s admissible dynamic portfolio strate-
gies πi = {πi(t)}t∈[0,T ]. For each t ∈ [0, T ], the process πi(t) represents
the proportions of wealth invested in the risky asset at time t. The per-
turbations φi1(t) and φi2(t) in the penalty term are scaled by Ψi1(t) and
Ψi2(t), respectively. Ψi1(t) and Ψi2(t) represent the preference parameters
for ambiguity aversion and measure the degree of confidence in the ref-
erence model P at time t; and deviations from the reference measure are
penalized by the last integral term in the expectation, which depends on
the relative entropy arising from the diffusion risks. According to Maen-
hout (2004), the larger Ψi1(t) and Ψi2(t) are, the less the deviations from
the reference model are penalized. Furthermore, the investor has less faith
in the reference model, such that she is more likely to consider alternative
models. Hence, the investor’s ambiguity aversion is increasing with respect
to Ψi1(t) and Ψi2(t).
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Definition 2.1. [Admissible strategies] A strategy πi = {πi(t)}t∈[0,T ]

is said to be admissible for investor i, for i = 1, 2, if

(i) πi(t) is a Ft−progressively measurable process and EQ∗
i

[∫ T
0
||πi(t)||2dt

]
<

∞, where Q∗i is the chosen probability measure to describe the worst-case
scenario and will be determined later;

(ii) For any (t, x, α) ∈ [0, T ]×R×R+, Eq.(15) has a pathwise unique solu-

tion {Xi(t)}t∈[0,T ] with EQ∗
i

t,xi,xj ,α [Ui (Xi(T ), Xj(T ))] <∞, where EQ∗
i

t,xi,xj ,α [·] =

EQ∗
i [·|Xi(t) = xi, Xj(t) = xj , α(t) = α].

Note that, due to the relative wealth terms in their utility functions, the
investor’ asset allocation problems are linked and must be solved simultane-
ously. The state variables relevant for investor i are time, her own wealth,
her peer’s wealth, and the square root factor. Since the portfolio decision
depends on her peer’s choice πj , this decision implicitly also determines in-
vestor i’s risky portfolio share, πi. In fact, problem (14) is a typical example
of the non-cooperative, non-zero-sum stochastic differential game between
two competing ambiguity-averse investors. Consequently, the solution to
problem (14) is the Nash equilibrium of the non-zero-sum game between
two competing ambiguity-averse investors, where the Nash equilibrium is
the strategy profile (π∗i , π

∗
j ) ∈ Πi×Πj such that, for all (π1, π2) ∈ Πi×Πj ,



inf
Q1∈Q

EQ1

[
U1

(
X
π∗
1

1 (T ), Xπ2
2 (T )

)
+
∫ T

0

(
φ2
11(s)

2Ψ11(s) +
φ2
12(s)

2Ψ12(s)

)
ds
]

≤ inf
Q1∈Q

EQ1

[
U1

(
X
π∗
1

1 (T ), X
π∗
2

2 (T )
)

+
∫ T

0

(
φ2
11(s)

2Ψ11(s) +
φ2
12(s)

2Ψ12(s)

)
ds
]
,

inf
Q2∈Q

EQ2

[
U2

(
X
π∗
2

2 (T ), Xπ1
1 (T )

)
+
∫ T

0

(
φ2
21(s)

2Ψ21(s) +
φ2
22(s)

2Ψ22(s)

)
ds
]

≤ inf
Q2∈Q

EQ2

[
U2

(
X
π∗
2

2 (T ), X
π∗
1

1 (T )
)

+
∫ T

0

(
φ2
21(s)

2Ψ21(s) +
φ2
22(s)

2Ψ22(s)

)
ds
]
.

(16)

3. SOLUTION TO THE GAME

In this section, we will first derive the robust Nash equilibrium asset
allocation strategy. Then we shall present the verification theorem.

3.1. Nash equilibrium

We use a stochastic control approach and denote the candidates for in-
vestor i’s value function by V i(t, xi, xj , α), for i 6= j ∈ {1, 2}. The goal is
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to show that

V i(t, xi, xj , α) = sup
πi∈Πi

inf
φi∈Φi

EQi
[
Ui (Xi(T ), Xj(T )) +

∫ T
t

(
φ2
i1(s)

2Ψi1(s) +
φ2
i2(s)

2Ψi2(s)

)
ds

|Xi(t) = xi, Xj(t) = xj , α(t) = α] .
(17)

According to the dynamic programming principle, the robust Hamilton-
Jacobi-Bellman-Isaacs (HJBI) equation for investor i’s problem can be de-
rived as follows (for the sake of brevity, we omit the variable (t, xi, xj , α)
in some functions):

sup
πi∈Πi

inf
φi∈Φi

{
Lπi,π∗

j ,φi,φ
∗
jW i +

φ2
i1

2Ψi1
+

φ2
i2

2Ψi2

}
= 0, (18)

where the operator L is defined as

Lπi,πj ,φi,φjW i ,W i
t + [κ(δ − α)−√α (k1φi1 + k2φi2)]V iα + 1

2α
(
k2

1 + k2
2

)
V iαα

+
[
r + πi

(
µ− r − φi1 µ−rλ

√
α

)]
xiV

i
xi + 1

2π
2
i (t) (µ−r)2

λ2α x2
iV

i
xixi

+
[
r + πj(t)

(
µ− r − φj1 µ−rλ

√
α

)]
xjV

i
xj + 1

2π
2
j (t) (µ−r)2

λ2α x2
jV

i
xjxj

+πiπj
(µ−r)2
λ2α xixjV

i
xixj + πi

k1
λ (µ− r)xiV ixiα + πj

k1
λ (µ− r)xjV ixjα.

For analytical tractability, refer to the method of Maenhout (2004), we
assume that the preference functions Ψi1(t) and Ψi2(t) are state dependent
and have the form

Ψi1(t) =
βi1

(1− γi)V i(t, xi, xj , α)
, Ψi2(t) =

βi2
(1− γi)V i(t, xi, xj , α)

, (19)

where βi1 and βi2 are nonnegative parameters representing the ambiguity-
averse level of investor i to the diffusion risk from risky asset and the
stochastic factor process, respectively. When βi1 = βi2 = 0, investor i is
ambiguity-neutral for the diffusion risk.

