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The Dynamics of Firms in the Presence of Adjustment Costs
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In this paper we investigate how capacity adjustment costs affect a firm’s
response to demand uncertainty. We first characterize the pattern of optimal
capacity adjustment for a monopolistic firm and find that capacity behaves as
a stabilizer for the firm’s output. For duopolistic firms the pattern is similar.
However, a firm may deviate depending on the demand and capacity circum-
stance. We find that when there is only a small cost of adjustment, a firm has
more incentive to deviate at a larger capacity. We also derive conditions under
which deviation in the high-demand state (regardless of present capacity) is
more profitable. The case of zero adjustment costs is also discussed. c© 2001
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1. INTRODUCTION

The optimal production plan of a firm often relates to the demand situ-
ation of the industry. When the demand is high, it tends to produce more;
when the demand is low, it tends to produce less. A firm adjusts output
levels by adjusting inputs. The levels of some inputs can be altered with-
out additional costs. Raw materials, for example, can be purchased at a
constant price according to a firm’s need. The adjustment of the levels of
other inputs, however, can be costly. For example, capital inputs, such as
machines, usually require some cost of adjustment. The purchase of new
machines, even at a constant price, requires additional space in the factory
which costs money. Selling surplus machines, on the other hand, is energy
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consuming, and the selling price is usually below market value if one wants
to sell them quickly. A firm’s production depends crucially on these inputs,
which are costly to adjust. These inputs are called the capacity of a firm
(cf. footnote 1) in this paper.

It is an indisputable fact that market demands are unpredictable. The
industry’s demand goes up and down, and consumers’ tastes are constantly
changing. How does a firm react to demand uncertainty, especially when
the alternations of the levels of some inputs are costly? Obviously, a firm
needs a larger capacity to produce larger outputs more efficiently, and vice
versa for small outputs. But constant changes in capacity are very costly.
This paper intends to provide a characterization for the firm’s optimal
behavior in this kind of situation.

There is a large literature on a firm’s reaction in the presence of demand
uncertainty, though none addresses the issue of adjustment costs. Green
and Porter (1984), and Rotemberg and Saloner (1986), for example, assume
that a firm can produce as much or as little as it desires at constant unit
costs. The capacity issue is added in Staiger and Wolak’s (1992) model,
but the adjustment of capacity is costless. Similar assumptions are made
in Brock and Scheinkman (1985).

It is reasonable to believe that firms behave differently when there are
adjustment costs. A firm will not adjust its capacity or output as drastically
as in the case of no adjustment costs. Using a model similar to Rotemberg
and Saloner’s but adding some capacity adjustment costs, we find that a
firm’s capacity acts like a shock absorber. The capacity is adjusted upward
when the demand is high, but not as much as in the case of no adjustment
costs, and vice versa when the demand is low. In this way, the output of
a firm does not fluctuate as severely as the demand. Given this property
of the adjustment process, a firm is most productive (efficient) when the
same demand condition occurs in consecutive periods.

The above characteristics prevail along both the optimal production path
of a monopoly and the optimal collusive production path of an oligopoly.
Regarding the optimal collusive path, it is important to identify whether
the path can be sustained in an equilibrium and when a firm has the most
incentive to deviate from the path. Green and Porter (1984) find that firms
are more likely to deviate in times of recession when the demand is low.
Rotemberg and Saloner (1986), on the other hand, come to the opposite
conclusion: firms are more likely to deviate during economic booms when
the demand is high. All these conclusions are reached assuming a firm can
increase or decrease its output without any adjustment costs. This paper
re-examines the same issue but under more reasonable assumptions; that
is, a firm must adjust its capacity in order to produce more efficiently under
demand uncertainty and this adjustment is costly. In the analysis, we are
able to derive conditions under which a larger capacity gives a firm more
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incentive to deviate and conditions under which a firm is most likely to
deviate when the demand is high.

The main feature of our model is that we incorporate capacity adjustment
costs explicitly. Capacity here refers to the facility of a firm. Adjusting
it is obviously costly. In general, a large capacity is more appropriate for
producing a large output, since a large capacity is also more expensive to
maintain.

This paper relates a firm’s capacity adjustment process to its output
when market demand is stochastic. It studies a firm’s long-run production
strategies and obtains many conclusions, some are very different than mod-
els without capacity adjustment costs. It also provides conditions under
which the results obtained by previous researchers are valid. Therefore,
it can be viewed as a step closer towards the full understanding of the
relationships between a firm’s capacity, productivity, and market demand
conditions.

