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In this paper I construct a search monetary model with capital accumulation
where money and goods are both divisible. Agents in matches determine the
terms of trade through a sequential bargaining process and they face trading
restrictions that require the quantity of money traded not to exceed what the
buyer brings into the match. I show that sellers’ share of the match surplus
decreases with the severity of the trading restrictions. Such endogenous surplus
shares generate multiple, self-fulfilling monetary steady states. When liquidity
is interpreted as the number of transactions, the steady state with higher
aggregate activities has higher liquidity. In both steady states, an increase
in the money growth rate increases aggregate output and consumption by
increasing the number of matches. c© 2001 Peking University Press
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1. INTRODUCTION

Real aggregate output and the money stock are positively correlated in
post-war U.S. data (e.g., Sims, 1992, and Cooley and Hansen, 1995). This
empirical correlation, often appearing as the Phillips curve, is a building
block of many reduced-form models that are popular for policy analysis
(e.g., Taylor, 1993). In the literature there are two classes of models that
capture this empirical correlation with utility-maximizing households. One
is sticky price models (e.g. Cooley and Hansen, 1995, section 5), where
nominal prices or wages are sticky and so positive monetary shocks stim-

* This paper expands a section in the working paper, “Search, inflation, and capital
accumulation” (Queen’s University). Financial support from the Social Sciences and
Humanities Research Council of Canada is gratefully acknowledged. All errors are mine
alone.
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ulate real output by increasing effective aggregate demand. Another class
is limited participation models (e.g., Lucas, 1990), where only a fraction
of agents receive monetary injections and such injections increase real out-
put by increasing “liquidity” in the economy. In such models, liquidity is
constrained by a cash-in-advance restriction in the goods market or the
labor market.1 In this paper, I construct a model that uses search frictions
to generate real effects of monetary shocks without nominal stickiness or
limited participation.

The motivation for constructing a new model is that neither of the two
existing classes of models is satisfactory. Models with sticky prices or wages
lack a rigorous foundation for why there is nominal rigidity. In addition,
they do not generate sufficient propagation for monetary shocks given re-
alistic duration of the nominal stickiness (Chari, et al. 1998). Limited
participation models offer a more robust explanation for the real effects of
monetary shocks but they, too, have serious shortcomings. They do not
carefully spell out the physical environment which gives rise to the cash-
in-advance constraint and they do not generate sufficient propagation for
monetary shocks.

In this paper I extend an earlier model (Shi, 1999) that features costly
search in the goods market. As in a typical search model (e.g., Shi, 1995,
and Trejos and Wright, 1995), agents are matched randomly and bilaterally,
and they bargain over the terms of trade sequentially. Preferences and
production technologies are such that make it difficult for two agents to
have a double-coincidence of wants in barter. Agents use fiat money as a
medium of exchange and this gives rise to trading restrictions on money
that resemble a cash-in-advance constraint. Unlike limited participation
models, however, all households receive money injections and do so before
exchanges take place in the period. Monetary injections affect real output
by affecting the fraction of time that each household spends in producing
versus shopping.

More specifically, the search model here has divisible money and goods,
and it allows for capital accumulation. Following my previous work (Shi,
1997, 1998, 1999), I model each household as a collection of a large number
of members who share the matching risks. This modelling device eliminates
the analytically intractable, non-degenerate distributions of consumption
and capital stocks across households that would otherwise arise in the ran-
dom matching environment. I allow each household to choose consumption,
capital accumulation, money balances, the fraction of producers (sellers),
and the terms of trade to propose in matches. Capital is modelled as con-

1A common restriction in limited participation models is that firms must pay workers
with cash before production. Monetary injections increase banks’ loanable funds, which
allow firms to pay wages to more workers, thus increasing real output.
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sumption goods that are set aside from current consumption, as in a typical
neoclassical growth model.

A buyer and a seller in a match bargain over the terms of trade in a
sequential fashion, where the buyer is randomly chosen by nature to be
the proposer with probability θ ∈ (0, 1) in each round. Since two agents
in a match are separated from other agents, a trade is constrained by the
amount of money the buyer brings into the match. Both buyers and sellers
face such a trading restriction on money when they propose. The trading
restrictions bind when the gross rate of money growth exceeds the discount
factor.

The critical feature of the model is that the shares of surplus which
buyers and sellers get in desirable matches depend on the degree to which
the trading restrictions on money bind. Because a seller in a match has a
positive probability (1−θ) to be the proposer, he shares a part of the cost of
the trading restrictions and so he gets less than (1− θ) share of the match
surplus. In fact, the larger the shadow price of the trading restrictions,
the smaller share of the match surplus the seller gets. Through the shadow
price of the trading restrictions on money, money growth affects the seller’s
share of the match surplus, which in turn affects each household’s choice
of the fraction of sellers and changes real output.

There are multiple, self-fulfilling monetary steady states because agents’
shares of the match surplus are endogenous. If households expect that the
trading restrictions will not bind severely, then sellers’ share of the match
surplus will be high. Anticipating this surplus division, households allo-
cate more members (more time) to be sellers. This increases the aggregate
number of matches and increases aggregate supply of goods. Thus, the
purchasing power of money rises, which fulfills the expectations that the
trading restrictions on money will not bind severely. In this steady state,
aggregate consumption and output are high. On the other hand, if house-
holds expect that the trading restrictions on money will bind severely, then
sellers’ share of the match surplus will be low and households will reduce
the number of sellers. This reduces the number of matches and reduces ag-
gregate supply of goods, which leads to a low purchasing power of money
and fulfills the expectations of severely binding trading restrictions. In this
steady state, aggregate consumption and output are low. When liquidity
is interpreted as the number of transactions, there is a positive relationship
between liquidity and aggregate activities across steady states.

An increase in the money growth rate increases aggregate consumption
and output in both steady states. This is because an increase in the money
growth rate creates a positive extensive effect, i.e., it increases the number
of matches in both steady states. In contrast to this extensive effect, money
growth has opposite intensive effects in the two steady states, i.e., the
effects on the quantities of trade in each match. In the low-activity steady
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state, an increase in money growth increases the quantities of goods traded
in each match and reduces the degree to which the trading restrictions on
money bind. These intensive effects reinforce the extensive effect to increase
aggregate output. In the high-activity steady state, an increase in money
growth reduces the quantities of goods traded in each match and increases
the degree to which the trading restrictions on money bind. However, these
negative intensive effects are dominated by the positive extensive effect.

The non-Walrasian nature of the model is important for the main results.
First, money growth affects liquidity by affecting sellers’ share of match
surplus in sequential bargaining, which is a non-Walrasian characteristic.
Second, when households change their number of sellers in response to the
change in sellers’ surplus share, aggregate supply of goods changes because
the number of successful matches increases with the number of sellers. This
is also a non-Walrasian characteristic. In a Walrasian model, in contrast,
trades take place instantaneously and so the number of matches is irrele-
vant for equilibrium; instead, money growth affects equilibrium exclusively
through its intensive effects. By construction, my model does not rely on
nominal rigidity or limited participation to deliver real effects of money
growth. In particular, all households in this model receive the monetary
transfer before they exchange, and so participation is not limited to only a
fraction of agents.2

This paper closely follows my previous work (Shi, 1999). The framework
contrasts with most search models of money in two dimensions. First, there
is capital accumulation. This allows me to analyze the relationship between
money and growth, a relationship that was emphasized by Johnson (1962)
and Sidrauski (1967). Second, both money and goods are divisible here.
In contrast, most search models of money restrict money to be indivisible
(e.g., Shi, 1995, and Trejos and Wright, 1995), or goods to be indivisi-
ble (Green and Zhou, 1998), or both money and goods to be indivisible
(Li, 1994). Those models are incapable of capturing the effects of money
growth. When money is indivisible it is impossible to allow for money
growth while maintaining a positive value for money. When goods are in-
divisible it is impossible to examine how producers change the quantity of
production to respond to money growth. To allow both money and goods
to be divisible, however, one encounters non-degenerate distributions of
money holdings, consumption, and capital stock across agents, which are
notoriously intractable analytically. In previous attempts (Shi, 1997, 1998,
1999), I introduced the device of large households to smooth the idiosyn-
cratic matching risks within each household. This device allowed me to
characterize symmetric monetary equilibria using a representative house-

2Moreover, the monetary propagation mechanism is likely to be stronger in a search
model than in a limited participation model, as is shown previously in a similar model
(see Shi, 1998).
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hold and to focus on the aggregate effects of monetary policies. The current
paper uses this device.