The following theorem provides the candidates for the solution of the
investors’ robust asset allocation game:

Theorem 1 (Solution to HJBI (18)). Suppose that B1(t) and B2(t)
solve the following coupled system of ordinary differential equations (ODEs):

Ḃ1(t) = ξ11 + ξ12B1(t) + ξ13B
2
1(t) + ξ14B2(t) + ξ15B

2
2(t) + ξ16B1(t)B2(t),

(20)

Ḃ2(t) = ξ21 + ξ22B2(t) + ξ23B
2
2(t) + ξ24B1(t) + ξ25B

2
1(t) + ξ26B2(t)B1(t),

(21)
subject to the boundary conditions B1(T ) = B2(T ) = 0, where the constants
ξi1, ξi2, · · · , ξi6, i = 1, 2, are given by (A.13)-(A.18). Then the solution to
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the HJBI equation (18) is V i(t, xi, xj , α), for i = 1, 2, which admits the
following explicit form:

V i(t, xi, xj , α) =
1

1− γi

(
xix

θi−1
j

)1−γi
exp [Ai(t)−Bi(t)α] , (22)

where Ai(t) is given by (A.19). The associated maximizer for the HJBI
equation is given by

π∗
i (t) =

λα(t)

(1 − νiνj) (γi + βi1) (µ(t) − r(t))

[
λ (1 + νi) − k1

(
1 − γi − βi1

1 − γi
Bi(t) +

1 − γj − βj1

1 − γj
νiBj(t)

)]
,

(23)

where νi = (1 − γi)(θi − 1)/(γj + βj1), i 6= j ∈ {1, 2}, satisfy 1 + νi > 0
and 1− νiνj > 0.

Proof. See Appendix 1.

Remark 3.1. (The case of ambiguity-neutral). For i = 1, 2, if all of the
ambiguity-aversion coefficients βi1 and βi2 equal to 0, i.e., βi1 = βi2 = 0,
our model reduces to a classical non-zero-sum stochastic differetnial game
between two competing CRRA investors. Investor i solves the optimization
problem

sup
π̂i∈Πi

EP
[

1

1− γi

(
X̂i(T )X̂θi−1

j (T )
)1−γi

]
, (24)

where
{
X̂i(t)

}
t∈[0,T ]

and
{
X̂j(t)

}
t∈[0,T ]

have dynamics

 dX̂i(t) = X̂i(t) [r(t) + π̂i(t) (µ(t)− r(t))] dt+ π̂i(t)X̂i(t)
µ(t)−r(t)
λ
√
α(t)

dW1(t),

dX̂j(t) = X̂j(t) [r(t) + π̂j(t) (µ(t)− r(t))] dt+ π̂j(t)X̂j(t)
µ(t)−r(t)
λ
√
α(t)

dW1(t).

(25)
Using the method similar to solve HJBI equation (18), we can derive the
Nash equilibrium strategy profile (π̂∗1 , π̂

∗
2) as π̂∗1(t) = λα(t)

γ1(1−ν1ν2)(µ(t)−r(t))

[
λ (1 + ν1)− k1

(
B̂1(t) + B̂2(t)ν̂1

)]
,

π̂∗2(t) = λα(t)
γ2(1−ν1ν2)(µ(t)−r(t))

[
λ (1 + ν1)− k1

(
B̂2(t) + B̂1(t)ν̂2

)]
,

(26)

with ν̂1 = (1−γ1)(θ1−1)/γ2, ν̂2 = (1−γ2)(θ2−1)/γ1 satisfying 1+ ν̂1 > 0,

1 + ν̂2 > 0, 1 − ν̂1ν̂2 > 0. And B̂1(t) and B̂2(t) are the solutions of the
following coupled system of ODEs:

˙̂
B1(t) = ξ̂11 + ξ̂12B̂1(t) + ξ̂13B̂

2
1(t) + ξ̂14B̂2(t) + ξ̂15B̂

2
2(t) + ξ̂16B̂1(t)B̂2(t),

(27)
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˙̂
B2(t) = ξ̂21 + ξ̂22B̂2(t) + ξ̂23B̂

2
2(t) + ξ̂24B̂1(t) + ξ̂25B̂

2
1(t) + ξ̂26B̂2(t)B̂1(t),

(28)

with the terminal condition B̂1(T ) = B̂2(T ) = 0, where the constants

ξ̂i1, ξ̂i2, · · · , ξ̂i6, i = 1, 2, are given by

ξ̂i1 =
λ2ν̂i(1+ν̂j)

1−ν̂iν̂j + λ2(1+ν̂i)
2(1−γi)

2(1−ν̂iν̂j)2γi −
λ2ν̂i(1+ν̂j)

2[1−(θi−1)(1−γi)]
2(1−ν̂iν̂j)2γj ,

ξ̂i2 = κ− λk1ν̂i(1+ν̂j)
1−ν̂iν̂j − λk1ν̂iν̂j

(1−ν̂iν̂j) −
λk1(1+ν̂i)(1−γi)

(1−ν̂iν̂j)2γi +
λk1ν̂iν̂j(1+ν̂j)[1−(θi−1)(1−γi)]

(1−ν̂iν̂j)2γj ,

ξ̂i3 =
k21+k22

2 +
k21 ν̂iν̂j

(1−ν̂iν̂j) +
k21(1−γi)

2(1−ν̂iν̂j)2γi −
k21 ν̂iν̂

2
j [1−(θi−1)(1−γi)]
2(1−ν̂iν̂j)2γj ,

ξ̂i4 = − λk1ν̂i
(1−ν̂iν̂j) −

λk1ν̂i(1+ν̂i)(1−γi)
(1−ν̂iν̂j)2γi +

λk1ν̂i(1+ν̂j)[1−(θi−1)(1−γi)]
(1−ν̂iν̂j)2γj ,

ξ̂i5 =
k21 ν̂

2
i (1−γi)

2(1−ν̂iν̂j)2γi −
k21 ν̂i[1−(θi−1)(1−γi)]

2(1−ν̂iν̂j)2γj ,

ξ̂i6 =
k21 ν̂i

1−ν̂iν̂j +
k21 ν̂i(1−γi)
(1−ν̂iν̂j)2γi −

k21 ν̂iν̂j [1−(θi−1)(1−γi)]
(1−ν̂iν̂j)2γj .