The rest of the paper is organized as follows. In Section 1, we character-
ize the optimal production plan of a monopoly firm. The results are then
used in Section 2 where the optimal collusive path of production is derived.
In Section 2, we also analyze the incentives for a firm to deviate from the
optimal path. A model in which the production function does not depend
on capacity is considered as a special case. Section 3 contains some further
remarks. Most proofs are relegated to an appendix.

2. THE CASE OF A MONOPOLY

Suppose that a firm is a monopoly in an industry. There are infinitely
many periods starting with period 0. In each period, the demand for the
firm’s product is high with probability θ and low with probability 1 − θ.
We assume that these probabilities are independent across time. Let S ∈
{H,L} denote the state of demand in a period, where H indicates the high-
demand state and L the low-demand state. The inverse demand function
in state S is given by P = PS(Q). That is, in order to sell Q units of
output, the monopoly has to set a price equal to PS(Q). Of course, this
P = PS(Q) function is decreasing in Q; the more one wants to sell, the
lower the price he can charge.

Let RS(Q) = PS(Q)Q denote the revenue for the firm in one period
when the state of demand is S. Then the corresponding marginal revenue
(measured as the extra revenue of selling one extra unit of product) is given
by RS

Q(Q). Assume that RS
QQ(Q) < 0; that is, the marginal revenue curve

is downward sloping. This assumption is satisfied by many traditional
demand functions, such as P = a − bQ. Its effect is to guarantee the
uniqueness of an optimal solution to our problem.
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The relative magnitude of the above mentioned demand functions in the
High and Low demand states is captured by the following relationships:

PH(Q) > PL(Q), PH
Q (Q) ≥ PL

Q(Q), ∀Q ≥ 0.

Therefore, the price is not only higher, but also declines more slowly in
the High demand state (compared at the same level of output). This
property of the demand function is directly related to the elasticities of
demand in each state: it implies that the elasticities of demand are higher
in the high-demand state. As is argued in Weitzman (1982), as the number
of products tends to increase in good times (the high-demand state), all
products become closer substitutes and thus the elasticities of demand are
also higher. In our model, these relationships guarantee that the optimal
output in the high-demand state is always higher than the low-demand
state.

The cost of production of the firm is a function of its output and its
capacity in each period. The cost function is not linear in the firm’s output.
Usually, the cost of production can be divided into two categories. One is
the cost of capital inputs, such as machines and tools. We call the stock
of these inputs capacity.1 The other is the cost of raw materials and labor
inputs. The difference between the two is that, the adjustment of the
former is costly (in addition to the cost of purchasing), while the latter
is not. Imagine the addition of one more big machine. The firm has to
make room for it, probably by constructing a new building or squeezing
the existing workplace. This imposes explicit or implicit costs to the firm,
accounting for the cost of new buildings or the loss in productivity of the
existing workforce.

Let ϕt be the firm’s capacity and Qt be its output in period t. The
cost of production is given by C(Qt, ϕt). Assume that CQ > 0, CQϕ < 0,
Cϕ(0, ϕ) > 0, CQQ > 0, Cϕϕ > 0, and CQQCϕϕ −C2

Qϕ ≥ 0; i.e., C(Q,ϕ) is
increasing in Q and (weakly) convex in (Q,ϕ). The assumption CQϕ < 0
implies that a larger capacity is more suitable for producing a larger out-
put, since it reduces the marginal cost of production (CQ). This is one of
the major assumptions we make in this paper. It characterizes the common
property shared by most production (if not all): more machines and tools
make producing extra units output easier, faster, and cheaper. This can
be illustrated in the following two examples.

1Here, the use of the term ‘capacity’ is not extremely precise. As we shall see later,
it does not measure the maximal output the firm can produce. Rather, it measures the
amount of equipment or facility in the firm. But we have not been able to find a better
term for it.
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Example 1 Consider the Cobb-Douglas production function Q = Lαϕβ ,
where L is the labor input, ϕ is the capital input (i.e., capacity, such as
machines), α > 0, β > 0, and α + β < 1. Let w be the wage rate for labor
and r be the interest rate for capital. Then the total cost of producing
Q units of output is given by C(Q,ϕ) = rϕ + wQ

1
α ϕ−

β
α . We can easily

verify that all the above assumed properties on C(Q,ϕ) are satisfied. In
this example, an increase in capacity increases the marginal productivity
of labor; that is, CQϕ(Q,ϕ) > 0. Given the unit cost of capacity, it is more
cost effective to have a large capacity when a higher level of output is being
produced.
Example 2 Let ϕ be the number of plants a firm owns, and G(Q)
be the (identical) cost function for each plant, with G(0) > 0, G′(Q) > 0,
G′′(Q) > 0. The optimal way of producing a total of Q units of output is to
split the production equally among all the plants, since the production has
decreasing returns to scale (G′′(Q) > 0). Thus, the total cost of production
is given by

C(Q,ϕ) = ϕG

(
Q

ϕ

)
+ cϕ,

where c is the maintenance cost per plant. Generalize the meaning of ϕ
such that it can be any positive number. Simple calculations show that

CQ = G′(
Q

ϕ
) > 0, CQϕ = − Q

ϕ2
G′′(

Q

ϕ
) < 0, Cϕ(0, ϕ) = G(0) + c > 0,

CQQ =
1
ϕ

G′′(
Q

ϕ
) > 0, Cϕϕ =

Q2

ϕ3
G′′(

Q

ϕ
) > 0, and CQQCϕϕ − C2

Qϕ = 0.