In the previous work (Shi, 1999), I assumed that the number of sellers is
exogenous and that buyers make a take-it-or-leave-it offer. In the current
paper I endogenize the fraction of sellers and allow both sellers and buyers
to have positive shares of the match surplus. Although these extensions
significantly complicate the analysis of the terms of trade, they allow me to
generate the interesting result of multiple equilibria. They also allow me to
show that the positive relationship between money growth and aggregate
output can be robust across equilibria.

2. A DESCRIPTION OF THE ECONOMY

Consider a discrete-time economy with H types of households and H
types of goods, where H ≥ 3. There are a large number of households
in each type, whose size is normalized to one. I will refer to one arbitrary
household of type h ∈ H as household h and use lower-case letters to denote
its decisions. Capital-case variables denote other households’ decisions,
which are taken as given by household h. Of course, lower-case variables are
equal to the corresponding capital-case variables in all symmetric equilibria.

Different types of households differ in their preferences and production
capabilities. A household h consumes only good h, which is called the
household’s consumption good, and produces only good h+1 (with modulus
H). This implies that two different households can never have double
coincidence of wants in barter, i.e., they can never both supply consumption
goods to each other. In this environment, money might be valued as a
medium of exchange. To capture this transactions role of money, I follow
Kiyotaki and Wright (1993) to assume that agents are randomly matched
in pairs in each period and that agents’ transaction histories are private
information.3 Normalize the matching rate to 1 and let α ≡ 1/H denote
the probability with which the agent’s partner is (any) one particular type.

Money is an intrinsically useless object, which means that money yields
no direct utility or productive services. Also, money is perfectly storable.
Monetary exchanges are possible for household h when the household meets
household (h− 1), in which case household h exchanges money for goods,
or when it meets household (h + 1), in which case household h produces
goods in exchange for money. I call these two types of matches the desirable
matches of household h, in which there is a single coincidence of wants

3When trading histories are public, there can be credit arrangements or gift-giving
exchanges that are supported by trigger strategies (see Kocherlakota, 1998). Similarly,
bilateral matching excludes possible trade arrangements among three or more types of
households.
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in goods between the two households and money serves as a medium of
exchange.

Except the above differences in preferences and production capabilities,
households are identical in other aspects. All households discount future
with a discount factor β ∈ (0, 1) and the intertemporal utility function is

∞∑
t=0

βt [u(ct) + ϕ− (b + nt)(ϕ− 1)− αbntΦ(lt)] . (1)

Here u(ct) is the household’s utility of consumption, which is twice differ-
entiable, strictly increasing and concave with u′(0) = ∞ and u′(∞) = 0.
The constant ϕ is the utility of leisure when an agent does not participate
in the market, where ϕ > 1. If an agent participates in the market but does
not produce, the utility of leisure is 1, and so (ϕ−1) measures the disutility
of market participation. If an agent participates in the market and inputs
lt units of labor to produce goods, the utility of leisure is further reduced to
1−Φ(lt). The household spends (b+nt) fraction of the time in the market
and the chance to produce is αbnt, which I will explain later in detail. For
simplicity, I assume that the cost function Φ(.) has the following form:

Φ(l) = Φ0l
σ, σ > 1, Φ0 ∈ (0, 1). (2)

Production entails labor and capital. To allow for capital, I assume that
consumers can store goods but producers cannot. A household can set
aside a part of its consumption goods as productive capital. This setup
ensures that consumption goods and capital are physically the same for
a household, just as in a standard one-sector neoclassical growth model.
In contrast to a standard growth model, however, a household’s output
and consumption good are not the same – one’s output is someone else’s
consumption good. Since non-consumption goods are perishable, no one
will exchange for them and so goods including capital cannot be used as
a medium of exchange, ruling out commodity money.4 Without loss of
generality, I assume that capital does not depreciate.

The production function is as follows:

q = F (l, k/n) = F−ε
0 lε(k/n)1−ε, ε ∈ (0, 1),

4Allowing producers to be able to store their products introduces the possibility of
commodity money and complicates the analysis considerably. Barring the possibility
of commodity money, the existence of inventory will unlikely change the main qualita-
tive results of the paper. As shown in Shi (1998), the existence of inventory does not
eliminate the extensive effect of money growth. On the contrary, inventory can pro-
vide an additional propagation channel for money growth shocks to generate persistent,
hump-shaped output responses.
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where q denotes the quantity of output, l the labor input, (k/n) the capital
input, and F0 a positive constant. Given capital k/n and the quantity of
output q, the required labor input is

l =
k

n
f

(nq

k

)
, where f

(nq

k

)
≡ F0

(nq

k

)1/ε

. (3)

Since capital and labor are complementary, a higher capital stock saves the
labor input in production. Moreover, the function f defined above satisfies:

f(0) = 0, f ′(·) > 0, f ′′(·) > 0 and
nq

k
f ′ =

f

ε
. (4)

A household chooses consumption, capital accumulation, labor input in
production and the quantities of trade. As discussed in the introduction,
these decisions are quite complicated in the random-matching framework
when money and goods are both divisible, because there are non-degenerate
distributions across agents over consumption, capital/money stocks and
labor input.5 For tractability I assume that each household consists of a
continuum of members, who carry out different tasks but all share the same
consumption and regard the household’s utility as the common objective.
Although each member’s matching outcome is random, his consumption
does not depend on his own luck, since idiosyncratic risks are smoothed
within each household. I can then examine a representative household’s
decisions and focus on symmetric equilibria.6

Each household consists of money holders (buyers), producers (sellers)
and leisure-seekers, each performing one task at a time. A money holder
tries to exchange money for consumption goods and a producer tries to
produce goods for money. A leisure-seeker enjoys leisure and does not
participate in the market. Normalize the size of the household to 1. Let
b be the fraction of buyers in the household, nt the fraction of sellers, and
(1− b− nt) the fraction of leisure-seekers. To examine how money growth
affects production, I assume that the household can choose the fraction of
sellers (nt) in each period t. The fraction of buyers, however, is fixed for
simplicity (see Shi, 1999, for an analysis of an endogenous b).

5Green and Zhou (1998) solve the distribution of money holdings in a model where
goods are not divisible and capital accumulation is absent.