(29)
Moreover, the optimal value function of investor i is

V̂ i(t, xi, xj , α) =
1

1− γi

(
xix

θi−1
j

)1−γi
exp

[
Âi(t)− B̂i(t)α

]
, (30)

where Âi(t) is given by

Âi(t) = θi (1− γi)
∫ T

t

r(s)ds− κδ
∫ T

t

B̂i(s)ds.

3.2. Verification

Based on the HJBI system identified in Section 3.1, we provide a ver-
ification theorem to show that the solution V i of the HJBI system and
corresponding policy π∗i coincide with the investors’ value functions and
optimal asset allocation strategies for the robust asset allocation game,
respectively.

Theorem 2. Suppose there exists a function W̃ i(t, xi, xj , α) ∈ C1,2 ([0, T ]× R× R× R+)
and a Markov control (π∗i , φ

∗
i ) ∈ Πi × Φi such that

(i). for any φi ∈ Φi, Lπ
∗
i ,π

∗
j ,φi,φ

∗
j W̃ i +

φ2
i1

2Ψi1
+

φ2
i2

2Ψi2
≥ 0;

(ii). for any πi ∈ Πi, Lπi,π
∗
j ,φ

∗
i ,φ

∗
j W̃ i +

φ∗2
i1

2Ψi1
+

φ∗2
i2

2Ψi2
≤ 0;

(iii). Lπ∗
i ,π

∗
j ,φ

∗
i ,φ

∗
j W̃ i +

φ∗2
i1

2Ψi1
+

φ∗2
i2

2Ψi2
= 0;

(iv). for all (πi, φi) ∈ Πi×Φi, lim
t→T

W̃ i
(
t,Xπi

i (t), X
π∗
j

j (t), α(t)
)

= Ui

(
Xπi
i (T ), X

π∗
j

j (T )
)

;
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(v).
{
W̃ i
(
τ,Xπi

i (τ), X
π∗
j

j (τ), α(τ)
)}

τ∈T
and

{
φ2
i1(τ)

2Ψi1(τ) +
φ2
i2(τ)

2Ψi2(τ)

}
τ∈T

are

uniformly integrable, where T denotes the set of all stopping times satisfy-
ing τ ≤ T .

Then π∗i is the optimal strategies and W̃ i (t, xi, xj , α) = V i (t, xi, xj , α) is
the associated value function.

Proof. The proof of this theorem is standard, and thus omitted for sim-
plicity. One can refer to Theorem 4.1 in Zeng and Taksar (2013), Theorem
3.2 in Mataramvura and Øksendal (2008) and Proposition 2.4 in Kraft et al.

(2020).

4. SPECIAL CASES

The square-root model used to describe the price process of the risky
asset can reduce to some well-known models, such as GBM, CEV model,
and Heston model. In this section, we provide the solutions under the CEV
and Heston models, respectively.

4.1. Nash equilibrium strategy under the CEV model

In this case, we discuss the optimization problem under the CEV model
in Example 1. Then the robust optimization problem for investor i ∈ {1, 2}
becomes

sup
πi∈Πi

inf
Qi∈Q

EQi
[

1
1−γi

(
Xi(T )Xθi−1

j (T )
)1−γi

+
∫ T

0

(
φ2
i1(s)

2Ψi1(s) +
φ2
i2(s)

2Ψi2(s)

)
ds

]
,

subject to the budget constraint

dXi(t) = Xi(t)
[
r + πi(t)

(
µ− r − φi1(t)σS`(t)

)]
dt+ πi(t)Xi(t)σS

`(t)dWQi
1 (t).

(31)

Theorem 3. For the robust asset allocation game between two compet-
ing ambiguity-averse investors under the CEV model, the Nash equilibrium
strategy π∗i of investor i, for i = 1, 2, is given by

π∗i (t) =
(µ− r) (1 + νi) + 2`σ2

[
1−γi−βi1

1−γi Bi(t) +
1−γj−βj1

1−γj Bj(t)νi

]
(1− νiνj) (γi + βi1)σ2s2`

, (32)

where νi = (1 − γi)(θi − 1)/(γj + βj1), i 6= j ∈ {1, 2}, satisfy 1 + νi > 0,
1 − νiνj > 0; Bi(t) and Bj(t) are the solutions of the following coupled
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system of ODEs:

{
Ḃi(t) = ξi1 + ξi2Bi(t) + ξi3B

2
i (t) + ξi4Bj(t) + ξi5B

2
j (t) + ξi6Bi(t)Bj(t),

Ḃj(t) = ξj1 + ξj2Bj(t) + ξj3B
2
j (t) + ξj4Bi(t) + ξj5B

2
i (t) + ξj6Bj(t)Bi(t),

(33)
with the terminal condition Bi(T ) = Bj(T ) = 0, where the constants
ξi1, ξi2, · · · , ξi6, i = 1, 2 are given by



ξi1 =
(µ−r)2νi(1+νj)
σ2(1−νiνj) + (µ−r)2(1+νi)

2(1−γi)
2σ2(1−νiνj)2(γi+βi1)

− (µ−r)2νi(1+νj)
2[2βj1−(θi−1)(1−γi)+1]

2σ2(1−νiνj)2(γj+βj1)
,

ξi2 = 2`µ+
2(µ−r)`σνi(1+νj)

σ(1−νiνj) +
2(µ−r)`σνiνj(1−γi−βi1)

σ(1−νiνj)(1−γi) + 2(µ−r)`(1+νi)(1−γi−βi1)

(1−νiνj)2(γi+βi1)

− 2(µ−r)`νiνj(1+νj)(1−γi−βi1)[2βj1−(θi−1)(1−γi)+1]

(1−νiνj)2(γj+βj1)(1−γi) ,

ξi3 = 2`2σ2(1−γi−βi1)
1−γi +

4`2σ2νiνj(1−γi−βi1)
(1−νiνj)(1−γi) + 2`2σ2(1−γi−βi1)2

(1−νiνj)2(γi+βi1)(1−γi)