In this example, more plants are suitable for producing a higher level of
output, as it reduces the unit cost of production. Of course, because of
the cost of plant maintenance, setting up too many plants would not be
optimal.

From time to time, the firm may want to adjust the level of capacity.
The cost of adjusting from ϕt−1 to ϕt is denoted by H(ϕt−ϕt−1). (The
cost of purchasing extra capacity or selling excessive capacity is already in
the cost function C(Q, ϕ). For capacity ϕt in period t, a firm has to pay
an amount equivalent to the interest of borrowing ϕt in that period.) The
adjustment cost is assumed to be independent of the level of output, mainly
because it represents the cost of physically adding or deleting the capacity
in question. This cost is incurred regardless of the production plan.

Assume that H(·) is twice continuously differentiable, H(0) = 0, H ′(0) =
0, H ′′(ϕ) > 0, ∀ϕ. Here, H(ϕ) is assumed to be convex to ensure that the
firm’s optimization problem has a unique interior solution. There are sev-
eral reasons this assumption can be justified. Eisner and Strotz (1963) give
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two. The first is that, as the firm increases its demand for investment goods
in a single period, pressure will be put on the supply of investment goods.
The second argument is that there are increasing costs associated with
integrating new equipment into a going concern: reorganizing production
lines, training workers, etc. Even though this assumption is sometimes crit-
icized,2 it is widely used in modern dynamic economic analysis. To simplify
the analysis, we further assume that H(−ϕ) = H(ϕ). (Selling extra ca-
pacity means paying rent on empty buildings and/or receiving unfavorable
prices.) As an example, H(ϕ) = ϕ2 satisfies the above requirements.

The timing of the monopolist’s dynamic maximization problem is as
follows. At the beginning of each period, the state of that period’s demand
is revealed. The firm then simultaneously chooses the capacity ϕ, the
output Q, and the price P for that period.

Let δ be the discount factor for the firm. In period t, let V (ϕt−1) be its
maximized discounted expected profit given that the previous capacity is
ϕt−1 (before the state of demand is revealed in period t); let V S(ϕt−1) be
the corresponding profit when that state of demand is revealed and equal
to S. Note that V (·) and V S(·) are not indexed by t since they are time-
independent; in our infinite horizon setting they depend on the capacity
of the last period only. Furthermore, in what follows, we suppress the
subscript t whenever there is no ambiguity. By definition,

V (ϕt−1) = θV H(ϕt−1) + (1− θ)V L(ϕt−1).

The Bellman equation for the firm’s profit maximization can be expressed
as follows (rf. Ross (1983, p.74), Theorem 1.1, the optimality equation):

V S(ϕt−1) = max
Qt,ϕt

{
RS(Qt)− C(Qt, ϕt)−H(ϕt − ϕt−1) + δV (ϕt)

}
. (1)

Denote ΠS(Q,ϕ) = RS(Q)−C(Q,ϕ) as the current period profit (exclud-
ing the adjustment costs) and ΓS(Qt, ϕt, ϕt−1) = ΠS(Qt, ϕt)−H(ϕt−ϕt−1)
as the current period net profit. (1) states the principle of optimality: the
optimal value of the firm starting from this period can be obtained by op-
timizing profit it can earn this period plus its optimal value starting from
next period.

Even though the existence of a solution to a general Bellman equation is
not guaranteed, (1) has some nice properties. For example, ΓS(Qt, ϕt, ϕt−1)
is strictly concave in ϕt−1 and is jointly strictly concave in (Qt, ϕt). This
is because H(·) is strictly convex, C(Q, ϕ) is weakly concave in (Qt, ϕt),
and RS(Q) is strictly concave in Q. Given these properties of ΓS , we can

2See Das (1991) for example.
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conclude that there is a unique solution to (1) and the V S(ϕ) and V (ϕ)
functions are strictly concave.3

Differentiating the right-hand side of (1) with respect to Qt and ϕt, we
have the first-order conditions for the maximization problem (1):

ΠS
Q(Qt, ϕt) = 0, (2)

and

ΠS
ϕ(Qt, ϕt)−H ′(ϕt − ϕt−1) + δV ′(ϕt) = 0. (3)

From (2) and (3), we can obtain the optimal output function Qt = QS(ϕt)
and the optimal capacity adjustment function ϕt = ϕS(ϕt−1). As we shall
prove in Lemma 1, they are both increasing functions. This is quite intu-
itive. A larger capacity makes a larger scale of production cheaper. There-
fore, the firm tends to produce more. Meanwhile, capacities are costly to
adjust. Therefore, a larger capacity in the last period cultivates a larger
capacity in the current period under the same demand condition.