6Assuming risk-sharing is common in macroeconomic models (e.g., Lucas, 1990). At
the aggregate level, the continuum in each household can be alternatively interpreted as
a unit interval of time endowed to a representative agent in a standard macroeconomic
model. Although this alternative interpretation is more natural, implementing it in the
current setting is considerably more difficult. First, it is difficult to construct a matching
technology that eliminates aggregate uncertainty throughout the trading period. Second,
the sequential decisions inherited in the dynamic interpretation are more difficult to
detail.
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With this notation, I can clarify the meanings of the cost terms in the
utility function (1). Because the household spends (b + nt) of its time in
the market each period, the cost of market participation is (b + nt)(ϕ− 1).
Among the sellers, only those who have desirable matches produce. Recall
that, for a seller in household h, a desirable match is one in which the
trading partner is a buyer from household (h + 1). Since a seller meets an
agent from household (h + 1) with probability α and that agent is a buyer
with probability b, a seller in household h has a desirable matches with
probability αb. Because there are nt number of sellers in household h, the
total number of sellers in household h who produce in period t is αbnt. The
total cost of production is αbntΦ(lt), as in (1).7

The household functions as follows. At the beginning of each period t,
the household has kt units of capital and mt units of money. The household
chooses the fraction of sellers, nt, a consumption level, ct, total money hold-
ings for the next period, mt+1, and total capital stock for the next period,
kt+1. The household also prescribes the trading strategies for its members.
Then the household evenly divides the money stock to its buyers and capi-
tal to its sellers, each buyer having a money balance mt/b and each seller a
capital stock kt/nt. After the allocation the agents are randomly matched
and agents in desirable matches carry out the prescribed trading strategies.
After exchange members bring back their receipts of goods and money, and
each member consumes ct units of goods. Then the household receives a
lump-sum monetary transfer, τt , and carries the stocks (mt+1, kt+1) to
t + 1.

Let a household’s value function from period t onward be v(kt,mt).8 For
future use, I define the marginal value of money in period t+1, discounted
to period t, as:

ωt ≡ βvm(kt+1,mt+1). (5)

Similarly, other households’ marginal value of future money is Ωt. To write
the Bellman equation that defines the value function, I need to describe
the terms of trade first.

7Strictly speaking, if each agent meets exactly another agent in a period, the proba-
bility with which a seller meets a desirable buyer should be αb/(b + Nt). Simplifying it
to αb does not change the qualitative results much, because the simplification preserves
the property that sellers’ matching rate increases with the number of buyers in exchange,
which is the one important for the extensive effect. The probability with which a buyer
meets a desirable seller is simplified in a similar way.

8I suppress the dependence of the value function on aggregate state variables, such as
the money growth rate, the aggregate money stock and the aggregate capital stock.
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3. BARGAINING AND HOUSEHOLD’S DECISIONS
3.1. Bargaining and Terms of Trade

When a seller and a buyer meet in a desirable match, they bargain over
the quantities of money and goods to be traded, according to the instruc-
tions prescribed by their own households. Bargaining proceeds in the fol-
lowing sequential fashion adapted from Rubinstein and Wolinsky (1985).
Immediately after being matched, one of the two agents is chosen by nature
to propose, with the buyer being chosen with probability θ ∈ (0, 1) and the
seller with 1−θ. If the proposal is accepted, trade takes place immediately.
If the proposal is rejected, a time interval ∆ is passed and the negotiation
proceeds to the next round, where the sequence of moves by nature and
the agents repeats. In this paper I focus on the limit case ∆ → 0 but, to
characterize the limit outcome, I analyze the case ∆ > 0 first.9

For money to have a positive value in equilibrium, buyers must get a
positive fraction of the match surplus. This requires that buyers be chosen
as the proposer with positive probability, i,e., θ be bounded below. Also,
for a household to choose a positive fraction of members to be sellers in
equilibrium, sellers must also get a positive fraction of the match surplus,
i.e., θ must be bounded above. The following assumption specifies these
restrictions.10

Assumption 1. The parameter θ satisfies

ε(σ − 1)
σ − ε

< θ <
1

2− ε
. (6)

Let me select an arbitrary household and analyze its proposals in desir-
able matches. Since buyers and sellers can be the proposers with positive
probability, a household must prescribe one proposal to its buyers and an-
other proposal to its sellers. Let (qb

t , x
b
t) be the instruction for a proposing

buyer, where qb
t is the quantity of goods that the buyer asks the seller to

supply and xb
t is the quantity of money that the buyer pays for the goods.

The subscript b indicates that the proposer is a buyer. Similarly, let (qs
t , x

s
t )

be the instruction for a proposing seller. The proposals by other house-
holds’ buyers are (Qb

t , X
b
t ) and (Qs

t , X
s
t ) by other households’ sellers, which

the particular household in discussion takes as given.
9When ∆ < 1, discounting between bargaining rounds is not consistent with the

discrete-time setup in my model. The purpose of introducing discounting within a
period is to simplify the equilibrium analysis because it allows me to show that buyers’
and sellers’ proposals are equal to each other in the limit ∆→ 0. If agents discount only
between periods, the equilibrium is close to the one in this paper when β is sufficiently
close to 1.

10Note that the interval for θ in the assumption is non-empty for all σ > 1 and
0 < ε < 1.
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For responding agents, the household prescribes a strategy eb ∈ {0, 1} for
a buyer and es ∈ {0, 1} for a seller, where e = 1 means “accepting the offer”
and e = 0 means “rejecting the offer”. When an agent rejects the partner’s
offer, he stays in the bargaining game. Let Ds

t be the expected surplus that
a seller anticipates to get in the subgame after rejecting a buyer’s proposal,
discounted to the current round of bargaining with a discount factor β∆.
Then es

t = 1 if the buyer’s proposal gives the seller a surplus which is
equal to or greater than Ds

t , and es
t = 0 otherwise. Similarly, let Db

t be
the expected surplus that a buyer anticipates to get in the subgame after
rejecting a seller’s proposal. Then eb

t = 1 if the seller’s proposal gives the
buyer a surplus which is equal to or greater than Db

t . In the current model
a desirable match generates a positive surplus and so sequential bargaining
yields immediate agreement.

Consider the proposal (qb
t , x

b
t). The proposal must give the partner (the

seller) an expected surplus which is equal to or greater than Ds
t ; other-

wise the partner will reject the proposal and proceed to the next round of
negotiation. Thus,

Ωtx
b
t − Φ

(
Kt

Nt
f

(
Ntq

b
t

Kt

))
≥ Ds

t , (7)

where the left-hand side of the inequality is the seller’s surplus from accept-
ing the buyer’s offer. In particular, Ωt is the seller’s household’s marginal
value of money and the argument of the function Φ(.) is the labor input
needed to produce qb

t units of goods. Rewrite the above inequality as fol-
lows:

xb
t ≥

1
Ωt

[
Ds

t + Φ
(

Kt

Nt
f

(
Ntq

b
t

Kt

))]
. (8)

This is a constraint to the household when it chooses the instructions for
its proposing buyers.

There is another constraint to the household when choosing (qb
t , x

b
t).

That is, the household cannot instruct the buyer to offer more money than
the buyer has:

xb
t ≤ mt/b. (9)

This constraint stems from the assumption that the household members
cannot communicate with each other during the match. Because the trade
must be executed on spot and each agent cannot borrow from other agents
in the household, the agent complete the trade with whatever resource
he has. 11 I call this constraint and the similar one for proposing sellers

11The constraint (9) is a natural trading restriction on individual buyers if each agent
behaves as an independent entity rather than belonging to a large household. In this
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(described later) the trading restrictions on money. They will play a critical
role for multiple equilibria.