− 2`2σ2νiν
2
j (1−γi−βi1)2[2βj1−(θi−1)(1−γi)+1]

(1−νiνj)2(γj+βj1)(1−γi)2 ,

ξi4 = − 2`σνi(2βj1+βj1νj−1+γj)
(1−νiνj)(1−γj) +

2(µ−r)`νi(1+νi)(1−γj−βj1)(1−γi)
(1−νiνj)2(γi+βi1)(1−γj)

− 2(µ−r)`νi(1+νj)(1−γj−βj1)[2βj1−(θi−1)(1−γi)+1]

(1−νiνj)2(γj+βj1)(1−γj) ,

ξi5 = − 4`2σ2νiβj1(1−γj−βj1)

(1−νiνj)(1−γj)2 +
4`2σ2ν2

i (1−γj−βj1)2(1−γi)
2(1−νiνj)2(γi+βi1)(1−γj)2 −

4`2σ2νi(1−γj−βj1)2[2βj1−(θi−1)(1−γi)+1]

2(1−νiνj)2(γj+βj1)(1−γj)2 ,

ξi6 =
4`2σ2νi(1−γj−βj1)

(1−νiνj)(1−γj) − 4`2σ2νiνjβj1(1−γi−βi1)
(1−νiνj)(1−γi)(1−γj) +

4`2σ2νi(1−γi−βi1)(1−γj−βj1)

(1−νiνj)2(γi+βi1)(1−γj)
− 4`2σ2νiνj(1−γi−βi1)(1−γj−βj1)[2βj1−(θi−1)(1−γi)+1]

(1−νiνj)2(γj+βj1)(1−γi)(1−γj) .

Furthermore, the equilibrium value function is

V i(t, xi, xj , s) =
1

1− γi

(
xix

θi−1
j

)1−γi
exp

[
Ai(t)−Bi(t)s−2`

]
, (34)

where Ai(t) is given by

Ai(t) = θi (1− γi)
∫ T

t

r(s)ds− κδ
∫ T

t

Bi(s)ds.

The proof of Theorem 3 is similar to that of Theorem 1, so we omit it
here.

4.2. Nash equilibrium strategy under the Heston model

In this case, we assume that the risky asset S(t) follows the Heston
model described by Example 2, and then the robust optimization problem
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for investor i ∈ {1, 2} becomes
sup
πi∈Πi

inf
Qi∈Q

EQi
[

1
1−γi

(
Xi(T )Xθi−1

j

)1−γi
+
∫ T

0

(
φ2
i1(s)

2Ψi1(s) +
φ2
i2(s)

2Ψi2(s)

)
ds

]
,

subject to the budget constraint

dXi(t) = Xi(t)
[
r + πi(t)

(
λα(t)− φi1(t)

√
α(t)

)]
dt+ πi(t)Xi(t)

√
α(t)dWQi

1 (t).

(35)

Theorem 4. For the robust asset allocation game between two competing
ambiguity-averse investors under the Heston model, the Nash equilibrium
strategy π∗i of investor i, for i = 1, 2, is given by

π∗i (t) =
λ (1 + νi)− σρ

[
1−γi−βi1

1−γi Bi(t) +
1−γj−βj1

1−γj Bj(t)νi

]
(1− νiνj) (γi + βi1)

, (36)

where νi = (1 − γi)(θi − 1)/(γj + βj1), i 6= j ∈ {1, 2}, satisfy 1 + νi > 0
and 1− νiνj > 0; Bi(t) and Bj(t) are the solutions of the following coupled
system of ODEs:{
Ḃi(t) = ξi1 + ξi2Bi(t) + ξi3B

2
i (t) + ξi4Bj(t) + ξi5B

2
j (t) + ξi6Bi(t)Bj(t),

Ḃj(t) = ξj1 + ξj2Bj(t) + ξj3B
2
j (t) + ξj4Bi(t) + ξj5B

2
i (t) + ξj6Bj(t)Bi(t),

(37)
with the terminal condition Bi(T ) = Bj(T ) = 0, where the constants
ξi1, ξi2, · · · , ξi6, i = 1, 2 are given by

ξi1 =
λ2νi(1+νj)

1−νiνj + λ2(1+νi)
2(1−γi)

2(1−νiνj)2(γi+βi1)
− λ2νi(1+νj)

2[2βj1−(θi−1)(1−γi)+1]

2(1−νiνj)2(γj+βj1)
,

ξi2 = κ− λσρνi(1+νj)
1−νiνj − λσρνiνj(1−γi−βi1)

(1−νiνj)(1−γi) − λσρ(1+νi)(1−γi−βi1)

(1−νiνj)2(γi+βi1)

+
λσρνiνj(1+νj)(1−γi−βi1)[2βj1−(θi−1)(1−γi)+1]

(1−νiνj)2(γj+βj1)(1−γi) ,

ξi3 =
σ2ρ2(1−γi−βi1)+σ2(1−ρ2)(1−γi−βi2)

2(1−γi) +
σ2ρ2νiνj(1−γi−βi1)

(1−νiνj)(1−γi) + σ2ρ2(1−γi−βi1)2

2(1−νiνj)2(γi+βi1)(1−γi)

−σ
2ρ2νiν

2
j (1−γi−βi1)2[2βj1−(θi−1)(1−γi)+1]

2(1−νiνj)2(γj+βj1)(1−γi)2 ,

ξi4 =
λσρνi(2βj1+βj1νj−1+γj)

(1−νiνj)(1−γj) − λσρνi(1+νi)(1−γj−βj1)(1−γi)
(1−νiνj)2(γi+βi1)(1−γj)

+
λσρνi(1+νj)(1−γj−βj1)[2βj1−(θi−1)(1−γi)+1]

(1−νiνj)2(γj+βj1)(1−γj) ,

ξi5 = −σ
2ρ2νiβj1(1−γj−βj1)

(1−νiνj)(1−γj)2 +
σ2ρ2ν2

i (1−γj−βj1)2(1−γi)
2(1−νiνj)2(γi+βi1)(1−γj)2 −

σ2ρ2νi(1−γj−βj1)2[2βj1−(θi−1)(1−γi)+1]

2(1−νiνj)2(γj+βj1)(1−γj)2 ,

ξi6 =
σ2ρ2νi(1−γj−βj1)

(1−νiνj)(1−γj) −
σ2ρ2νiνjβj1(1−γi−βi1)
(1−νiνj)(1−γi)(1−γj) +

σ2ρ2νi(1−γi−βi1)(1−γj−βj1)

(1−νiνj)2(γi+βi1)(1−γj)
−σ

2ρ2νiνj(1−γi−βi1)(1−γj−βj1)[2βj1−(θi−1)(1−γi)+1]

(1−νiνj)2(γj+βj1)(1−γi)(1−γj) .

Furthermore, the equilibrium value function is

V i(t, xi, xj , α) =
1

1− γi

(
xix

θi−1
j

)1−γi
exp [Ai(t)−Bi(t)α] , (38)
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where Ai(t) is given by

Ai(t) = θi (1− γi)
∫ T

t

r(s)ds− κδ
∫ T

t

Bi(s)ds.

The proof of Theorem 4 is similar to that of Theorem 1, and thus, we
omit it here.

Remark 4.1. If βi1 = βi2 = 0, the optimization problem (35) degener-
ated to a classical non-zero-sum stochastic differetnial game between two
competing ambiguity neutral investors. The result becomes that in Kraft
et al. (2020)

Remark 4.2. From (36), for i = 1, 2, we can rewrite ith investor’s
optimal asset allocation strategy as

π∗i (t) =
λ

γi + βi1︸ ︷︷ ︸
Myopic

+
λνi (1 + νj)

(1− νiνj) (γi + βi1)︸ ︷︷ ︸
Myopic benchmarking

− 1− γi − βi1
γi + βi1

σρ

1− γi
Bi(t)︸ ︷︷ ︸

Hedge

− σρ

(1− νiνj) (γi + βi1)

[
1− γi − βi1

1− γi
Bi(t)(−νiνj) +

1− γj − βj1
1− γj

Bj(t)νi

]
︸ ︷︷ ︸

Hedge benchmarking

.

From the above equation, we can find that the optimal asset allocation
strategy consist of a myopic term, an adjustment term for relative wealth
concerns, an hedging term, and an additional hedging term for relative
wealth concerns. In the utility function (1), if θi = 1, the optimal strategy
π∗i (t) of investor i would simlpy be the optimal asset allocation strategy
arising from classical (single-agent) utility maximization problem. In this
case, the optimal asset allocation strategy only consist of a myopic term
and an hedging term, terms generated by relative wealth concerns do not
appear, this is consistent with the optimal portfolio choice given by Eq.
(33) in Xu et al. (2011).

5. NUMERICAL STUDIES

In this section, we provide several numerical examples to illustrate the
effects of model parameters on the equilibrium asset allocation strategies.
We consider two special cases for the CEV model and Heston model, re-
spectively. To improve the credibility of our results, we fix a set of basic
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parameters for CEV model and Heston model (Table 1) using data from
Shen and Zeng (2015) and Kraft et al. (2020).

TABLE 1.

Model parameters.

CEV model

r µ σ ` s0 T

0.05 0.12 0.2 0.3 0.5 10

Heston model

r λ κ δ σ ρ α0 T

0.05 0.5 2 0.4 0.3 0.3 0.04 10

Investor 1 Investor 2

γ1 θ1 β11 β12 γ2 θ2 β21 β22
5 0.4 3 1 7 0.6 4 2

Example 5.1. In this example, numerical analyses of the equilibrium
asset allocation strategy under the CEV model are shown in Figures 1–3.

FIG. 1. Effects of parameters µ and r on πi, for i = 1, 2
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Figure 1: Effects of parameters µ and r on πi, for i = 1, 2

In Figure 1, we plot the impact of appreciation rate of risky asset µ and interest rate r on the

equilibrium asset allocation strategy π∗
i . The proportion invest in risky asset increases with µ and

decreases with r. A greater value of µ yields to more profits from risky asset. Thus, investor i ∈ {1, 2}

will put more money in the risky asset to gain more profits. In addition, with the increase of r, the risk-

free asset becomes more attractive, investor i ∈ {1, 2} would like to invest more money in the risk-free

asset. Thus, the proportion invested in the risky asset becomes less.

From Figure 2, we find that the equilibrium asset allocation strategy π∗
i decreases with the risk

aversion coefficient γi and relative wealth concerns parameter θi. Investor i ∈ {1, 2} is risk averse, she

will invest less in risky asset as the risk aversion coefficient γi becomes larger. What’s more, a higher θi

may lead to the investor is less concerned with her relative wealth levels. This induces her to allocate

less wealth to the risky asset.

Figure 3 presents the effect of ambiguity averse parameter βi1 on the equilibrium asset allocation

strategy π∗
i . With the increase of the βi1, the optimal investment proportion gradually decreases. The

explanation for this phenomenon is because of the misspecification of the model parameter, which causes

16
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FIG. 2. Effects of parameters γi and θi on πi, for i = 1, 2
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Figure 2: Effects of parameters γi and θi on πi, for i = 1, 2
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Figure 3: Effects of parameter βi1 on πi, for i = 1, 2
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Figure 2: Effects of parameters γi and θi on πi, for i = 1, 2
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Figure 3: Effects of parameter βi1 on πi, for i = 1, 2
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In Figure 1, we plot the impact of appreciation rate of risky asset µ
and interest rate r on the equilibrium asset allocation strategy π∗i . The
proportion invest in risky asset increases with µ and decreases with r. A
greater value of µ yields to more profits from risky asset. Thus, investor
i ∈ {1, 2} will put more money in the risky asset to gain more profits. In
addition, with the increase of r, the risk-free asset becomes more attractive,
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investor i ∈ {1, 2} would like to invest more money in the risk-free asset.
Thus, the proportion invested in the risky asset becomes less.

From Figure 2, we find that the equilibrium asset allocation strategy π∗i
decreases with the risk aversion coefficient γi and relative wealth concerns
parameter θi. Investor i ∈ {1, 2} is risk averse, she will invest less in risky
asset as the risk aversion coefficient γi becomes larger. What’s more, a
higher θi may lead to the investor is less concerned with her relative wealth
levels. This induces her to allocate less wealth to the risky asset.