To complete the description of the proposal (qb
t , x

b
t), I compute the ex-

pected surplus Ds
t . After the seller rejects the buyer’s offer, time elapses by

∆ and nature chooses the proposer in the next round of negotiation. With
probability θ nature chooses the buyer to be the proposer, in which case the
seller’s expected surplus is still Ds

t . With probability (1− θ), the seller will
be chosen to be the proposer, in which case the seller proposes (Qs

t , X
s
t ). If

the buyer accepts this proposal, the seller’s surplus is characterized by the
left-hand side of ( 7) with (Qs

t , X
s
t ) replacing (qb

t , x
b
t). Thus, the expected

surplus that the seller gets in the next round of bargaining, discounted to
the current round, is

Ds
t = β∆

{
θDs

t + (1− θ)
[
ΩtX

s
t − Φ

(
Kt

Nt
f

(
NtQ

s
t

Kt

))]}
.

Re-arranging the equation I get

Ds
t =

(1− θ)β∆

1− θβ∆

[
ΩtX

s
t − Φ

(
Kt

Nt
f

(
NtQ

s
t

Kt

))]
. (10)

Similarly, consider a desirable match between a seller of the household
in discussion and another household’s buyer. The buyer’s expected surplus
after rejecting the seller’s offer is

Db
t =

θβ∆

1− (1− θ)β∆

[
u′(Ct)Qb

t − ΩtX
b
t

]
. (11)

The seller’s proposal (qs
t , x

s
t ) must satisfy u′(Ct)qs

t −Ωtx
s
t ≥ Db

t , which can
be rewritten as

xs
t ≤

1
Ωt

[
u′(Ct)qs

t −Db
t

]
. (12)

Also, the seller cannot ask the buyer to give up more money than what the
buyer has, i.e.,

xs
t ≤ Mt/b. (13)

3.2. A Household’s Decisions
In each period t, a household’s decision variables are

at ≡
(
ct, nt, kt+1,mt+1, (qb

t , x
b
t), (q

s
t , x

s
t )

)
.

sense, imposing (9) ensures that the construction of a large household does not change
the fundamental frictions in the economy.
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TABLE 1.

Agents and terms of trade in desirable matches

Imt: buyers in desirable matches Ipt: sellers in desirable matches

propose respond propose respond

set Ip
mt Ir

mt Ip
pt Ir

pt

measure θαNtb (1− θ)αNtb (1− θ)αntb θαntb

terms of trade (qb
t , x

b
t) (Qs

t , X
s
t ) (qs

t , xs
t ) (Qb

t , X
b
t )

The quantities (qb
t , x

b
t) are prescribed only for those buyers who meet de-

sirable sellers and who are chosen to be the proposer; (qs
t , x

s
t ) are only

for those sellers who meet desirable buyers and who are chosen to be the
proposer. To clarify this distinction between proposing agents and respond-
ing agents, I use Table 1 to list the frequency of each type of match and
the corresponding quantities of trade. The notation I indicates subsets of
members in desirable matches, the superscript p on I proposing agents, the
superscript r responding agents, the subscript m buyers and the subscript
p sellers.

Taking other households’ decisions as given, the household in discussion
solves the following dynamic programming problem:

PH v(kt, mt) = max
{

u(ct) + ϕ− (b + nt)(ϕ− 1)− θαbntΦ
(

kt
nt

f
(

nt
kt

Qb
t

))
−(1− θ)αbntΦ

(
kt
nt

f
(

nt
kt

qs
t

))
+ βv(kt+1, mt+1)

}
subject to

(8) and (9) for every buyer in Ip
mt;

(12) and (13) for every seller in Ip
pt;

ct + kt+1 − kt ≤ αbNt

[
θqb

t + (1− θ)Qs
t

]
; (14)

mt+1 ≤ mt + τt +αbnt

[
(1− θ)xs

t + θXb
t

]
−αbNt

[
θxb

t + (1− θ)Xs
t

]
; (15)

ct, kt+1,mt+1 ≥ 0 and nt ∈ [0, 1− b] for all t.

The constraint (14) resembles a standard budget constraint in a neo-
classical growth model, except that the right-hand side is not income (or
output) but rather the receipts from exchange. The constraint (15) is the
law of motion of the household’s money holdings. In addition to receiv-
ing lump-sum monetary transfers (τ), the household obtains money when
its sellers sell goods for money in desirable matches and pays out money
when its buyers buy good with money. In such transactions, the quantity
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of money received or paid depends in general on whether the household’s
member is a proposer or a respondent, as recorded by (15).

4. CHARACTERIZATION OF MONETARY EQUILIBRIA

The following is a definition of a symmetric monetary equilibrium:

Definition 4.1. A symmetric monetary equilibrium consists of each
individual household’s decisions {at}t≥0, other households’ decisions
{At}t≥0, and monetary transfers {τt}t≥0 such that the following require-
ments are met: (i) Given {At} and {τt}, at solves an individual household’s
maximization problem (PH); (ii) at = At for all t; (iii) 0 < nt < 1− b and
0 < ωtmt < ∞ for all t ≥ 0; and (iv) τt = mt+1 −mt = (γ − 1)mt, where
γ > 0.

Part (i) of the definition requires that each individual household’s deci-
sions be the best response to other households’ choices. Part (ii) imposes
symmetry across households. Part (iii) requires that the equilibrium be
monetary. In particular, the restriction nt > 0 requires that the measure of
sellers in the economy be positive (otherwise money would have no value);
the restriction nt < 1 − b requires that the measure of buyers be positive;
and ωtmt > 0 requires that money be valued. The restriction ωtmt < ∞ is
necessary for the household’s maximization problem to have a non-trivial
solution: If ωtmt = ∞ for some t, the household can consume an infinite
amount using money at t. Part (iv) specifies the monetary transfers and
the gross rate of money growth (γ).

As stated earlier, I focus on symmetric monetary equilibria in the limit
where the interval between two bargaining rounds (∆) approaches 0. To
characterize these equilibria, I start with the terms of trade. Let θαbNtλt be
the shadow price of the trading restriction on money, (9), which a proposing
buyer faces. Let (1−θ)αbntπt be the shadow price of the trading restriction
on money, (13), which a proposing seller faces. Both shadow prices are
expressed in terms of period-t utility.12 The following proposition describes
the bargaining outcome in the limit case (the proof appears in Appendix
1):

12Notice that the household does not face the cost of the trading restrictions when re-
sponding to an offer, because the response is either “Yes” or “No”. The long expressions
of the shadow prices of the trading restrictions simplify the expressions for equilibrium
conditions. They result from the following normalization. Since (9) applies only to the
subset of member in Ip

mt (i.e., those money holders who meet desirable sellers and who
are chosen to be the proposer), the shadow price of (9) is multiplied by the measure
of agents in the subset Ip

mt. Similarly, the shadow price of (13) is multiplied by the
measure of agents in the subset Ip

pt.
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Proposition 1. When ∆ → 0, there is immediate agreement between
the two agents in a desirable match. All symmetric monetary equilibria
satisfy (qb

t , x
b
t) = (qs

t , x
s
t ) = (qt, xt) and

ωtxt − Φt = Ds
t =

(1− θ)ωt

ωt + θλt
[u′(ct)qt − Φt] ; (16)

u′(ct)qt − ωtxt = Db
t =

θ(ωt + λt)
ωt + θλt

[u′(ct)qt − Φt] . (17)

λt/ωt =
πt

ωt − πt
=

εu′(ct)qt

σΦt
− 1, (18)

where Φt ≡ Φ
(

kt

nt
f

(
ntqt

kt

))
. Therefore, λ and π are either both 0 or both

positive.