Figure 3 presents the effect of ambiguity averse parameter βi1 on the
equilibrium asset allocation strategy π∗i . With the increase of the βi1, the
optimal investment proportion gradually decreases. The explanation for
this phenomenon is because of the misspecification of the model parameter,
which causes that investor i, for i = 1, 2 adopts more conservative strategy,
i.e.,she wolud allocate less wealth to the risky asset.

Example 5.2. In this example, numerical analyses of the equilibrium
asset allocation strategy under the Heston model are shown in Figures 4–7.

FIG. 4. Effects of parameters κ and σ on πi, for i = 1, 2

that investor i, for i = 1, 2 adopts more conservative strategy, i.e.,she wolud allocate less wealth to the

risky asset.

Example 8. In this example, numerical analyses of the equilibrium asset allocation strategy under the

Heston model are shown in Figures 4–7.
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Figure 4: Effects of parameters κ and σ on πi, for i = 1, 2

Figure 4 demonstrates the effects of κ and σ on π∗
i . From Figures 4a and 4b we can find that the

equilibrium asset allocation strategy π∗
i increases with respect to κ. For the Heston model, ρ represents

the correlation of the risky asset S and its volatility α, when ρ > 0, the uncertainties of the risky asset’s

price and its volatility change in the same way. A larger κ leads to a more stable volatility of the risky

asset. Thus, investor i ∈ {1, 2} will invest more in the risky asset. Instead, Figures 4c and 4d show that

σ exerts a negative effect on the equilibrium asset allocation strategy π∗
i . Because when ρ > 0, as σ

increases, the volatility of the risky asset will fluctuate drastically. Thus, investor i ∈ {1, 2} prefers to

put less money in the risky asset.

Figure 5 demonstrates that the equilibrium asset allocation strategy π∗
i increases with respect to λ.

A larger λ leads to a higher appreciation rate of the risky asset. Thus, investor i ∈ {1, 2} will invest more

18

Figure 4 demonstrates the effects of κ and σ on π∗i . From Figures 4a and
4b we can find that the equilibrium asset allocation strategy π∗i increases



434 HUAINIAN ZHU, SIHAN HUANG, AND NING BIN

FIG. 5. Effects of parameter λ on πi, for i = 1, 2
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Figure 5: Effects of parameter λ on πi, for i = 1, 2
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Figure 6: Effects of parameters γi and θi on πi, for i = 1, 2
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Figure 5: Effects of parameter λ on πi, for i = 1, 2
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Figure 6: Effects of parameters γi and θi on πi, for i = 1, 2
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with respect to κ. For the Heston model, ρ represents the correlation of
the risky asset S and its volatility α, when ρ > 0, the uncertainties of the
risky asset’s price and its volatility change in the same way. A larger κ
leads to a more stable volatility of the risky asset. Thus, investor i ∈ {1, 2}
will invest more in the risky asset. Instead, Figures 4c and 4d show that
σ exerts a negative effect on the equilibrium asset allocation strategy π∗i .
Because when ρ > 0, as σ increases, the volatility of the risky asset will
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FIG. 7. Effects of parameter βi1 on πi, for i = 1, 2
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Figure 7: Effects of parameter βi1 on πi, for i = 1, 2

in the risky asset when λ becomes larger.

Figure 6 depicts the sensitivity of the equilibrium asset allocation strategy π∗
i to the risk aversion

coefficient γi and relative wealth concerns parameter θi. We find that γi and θi exert a negative effect on

π∗
i . As γi becomes larger, the investor is more risk averse. Thus, she will reduce the proportion invested

in the risky asset to avoid investment risk. Moreover, a higher θi may lead to the investor’s being less

concerned with her relative wealth levels. This induces her to allocate less wealth to the risky asset.

Figure 7 captures the same effects of Figure 3 under the CEV model in Example 7. Note that the

patterns of the equilibrium asset allocation strategy, π∗
i , for i = 1, 2, are same as those in Figure 3, albeit

with difference values.

6 Concluding remarks

In this paper, we study a class of non-zero-sum asset allocation games between two institutional investors

who want to handle model misspecification or model uncertainty by developing robust optimal strategies.

Specifically, we allow each investor to allocate her wealth to one risk-free asset and one risky asset whose

price dynamics follows a stochastic volatility model driven by an affine-form square-root factor process,

where the price process of the risky asset in this paper can be reduced to the GBM, CEV model, Heston

model, etc. Applying the techniques of stochastic dynamic programming, we derive the HJBI equations

for the asset allocation games. Explicit expressions for the robust equilibrium asset allocation strategies

that maximize the expected power utility of the terminal wealth relative to that of her competitor

and corresponding optimal value functions are obtained. We also provide some special cases of our

model and explore the economic implications from numerical examples. Results indicate that the relative

wealth concerns of the investor increase the proportion invested in the risky asset, which implies that the

competition would lead the investors to be much more risk-seeking. Besides, the equilibrium strategies
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fluctuate drastically. Thus, investor i ∈ {1, 2} prefers to put less money in
the risky asset.

Figure 5 demonstrates that the equilibrium asset allocation strategy π∗i
increases with respect to λ. A larger λ leads to a higher appreciation rate
of the risky asset. Thus, investor i ∈ {1, 2} will invest more in the risky
asset when λ becomes larger.

Figure 6 depicts the sensitivity of the equilibrium asset allocation strat-
egy π∗i to the risk aversion coefficient γi and relative wealth concerns pa-
rameter θi. We find that γi and θi exert a negative effect on π∗i . As γi
becomes larger, the investor is more risk averse. Thus, she will reduce the
proportion invested in the risky asset to avoid investment risk. Moreover,
a higher θi may lead to the investor’s being less concerned with her relative
wealth levels. This induces her to allocate less wealth to the risky asset.

Figure 7 captures the same effects of Figure 3 under the CEV model
in Example 1. Note that the patterns of the equilibrium asset allocation
strategy, π∗i , for i = 1, 2, are same as those in Figure 3, albeit with difference
values.

6. CONCLUDING REMARKS

In this paper, we study a class of non-zero-sum asset allocation games
between two institutional investors who want to handle model misspecifica-
tion or model uncertainty by developing robust optimal strategies. Specif-
ically, we allow each investor to allocate her wealth to one risk-free asset
and one risky asset whose price dynamics follows a stochastic volatility
model driven by an affine-form square-root factor process, where the price
process of the risky asset in this paper can be reduced to the GBM, CEV
model, Heston model, etc. Applying the techniques of stochastic dynamic
programming, we derive the HJBI equations for the asset allocation games.
Explicit expressions for the robust equilibrium asset allocation strategies
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that maximize the expected power utility of the terminal wealth relative
to that of her competitor and corresponding optimal value functions are
obtained. We also provide some special cases of our model and explore the
economic implications from numerical examples. Results indicate that the
relative wealth concerns of the investor increase the proportion invested
in the risky asset, which implies that the competition would lead the in-
vestors to be much more risk-seeking. Besides, the equilibrium strategies of
an ambiguity-averse investor are significantly affected by her attitudes to-
wards model ambiguity. The ambiguity-averse investor would choose more
conservative strategies than the ambiguity-neutral investor, which is re-
flected in transferring more risks by reducing the risky-asset investment.
Overall, the investor’s optimal strategies are influenced by her competi-
tor’s attitudes towards model ambiguity. That is to say, the strategies of
two ambiguity-averse investors in a game would be more conservative than
these of a game consisting two ambiguity-neutral investors.

There are some possible extensions of this paper. The first one is to
apply other utility functions in establishing objective function in the game
framework. Under such formulation, explicit expressions for Nash equi-
librium strategies might be difficult to derive. However, we could apply
suitable numerical approximation methods (cf. Vamvoudakis and Lewis,
2011; Bui et al. 2019) when solving the system of HJBI equations. The
second one is to extend the framework and method in the paper to the case
with multiple risky assets. First of all, a suitable multi-dimensional market
price of risk model should be chosen. Multivariate Ornstein-Uhlenbeck and
Feller processes, such as co-integrated model and Wishard model, may be
candidate models. We leave them for future research.
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APPENDIX A

Proof of Theorem 1. According to the first-order optimality condi-
tions, the functions φ∗i1 and φ∗i2, which realize the infimum part of Eq. (18),
are given by

{
φ∗i1(t) = βi1

(1−γi)V i
(√

αk1V
i
α + πi(t)

µ(t)−r(t)
λ
√
α

xiV
i
xi

)
,

φ∗i2(t) = βi2
(1−γi)V i

√
αk2V

i
α.

(A.1)
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Substituting Eq. (A.1) into Eq. (18), we have

sup
πi∈Πi

{
V it + κ(δ − α)V iα + 1

2αk
2
1

[
V iαα −

βi1(V iα)
2

(1−γi)V i

]
+ 1

2αk
2
2

[
V iαα −

βi2(V iα)
2

(1−γi)V i

]
+ r(t)xiV

i
xi

+r(t)xjV
i
xj + π∗j (t) (µ(t)− r(t))xj

[
V ixj + k1

λ V
i
xjα − k1

λ

βi1V
i
xj
V iα

(1−γi)V i

]
− 1

2π
∗2
j (t) (µ(t)−r(t))2

λ2α x2
j

[
βj1
(
V ixj

)2

(1−γi)V i − V
i
xjxj

]
+ πi(t) (µ(t)− r(t))xiV ixi

+πi(t)
k1
λ (µ(t)− r(t))xiV ixiα − πi(t)k1λ (µ(t)− r(t)) βi1

(1−γi)V ixiV
i
xiV

i
α

+πi(t)π
∗
j (t) (µ(t)−r(t))2

λ2α xixjV
i
xixj − 1

2π
2
i (t) (µ(t)−r(t))2

λ2α x2
i

[
βi1(V ixi)

2

(1−γi)V i − V
i
xixi

]}
= 0.

(A.2)
Differentiating Eq. (A.2) with respect to πi implies

π∗i (t) =
V ixi + k1

λ V
i
xiα − k1

λ
βi1

(1−γi)V iV
i
xiV

i
α + π∗j (t) (µ(t)−r(t))

λ2α xjV
i
xixj

µ(t)−r(t)
λ2α xi

[
βi1(V ixi)

2

(1−γi)V i − V ixixi
] . (A.3)

Plugging Eq. (A.3) into Eq. (A.2) implies

V it + κ(δ − α)V iα + 1
2αk

2
1

[
V iαα −

βi1(V iα)
2

(1−γi)V i

]
+ 1

2αk
2
2

[
V iαα −

βi2(V iα)
2

(1−γi)V i

]
+ r(t)xiV

i
xi

+r(t)xjV
i
xj + π∗j (t) (µ(t)− r(t))xj

[
V ixj + k1

λ V
i
xjα − k1

λ

βi1V
i
xj
V iα

(1−γi)V i

]
− 1

2π
∗2
j (t) (µ(t)−r(t))2

λ2α x2
j

[
βj1
(
V ixj

)2

(1−γi)V i − V
i
xjxj

]

+

[
V ixi

+
k1
λ V

i
xiα
− k1λ

βi1

(1−γi)V i
V ixi

V iα+π∗
j (t)

(µ(t)−r(t))
λ2α

xjV
i
xixj

]2
λ2α

2

[
βi1(V ixi)

2

(1−γi)V i
−V ixixi

] = 0.

(A.4)
To solve Eq. (A.4), we attempt to conjecture the solution in the following
form:

V i(t, xi, xj , α) =
1

1− γi

(
xix

θi−1
j

)1−γi
exp [Ai(t)−Bi(t)α] , Ai(T ) = Bi(T ) = 0,

(A.5)
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the partial derivatives of which are
V it =

[
Ȧi(t)− Ḃi(t)α

]
V i, V iα = −Bi(t)V i, V iαα = B2

i (t)V i,

V ixi = 1−γi
xi

V i, V ixj = (θi−1)(1−γi)
xj

V i, V ixixi = −γi(1−γi)
x2
i

V i,

V ixjxj = (θi−1)(1−γi)[(θi−1)(1−γi)−1]
x2
j

V i, V ixixj = (θi−1)(1−γi)2
xixj

V i,

V ixiα = − 1−γi
xi

Bi(t)V
i, V ixjα = − (θi−1)(1−γi)

xj
Bi(t)V

i.