Proposition 1 characterizes a household’s choices of the quantities of
trade. This proposition illustrates a number of important features of a
symmetric monetary equilibrium. First, the quantities of trade proposed
by a buyer and a seller are the same when ∆ → 0. This is a standard
result in the sequential bargaining framework. If the seller’s and the buyer’s
proposals were different from each other, at least one agent would gain by
rejecting the partner’s offer and proceed to the next round of bargaining,
which is not optimal for the two agents.

Second, the trading restrictions on money, (9) and (13), are either both
binding or both non-binding in symmetric equilibria. In fact, λ = ωπ/(ω−
π). To explain this result, notice that a binding restriction on money
increases the marginal cost of money to the proposing buyer because,
to propose a larger quantity of goods, the buyer must give the seller a
larger quantity of money in order to induce the seller to accept the offer,
which makes the trading restriction (9) more binding. The shadow price λt

measures this additional cost of money to the proposing buyer. To cover
the additional cost, a buyer’s proposal requires that the marginal utility
of consumption exceed the cost of production by a fraction λt/ωt, i.e.,
u′(ct) = (1 + λt/ωt)Φ′tf

′
t . Similarly, a binding restriction on money to the

proposing seller, (13), reduces the marginal value of money to the seller be-
cause it restricts the amount of money that the buyer can give. The shadow
price πt measures this reduction in the value of money to the proposing
seller. To compensate for this lower value of money, a seller’s proposal
requires that the marginal cost of production be less than the marginal
utility of consumption by a fraction πt/ωt, i.e., Φ′tf

′
t = (1 − πt/ωt)u′(ct).

For both the buyer’s and seller’s proposals to be optimal, it must be true
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that (1 + λt/ωt) = (1 − πt/ωt)−1, which leads to λ = ωπ/(ω − π). If
λ > ωπ/(ω − π), for example, the household can reduce the quantity of
goods asked by proposing buyers and increase the quantity of goods sup-
plied by proposing sellers. In this case, the utility gain from the relaxation
of the buyer’s trading restriction exceeds the increase in the cost of the
seller’s restriction. That is, the household has a net gain, which contra-
dicts the optimality of the household’s original proposals.

Third, buyers’ and sellers’ shares of the match surplus are endogenous
and are different from those in a similar sequential bargaining framework
without the trading restrictions on money. Without the trading restrictions
on money, an agent’s share of the match surplus is equal to the probability
with which the agent is chosen to propose, i.e., (1 − θ) for a seller and θ
for a buyer. With the trading restrictions, however, a seller gets a share
(1−θ)ω/(ω+θλ) of the match surplus and a buyer gets the remainder (see
(16) and (17)). Provided θ 6= 0 or 1, these shares depend on how binding the
trading restrictions on money are and hence they are endogenous. When
the trading restrictions on money bind, a seller gets less than (1− θ) share
of the match surplus, because a seller has a positive probability to be the
proposer and to face the trading restriction on money. A seller shares a
part of the cost generated by the money restriction, which reduces the
seller’s surplus share. In fact, the seller’s share decreases with λ/ω and the
buyer’s share increases with λ/ω. That is, the more binding the trading
restrictions on money are, the lower the seller’s share is and the higher the
buyer’s share is. As analyzed later, endogenous surplus shares generate
multiple monetary equilibria.

Let me characterize the household’s other choices. Combining the first-
order conditions for ct and kt+1 with the envelope conditions for kt and
mt, I obtain the following conditions:

u′(ct)
βu′(ct+1)

= 1 +
αbσ(1− ε)
εu′(ct+1)

· nt+1

kt+1
Φ

(
kt+1

nt+1
f

(
nt+1qt+1

kt+1

))
, (19)

ωt

βωt+1
= 1 + θαnt+1

λt+1

ωt+1
. (20)

The condition (19) characterizes the household’s optimal trade-off between
consumption and savings. As in a standard intertemporal model, the con-
dition requires that the marginal rate of substitution between current and
future consumption be equal to the rate of return to capital. The condition
(20) requires that the capital loss to holding money be offset by money’s
role of relaxing the trading restrictions.
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In any equilibrium with nt < 1− b, the first-order condition for nt is:

αbΦt

ε[1 + θλt/ωt]

{
σ[1− (2− ε)θ]

λt

ωt
− [(σ − ε)θ − ε(σ − 1)]

}
= ϕ− 1. (21)

For nt > 0, the left-hand side of (21) must be positive, which requires
θ < 1/(2− ε) and

λt

ωt
>

(σ − ε)θ − ε(σ − 1)
σ[1− (2− ε)θ]

≡ z0. (22)

I will focus on equilibria with λ/ω > 0. To justify this focus, note that
ωt+1 = β−1ωt when λ/ω = 0 (see (20)), i.e., the value of money grows
over time at the discount rate. To satisfy the equilibrium requirement
ωtmt < ∞ in this case, money supply must shrink at the discount rate.
Thus, for γ > β, a monetary equilibrium with λ/ω = 0 does not exist. To
ease exposition, I impose a stronger condition z0 > 0, which is equivalent
to the lower bound on θ in (6). Under this condition, n > 0 implies
λ/ω > 0 (see (22)). I will also focus on steady states, because dynamics
are analytically difficult to describe.

5. MULTIPLE MONETARY STEADY STATES
5.1. Existence

A key variable in the equilibrium is

zt = λt/ωt. (23)

This variable measures how severely exchanges are constrained by money
holdings. The larger z is, the more agents are constrained by money. As
discussed before, I focus on equilibria with λt > 0, which is equivalent to
zt > 0 for all t ≥ 0.

Use an asterisk to indicate steady state and define the following functions:

R(z) ≡ ε(ϕ− 1)
αb

· 1 + θz

σ[1− (2− ε)θ]z − (σ − ε)θ + ε(σ − 1)
, (24)

K(z) ≡ Φ−1 (R(z))
/

f

(
(β−1 − 1)(1 + z)

αb(1− ε)

)
. (25)

q(z) ≡ (β−1 − 1)(1 + z)
αb(1− ε)

K(z). (26)

The following proposition details the number of steady states (see Appendix
1 for a proof):
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Proposition 2. In the steady state, Φ∗ = R(z∗), k∗/n∗ = K(z∗) and
q∗ = q(z∗). The steady state value of z∗ is given by the solution to the
following equation:

R(z)
K(z)

=
ε(β−1 − 1)
αbσ(1− ε)

u′
(

αb(γβ−1 − 1)
q(z)
z

)
. (27)

There exists γE > β, where γE is defined in Appendix 1, such that at least
one monetary steady state exists and satisfies 0 < n∗ < 1− b. The number
of such steady states is even if

lim
c→0

cu′(c) <
θ(ϕ− 1)(γβ−1 − 1)

1− (2− ε)θ
, (28)

and odd otherwise.

Figure 1 illustrates the possibility of multiple steady states. The curves
LHS(z) and RHS(z) represent the left-hand side and the right-hand side
of (27), respectively. While RHS(z) is a strictly increasing function of z,
LHS(z) is U -shaped and reaches the minimum at zm. Also, LHS(z0) >
RHS(z0) at the lowest admissible value z0. When γ < γE , LHS(zm) <
RHS(zm) and so there is at least one solution to (27). An even number
of solutions exist if LHS(z) exceeds RHS(z) for large z. This is the case
when the parameter values satisfy (28). Without loss of generality, I will
assume that there are only two steady states when the number of steady
states is even. The steady state with a lower value of z∗ is labelled EH
and the steady state with a higher value of z∗ is labelled EL.