(A.6)

Substituting Eqs. (A.5) and (A.6) into Eq. (A.4), we have

Ȧi(t)− Ḃi(t)α− κ(δ − α)Bi(t) + 1
2αk

2
1

1−γi−βi1
1−γi B2

i (t) + 1
2αk

2
2

1−γi−βi2
1−γi B2

i (t) + r(t)θi (1− γi)
+π∗j (t) (µ(t)− r(t)) (θi − 1)

[
(1− γi) + k1

λ βj1Bi(t)− k1
λ (1− γi)Bi(t)

]
+ 1

2π
∗2
j (t) (µ(t)−r(t))2

λ2α (θi − 1) (1− γi) [(θi − 1) (γi + 2βi1 − 1) + 1]

+
(1−γi)

[
1− k1λ Bi(t)+

k1
λ

βi1
1−γi

Bi(t)+π
∗
j (t)

µ(t)−r(t)
λ2α

(θi−1)(1−γi)
]2
λ2α

2(γi+βi1) = 0.

(A.7)
By separating the variables with and without α, we can derive the following
equations:

Ȧi(t) + θi (1− γi) r(t)− κδBi(t) = 0, (A.8)

−Ḃi(t) + κBi(t) + 1
2k

2
1

1−γi−βi1
1−γi B2

i (t) + 1
2k

2
2

1−γi−βi2
1−γi B2

i (t)

+π∗j (t) (µ(t)− r(t)) (θi − 1)
[
(1− γi) + k1

λ βj1Bi(t)− k1
λ (1− γi)Bi(t)

]
+ 1

2π
∗2
j (t) (µ(t)−r(t))2

λ2α (θi − 1) (1− γi) [(θi − 1) (γi + 2βi1 − 1) + 1]

+
(1−γi)

[
1− k1λ Bi(t)+

k1
λ

βi1
1−γi

Bi(t)+π
∗
j (t)

µ(t)−r(t)
λ2α

(θi−1)(1−γi)
]2
λ2

2(γi+βi1) = 0.

(A.9)
Substituting Eqs. (A.5) and (A.6) into Eq. (A.3), we can derive π∗i (t) as

π∗i (t) =
1− k1

λ Bi(t) + k1
λ

βi1
1−γiBi(t)

µ(t)−r(t)
λ2α (γi + βi1)

+
(θi − 1) (1− γi)

(γi + βi1)
π∗j (t). (A.10)

Explicit expressions for the equilibrium portfolio strategy of each investor
can be obtained by solving the following system of equations:

π∗1(t) =
1− k1λ B1(t)+

k1
λ

β11
1−γ1

B1(t)

µ(t)−r(t)
λ2α

(γ1+β11)
+ (θ1−1)(1−γ1)

(γ1+β11) π∗2(t),

π∗2(t) =
1− k1λ B2(t)+

k1
λ

β21
1−γ2

B2(t)

µ(t)−r(t)
λ2α

(γ2+β21)
+ (θ2−1)(1−γ2)

(γ2+β21) π∗1(t).
(A.11)
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Substituting π∗j (t) displayed in Eq. (A.10) into Eq. (A.9) yields

Ḃi(t) = ξi1 + ξi2Bi(t) + ξi3B
2
i (t) + ξi4Bj(t) + ξi5B

2
j (t) + ξi6Bi(t)Bj(t),

(A.12)
with

ξi1 =
λ2νi(1+νj)

1−νiνj + λ2(1+νi)
2(1−γi)

2(1−νiνj)2(γi+βi1)
− λ2νi(1+νj)

2[2βj1−(θi−1)(1−γi)+1]

2(1−νiνj)2(γj+βj1)
,

(A.13)

ξi2 = κ− λk1νi(1+νj)
1−νiνj − λk1νiνj(1−γi−βi1)

(1−νiνj)(1−γi) − λk1(1+νi)(1−γi−βi1)

(1−νiνj)2(γi+βi1)

+
λk1νiνj(1+νj)(1−γi−βi1)[2βj1−(θi−1)(1−γi)+1]

(1−νiνj)2(γj+βj1)(1−γi) ,
(A.14)

ξi3 =
k21(1−γi−βi1)+k22(1−γi−βi2)

2(1−γi) +
k21νiνj(1−γi−βi1)

(1−νiνj)(1−γi) +
k21(1−γi−βi1)2

2(1−νiνj)2(γi+βi1)(1−γi)

−k
2
1νiν

2
j (1−γi−βi1)2[2βj1−(θi−1)(1−γi)+1]

2(1−νiνj)2(γj+βj1)(1−γi)2 ,

(A.15)

ξi4 =
λk1νi(2βj1+βj1νj−1+γj)

(1−νiνj)(1−γj) − λk1νi(1+νi)(1−γj−βj1)(1−γi)
(1−νiνj)2(γi+βi1)(1−γj)

+
λk1νi(1+νj)(1−γj−βj1)[2βj1−(θi−1)(1−γi)+1]

(1−νiνj)2(γj+βj1)(1−γj) ,
(A.16)

ξi5 =− k2
1νiβj1 (1− γj − βj1)

(1− νiνj) (1− γj)2 +
k2

1ν
2
i (1− γj − βj1)

2
(1− γi)

2 (1− νiνj)2
(γi + βi1) (1− γj)2

−k
2
1νi (1− γj − βj1)

2
[2βj1 − (θi − 1) (1− γi) + 1]

2 (1− νiνj)2
(γj + βj1) (1− γj)2 ,

(A.17)

ξi6 =
k21νi(1−γj−βj1)
(1−νiνj)(1−γj) −

k21νiνjβj1(1−γi−βi1)
(1−νiνj)(1−γi)(1−γj) +

k21νi(1−γi−βi1)(1−γj−βj1)

(1−νiνj)2(γi+βi1)(1−γj)
−k

2
1νiνj(1−γi−βi1)(1−γj−βj1)[2βj1−(θi−1)(1−γi)+1]

(1−νiνj)2(γj+βj1)(1−γi)(1−γj) .

(A.18)
Given Bi(t), the function Ai(t) is defined by

Ai(t) = θi (1− γi)
∫ T

t

r(s)ds− κδ
∫ T

t

Bi(s)ds. (A.19)
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