The aggregate level of real activities is higher in equilibrium EH than in
equilibrium EL. In particular, the levels of consumption, output, capital,
labor input and the real money balance are all higher in equilibrium EH
than in equilibrium EL. For this reason, I call equilibrium EH the “high-
activity” equilibrium and equilibrium EL the “low-activity” equilibrium.
The main reason why equilibrium EH has higher aggregate activities than
equilibrium EL is that the number of sellers is higher in equilibrium EH,
which produces more desirable matches and trades in equilibrium EH than
in equilibrium EL. For this reason, the high-activity equilibrium has a high
liquidity level than the low-activity equilibrium.13

Why are there multiple steady states? The answer lies in the endoge-
nous division of the match surplus between buyers and sellers. The ex-
pectations of the degree to which the trading restrictions on money bind

13One way to make this association between liquidity and aggregate activities more
precise is to use the velocity of money to measure liquidity. Let p be the nominal price
level. Then p = m/(bq). The output velocity of money is pαbnq/m = αn, which
increases with the number of sellers in the economy.
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FIG. 1. Multiple monetary steady states and their responses to an increase in money
growth
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    0  z0    z1     zm z2     z
Figure 1. Multiple monetary steady states and their

responses to an increase in money growth
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affect households’ choices of the number of sellers, which in turn affect the
degree to which the trading restrictions bind. Suppose, for example, that
households expect that trades will be less constrained by money holdings.
In this case, sellers’ share of the match surplus will increase (see (16)).
Anticipating this higher share for sellers, households increase the fraction
of sellers. At the aggregate level, this increases the supply of goods and
increases the purchasing power of money. A higher purchasing power of
money implies that the trading restrictions on money will be less binding,
which fulfills the initial expectations. Similarly, if households expect that
the trading restrictions on money will be more binding, then sellers’ share
of the match surplus will be low and households will reduce the fraction of
sellers, which will reduce aggregate supply of goods, reduce the purchasing
power of money and indeed make the trading restrictions on money more
binding. Therefore, the liquidity level in the economy depends critically on
expectations as well as on the fundamentals of the economy.

The condition for multiple monetary equilibria, (28), is not a strong
requirement. Under Assumption 1 on θ, for example, the condition is
always satisfied for u(c) = u0c

δ, where δ ∈ (0, 1], which has often been
used in previous search models of money. Notice that this includes the case
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where the marginal utility of consumption is constant. Also, if limc→0 cu′(c)
is finite, the condition is always satisfied when θ is sufficiently close to the
upper bound 1/(2−ε). Also, since consumption and leisure are separable in
the utility function (1), multiplicity here does not require that consumption
and leisure be substitutable or complementary.14

Suppose that limc→0 cu′(c) is positive and finite. Then, multiple mone-
tary equilibria are more likely to exist for large θ than for small θ, and more
likely for large γ than for small γ. When θ is close to the upper bound
1/(2 − ε), for example, the fraction of sellers is close to 0. In this case,
households’ choices of the fraction of sellers are very sensitive to changes in
the beliefs of how binding the trading restrictions on money are. A small
change in such beliefs induces households to change the fraction of sellers
significantly which fulfills the change in beliefs. A similar explanation ap-
plies to the role of γ for multiplicity. If γ is sufficiently larger than β, for
example, households are severely constrained by the trading restrictions
on money, and so changes in the beliefs about how severely these restric-
tions bind lead to large changes in the number of matches that support the
beliefs.

Multiple monetary steady states arise in my model from a distinct non-
Walrasian feature – buyers’ and sellers’ shares of the match surplus in bi-
lateral bargaining. This source of multiplicity is novel in comparison with
Walrasian monetary models.15 Previous search models of money also gen-
erated multiple equilibria (e.g., Shi, 1995, and Trejos and Wright, 1995),
but multiplicity there depends critically on the existence of barter and indi-
visible money. The current model establishes multiple monetary equilibria
without these elements, in particular, without the artificial assumption of
indivisible money. Nevertheless, there is a similarity between the multi-
ple equilibria here and those in previous search models. In Shi (1995),
for example, beliefs about the value of the match surplus affect the sur-
plus division which in turn supports the beliefs. When the total surplus
from exchange is expected to be low, for example, buyers extract the entire
match surplus, which makes sellers reduce the quantity of goods produced
in each match and indeed leads to a low match surplus in equilibrium. It
is interesting to note that, in both types of models, the size of the match

14It is also apparent that multiplicity here relies on n being endogenous and θ to be
in the interior of (0, 1). In a similar framework, I showed that the monetary steady state
is unique if n and b are both exogenous (Shi, 1997), or if θ = 1 and only b is endogenous
(Shi, 1999).

15A monetary economy with Walrasian markets can oscillate between different states
even when there is no intrinsic shock to preferences or technology (see Grandmont, 1985,
Woodford, 1986, and Matsuyama, 1990). In contrast to multiple steady states estab-
lished here, such models often have a unique monetary steady state and the oscillations
are due to either complicated dynamics (e.g., limited cycles) or extrinsic shocks (e.g.,
sunspots).
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surplus and buyers’ share of the surplus are inversely related to each other.
Thus, buyers can get a larger size of surplus in the equilibrium where they
extract a smaller share of the match surplus.

5.2. Effects of Money Growth
When there are an even number of steady states, an increase in the

money growth rate (γ) has different effects on different steady states. The
following corollary summarizes these effects (see Appendix 1 for a proof):16

Corollary 1. In the high-activity steady state (the one with a low z∗),

dz∗

dγ
> 0,

dq∗

dγ
< 0,

d(k∗/n∗)
dγ

< 0, and
dl∗

dγ
< 0.

In the low-activity steady state, the effects of γ on (z∗, q∗, k∗/n∗, l∗) are
opposite to the above. In both steady states, n∗, c∗ and aggregate output
increase with γ. In the low-activity steady state, dk∗/dγ > 0. In the high-
activity steady state, dk∗/dγ > 0 only if γ is not too close to γE.

An increase in the money growth has opposite intensive effects in the two
steady states, i.e., the quantities of trade in each match respond to money
growth in opposite directions in the two steady states. To see this, note
that an increase in γ shifts down the curve RHS(z) (see Figure 1 ) and so
changes the value of z∗ in the two steady states in opposite directions. In
the high-activity equilibrium EH, the increase in γ reduces each buyer’s
real money balance q∗ (= bq∗). Each seller’s capital k∗/n∗ and labor input
l∗ also fall. In contrast, in the low-activity equilibrium EL, the three
variables (q∗, k∗/n∗, l∗) all increase in response to an increase in γ.

These differences in the intensive effects are intuitive. In the low-activity
equilibrium, agents are severely liquidity constrained. An increase in the
money growth rate provides additional liquidity and so the trading restric-
tions on money become less binding, because z′(γ) < 0 in such an equilib-
rium. As the cost of the money restrictions falls, sellers’ share of the match
surplus increases and so sellers increase the labor input and produce more
goods for money in each match. In the high-activity equilibrium, however,
agents are not very severely constrained by liquidity. In this case, the in-
flation consequence of a high money growth rate dominates and so each
seller reduces the quantity of goods produced for money in each match.

Despite the differences in the intensive effects, money growth has the
same positive extensive effects in the two steady states. An increase in
the money growth increases the number of sellers in both steady states

16When there are an odd number of steady states, the one with the lowest z∗ behaves
in the same way as the high-activity steady state described in the corollary.
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and hence increases the number of desirable matches. In the low-activity
equilibrium, this positive extensive effect reinforces the positive intensive
effects of money growth, and so aggregate consumption and output in-
crease with the money growth rate. In the high-activity equilibrium, the
positive extensive effect dominates the negative intensive effects of money
growth, again leading to higher aggregate consumption and output. There-
fore, this model can produce a positive relationship between money growth
and aggregate output in both steady states, and the key to this positive
relationship is the positive liquidity effect of money growth.

To explain why an increase in the money growth increases the number of
sellers in both steady states, let me start with households’ optimal choice
of the money balance, characterized by (20). This condition requires that
the capital loss to holding money be offset by money’s role of relaxing the
trading restrictions. In steady states, the capital loss to holding money is
(γβ−1 − 1). The role of money in exchange is quantified by θαn∗z∗, where
θαn∗ is the probability with which a buyer faces the trading restriction on
money. An increase in the money growth rate increases the capital loss to
holding money. To compensate for this loss, money must have an increased
role in relaxing the trading restrictions. If such restrictions become less
binding as a result of an increase in the money growth rate (i.e., if z∗

falls), as in the low-activity equilibrium, then agents must face the trading
restrictions more frequently than before. This requires n∗ to increase. If
the trading restrictions become more binding (i.e., if z∗ increases), then the
response of n∗ depends in general on the magnitude in which z∗ increases.
Because the trading restrictions on money are not very binding in the high-
activity equilibrium, an increase in the money growth rate does not increase
z∗ much. To compensate for the higher capital loss to money, the number
of transactions must increase.

The above comparison between the two steady states illustrates two im-
portant features of this search model. First, the positive extensive effects
of money growth are robust across different equilibria, in contrast to the
intensive effects. Second, an increase in the money growth rate has stronger
effects on real aggregate output in the low-activity equilibrium than in the
high-activity equilibrium, because the extensive and intensive effects work
in the same direction in the low-activity equilibrium but opposite direc-
tions in the high-activity equilibrium. Because liquidity is lower in the
low-activity equilibrium than in the high-activity equilibrium, this result
suggests that expansionary monetary policies are more useful in stimulating
output when liquidity is low than when liquidity is high.

Finally, the welfare effect of money growth is ambiguous analytically.
While a higher money growth rate increases consumption, it also increases
the cost of participating in exchange by increasing the number of sellers.
When the utility function of consumption exhibits constant relative risk
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aversion, numerical examples seem to suggest that a higher money growth
rate increases steady state welfare when the money growth rate is small.

6. CONCLUSION

In this paper I construct a search monetary model with capital accu-
mulation where money and goods are both divisible. Agents in matches
determine the terms of trade through a sequential bargaining process and
they face trading restrictions that require the quantity of money traded not
to exceed what the buyer brings into the match. I show that sellers’ share
of the match surplus decreases with the severity of the trading restrictions.
Such endogenous surplus shares generate multiple, self-fulfilling monetary
steady states. When agents expect that the trading restrictions will not
bind severely, sellers’ surplus share is large and so households allocate more
members to be sellers. This leads to a larger number of desirable matches,
higher aggregate supply of goods, and higher purchasing power of money,
which fulfills the expectations of not severely binding trading restrictions.
On the other hand, when agents expect that the trading restrictions will
bind severely, they reduce the number of sellers, which leads to lower ag-
gregate output and lower purchasing power of money, again fulfilling the
expectations. In both steady states, an increase in the money growth rate
increases aggregate output and consumption by increasing the number of
matches.

The current model interprets liquidity as the number of transactions.
This interpretation provides a useful link between aggregate activities and
liquidity. Aggregate activities are higher in the equilibrium with high liq-
uidity than in the equilibrium with low liquidity. Also, an expansionary
monetary policy increases aggregate output in both equilibria because the
policy increases the liquidity level in both equilibria. Moreover, the model
suggests that such positive effects of money growth on real output are
stronger in an economy where liquidity is severely constrained than in an
economy where liquidity is not constrained.

To test the model, one can examine cross-country evidence to see whether
expansionary monetary policies are more effective in low-income countries
than in high-income countries, after controlling for other differences be-
tween countries. Another way to test the model is to interpret the two
steady states as states of a stochastic economy where there are intrinsic
or extrinsic shocks. With this interpretation, the low-activity state is a
recession and the high-activity state is a boom. Then, the current model
implies that sellers’ share of the match surplus is procyclical. To test this
implication, one can examine whether firms’ mark-ups are procyclical.
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APPENDIX

Proof of Proposition 1
By the definition of a symmetric monetary equilibrium, ωtmt > 0 for

all t, which implies that the value function v(kt+1,mt+1) is increasing in
mt+1. Thus the constraints (15), (8) and (12) all hold with equality. Use
these equalities to eliminate mt+1, xb

t and xs
t in the household’s decision

problem (PH). Deriving the following first-order conditions for qb
t and qs

t ,
and replacing capital-case variables with lower-case letter under symmetry,
I obtain the following:

u′(ct) =
σ

ε
· ωt + λt

ωt
·
Φ

(
qb
t

)
qb
t

, (A.1)

u′(ct) =
σ

ε
· ωt

ωt − πt
· Φ (qs

t )
qs
t

, (A.2)

where Φ(qt) = Φ
(

kt

nt
f

(
ntqt

kt

))
.

Next, substitute (10) and (11) into the equality forms of (8) and (12).
Imposing symmetry, I have:

ωtx
b
t − Φ

(
qb
t

)
=

(1− θ)β∆

1− θβ∆
[ωtx

s
t − Φ (qs

t )] , (A.3)

u′(ct)qs
t − ωtx

s
t =

θβ∆

1− (1− θ)β∆

[
u′(ct)qb

t − ωtx
b
t

]
. (A.4)

The match surplus u′(c)−Φ(q) is positive in a symmetric monetary equilib-
rium (otherwise money would not be valued), and so there is an immediate
agreement in sequential bargaining.

I now show that λ and π are either both positive or both zero in sym-
metric monetary equilibria, i.e., it is never the case that λ > 0 and π = 0
or that λ = 0 and π > 0. To see this, suppose, to the contrary, that λt > 0
and πt = 0. In this case, (A.1) and (A.2) imply

Φ(qb
t )/qb

t

Φ(qs
t )/qs

t

=
ωt

ωt + λt
< 1.

Since Φ(q)/q is an increasing function of q, the above relation implies qb
t <

qs
t . Notice that the strict inequality holds no matter how small ∆ is. Since

λt > 0, xb
t = mt/b. Taking the limit ∆ → 0 on (A.3), I have

ωt

(mt

b
− xs

t

)
→ Φ(qb

t )− Φ(qs
t ) < 0,
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which contradicts the trading restriction xs
t ≤ mt/b. Thus, the combina-

tion λt > 0 and πt = 0 is inconsistent with a symmetric monetary equilib-
rium. Similarly, the combination λt = 0 and πt > 0 is inconsistent with a
symmetric monetary equilibrium.

To establish the rest of the proposition, suppose first that λt > 0 and
πt > 0. In this case, xs

t = xb
t = mt/b and (A.3) implies that qs

t = qb
t when

∆ → 0. With qs
t = qb

t = qt, (A.1) and (A.2) imply (18). It remains to show
that Ds

t and Db
t are given by (16) and (17) in the limit ∆ → 0. To achieve

this, solve qs
t from (A.4):

qs
t = J(qb

t ,∆) ≡ θβ∆

1− (1− θ)β∆
qb
t +

[
1− θβ∆

1− (1− θ)β∆

]
ωtxt

u′(ct)
.

Clearly, J(qb
t , 0) = qb

t . Substituting qs
t into (A.3) yields

ωtxt =
[
Φ(qb

t )−
(1− θ)β∆

1− θβ∆
Φ(J(qb

t ,∆))
]/[

1− (1− θ)β∆

1− θβ∆

]
.

When ∆ approaches zero, both the numerator and the denominator on the
right-hand side of the above equality approach zero. Applying l’Hopital’s
rule and using (A.1) yields (16). Substituting ωtxt from (17) into (11) and
taking the limit ∆ → 0 yields (17).

The other possible case λt = πt = 0 can be examined similarly and the
same equations (16) – (18) hold, with λt = πt = 0. This completes the
proof for Proposition 1.

Proofs of Proposition 2 and Corollary 1
For Proposition 2, I show first that z∗ is determined by (27). With

the notation z = λ/ω and the function R(z) defined by (24), (21) implies
Φ∗ = R(z∗) and (18) implies

u′(c∗) =
σ

ε
(1 + z∗)

R(z∗)
q∗

.

Substituting u′ from the above into the steady state version of (19) yields

n∗q∗

k∗
=

(β−1 − 1)(1 + z∗)
αb(1− ε)

.

This equation and Φ∗ = R(z∗) jointly yield k∗/n∗ = K(z∗) and q∗ = q(z∗),
where K(·) is defined by (25) and q(·) by (26). Substituting c∗ = αbn∗q∗

from (14) into (19) yields:

R(z∗)
K(z∗)

=
ε(β−1 − 1)
αbσ(1− ε)

u′ (αbn∗q(z∗)) .
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To obtain (27) from the above equation, it suffices to show the following:

n∗ = (γ/β − 1)/z∗.

Using (16), I get xt+1/xt = ωt/ωt+1 in the steady state. Since xt+1/xt =
mt+1/mt = γ, then ωt/ωt+1 = γ, and so (20) yields the desired relation
n∗ = (γ/β − 1)/z∗.

Now I examine the solutions to (27). It is easy to verify that K ′(z) < 0,
R′(z) < 0 and q′(z) < 0. Thus, the right-hand side of (27), denoted
RHS(z), is an increasing function of z and a decreasing function of γ.
Also, RHS(z) → 0 when z → z0, where z0 is defined in (22). The left-
hand side of (27), denoted LHS(z), does not depend on γ once z is given.
LHS′(z) > 0 if and only if

g(z) ≡ − (1 + z)R′(z)
R(z)

<
σ

ε(σ − 1)
. (A.5)

It can be verified that the function g(z) defined above is monotonically
decreasing in z for all z > z0, with g(z0) = ∞ and g(∞) = 0. Thus there
exists a unique level zm, with zm > z0, such that LHS′(z) > 0 if and only
if z > zm.

Since LHS(z0) = ∞ > RHS(z0) and LHS(z) reaches the minimum at
z = zm, (27) has at least one solution if LHS(zm) < RHS(zm) (see Figure
1), which can be rewritten as:

γ < γE0 ≡ β

[
1 +

zm

αbq(zm)
u′−1

(
αbσ(1− ε)R(zm)
ε(β−1 − 1)K(zm)

)]
.

Since LHS(z) is U -shaped and RHS(z) is monotonically increasing, the
number of solutions to (27) is even if and only if limz→∞ LHS(z)/RHS(z) >
1, which is equivalent to (28). When γ < γE0, the smallest solution to (27)
is less than zm and hence behaves in the same way regardless of whether
(27) has an even or odd number of solutions. Denote the largest solution for
z∗ by z2(γ) and the least solution by z1(γ). Then, z0 < z1(γ) < zm < z2(γ).

There are other restrictions on γ. Since n∗ = (γ/β − 1)/z∗ and z∗ >
0, then n∗ > 0 requires γ > β and n∗ < 1 − b requires z∗ > (γ/β −
1)/(1 − b). Consider the requirement z1(γ) > (γ/β − 1)/(1 − b). It is
satisfied for γ close to β since z1(β) = z0 > 0. Suppose there is a level
γE1 such that the inequality becomes an equality (if such γ does not exist,
let γE1 = γE0). Then the steady state z1(γ) satisfies n∗ < 1 − b for all
γ ∈ (β, min(γE0, γE1)). Similarly one can define γE2 and show that the
steady state z2(γ) satisfies n∗ < 1− b for all γ ∈ (β, min(γE0, γE2)). Thus,
all solutions to (27) satisfy the equilibrium requirements if β < γ < γE ≡
min(γE0, γE1, γE2). This completes the proof of Proposition 2.
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The proof of Corollary 1 is as follows. Since LHS(z) does not depend
on γ directly, then

dz∗

dγ
=

∂RHS(z)/∂γ

LHS′(z)−RHS′(z)
.

Because ∂RHS(z)/∂γ < 0, dz∗/dγ > 0 iff LHS′(z) < RHS′(z). Under the
restriction γ < γE , z1 and z2 lie on opposite sides of zm and so LHS′(z) <
RHS′(z) iff z < zm. Thus, z′1(γ) > 0 and z′2(γ) < 0. Since q′(z) < 0,
K ′(z) < 0 and R′(z) < 0, q∗, k∗/n∗ and l∗ are all decreasing functions of
γ in the steady state with z1(γ) but are increasing functions of γ in the
steady state with z2(γ). For the response of c∗, note that the expression in
u′(.) in RHS(z) is c∗. Because u′(.) is a decreasing function, dc∗/dγ > 0
iff dRHS(z)/dγ < 0. Compute

dRHS(z)
dγ

=
∂RHS(z)

∂γ
+ RHS′(z)

dz∗

dγ
=

LHS′(z) · ∂RHS(z)/∂γ

LHS′(z)−RHS′(z)
.

Recall that ∂RHS(z)/∂γ < 0. In the equilibrium with z∗ = z1(γ), LHS′(z)
< 0 < RHS′(z) and so dRHS(z)/dγ < 0; in the equilibrium with z∗ =
z2(γ), LHS′(z) > RHS′(z) > 0 and so again dRHS(z)/dγ < 0. Thus,
dc∗/dγ > 0 in both steady states. In steady states, aggregate output
is equal to consumption because capital does not depreciate. Therefore,
aggregate output increases with γ in both steady states.

For the response of n∗, recall that n∗ = (γ/β − 1)/z∗. In the steady
state with z2(γ), dz∗/dγ < 0 implies dn∗/dγ > 0. For the steady state with
z1(γ), recall that c∗ = αbn∗q∗ and so n∗ = c∗/(αbq∗). Then dq∗/dγ < 0 and
dc∗/dγ > 0 imply dn∗/dγ > 0. For the response of k∗, direct calculation
reveals:

dk∗

dγ
=

1
1 + z∗

·
(

dz∗

dγ

)
·
[(

σ − 1
σ

g(z∗)− 1
ε

)
ρ− 1

]
,

where ρ ≡ −u′/(c∗u′′). In the equilibrium with z2(γ), z∗ > zm implies
g(z∗) < σ/[ε(σ − 1)] = g(zm) and so dk∗/dγ > 0. In the equilibrium with
z1(γ), dk∗/dγ > 0 if and only if g(z∗) > g(zm)(1 + ε/ρ), i.e., if and only if
γ is not too close to γE0.
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