Lemma 1. (i)
dQS(ϕt)

dϕt
> 0; (ii)

dϕS(ϕt−1)
dϕt−1

≥ 0.

Proof. See Appendix.

The following lemma states that given the same level of capacity, the
firm will produce more in the high-demand state than in the low-demand
state. This seems natural, as a higher demand means higher price for the
firm, which in turn means production is more profitable, inducing the firm
to produce more.

Lemma 2. ∀ϕ ≥ 0, QH(ϕ) > QL(ϕ).

Proof. See Appendix.

Let ϕ∗ be the ϕ that maximizes V H(ϕ). This ϕ∗ is the ideal capacity for
the firm when it faces the high-demand state. Similarly, we can denote ϕ∗
as the ideal capacity for the firm when it faces the low-demand state. Of
course, it maximizes V L(ϕ). Given that last period’s capacity is ϕ∗, the
firm is certainly not going to adjust it when the demand is indeed high.
(Otherwise, it is not the ideal capacity.) Similar arguments can be made

3See, for example, Stokey and Lucas (1989, p.263), Theorem 9.6. The problem of
non-existence of an optimal solution in Example 1.1 of Ross (1983, p.74) does not arise
here because of the discount factor.
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for ϕ∗. These assessments can be confirmed by applying the Envelope
Theorem to (1):

dV H(ϕ∗)
dϕ

= H ′(ϕH(ϕ∗)− ϕ∗) = 0

and

dV L(ϕ∗)
dϕ

= H ′(ϕL(ϕ∗)− ϕ∗) = 0.

From H ′(0) = 0 and H ′′(·) > 0, we can conclude that ϕH(ϕ∗) = ϕ∗ and
ϕL(ϕ∗) = ϕ∗.

Since jumping to these ideal capacities is costly, the firm gradually ad-
justs its capacities towards these ideal ones (i.e., (ii) in Lemma 5). Even-
tually, when high (or low) demands occur consecutively, with very small
probability, of course, the capacity approaches ϕ∗ (or ϕ∗) in the limit (i.e.,
(iii) in Lemma 5). It is not surprising to see that the observed capacity is
usually between ϕ∗ and ϕ∗. Given this property of slow adjustment, the
firm responds to a one-unit change in the past capacity by less than a one-
unit change in its current capacity (i.e., (i) in Lemma 5). Obviously, these
descriptions make sense only if ϕ∗ is greater than ϕ∗, which is confirmed
in the first part of Lemma 3.

We now turn to issues concerning the firm’s output. Usually, how much
the firm actually produces in each demand state will depend on the last
period’s capacity and we therefore cannot conclude that a firm always pro-
duces more in the high-demand state. (Imagine the comparison between
the firm’s outputs when it faces a high demand but its existing capacity is
very small and when it faces a low demand but its existing capacity is very
large.) Nevertheless, when the firm is equipped with its ideal capacities, it
is quite obvious that it will produce more in the high demand state than
in the low demand state. This is stated in the second part of Lemma 3.

Lemmas 3 and 5 below summarize the properties of ϕ∗ and ϕ∗ described
above. Lemma 4 has no direct economic interpretation; it states that the
curvature of the firm’s value function is bounded, in a specific way, by the
curvature of the firm’s profit function. The reason it is stated as a lemma
is because it is needed in the proof of Lemma 5.

Lemma 3. ϕ∗ > ϕ∗; QH(ϕ∗) > QL(ϕ∗).

Proof. See Appendix.
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Lemma 4.

δV ′′(ϕ) <
Π2

Qϕ(QS(ϕ), ϕ)
ΠQQ(QS(ϕ), ϕ)

−Πϕϕ(QS(ϕ), ϕ), ∀ϕ ∈ [ϕ∗, ϕ∗].

Proof. It results directly from (19) in the proof of Lemma 3.

Lemma 5.

(i) dϕS(ϕ)
dϕ < 1, ∀ϕ ∈ [ϕ∗, ϕ∗];

(ii) ϕH(ϕ) ∈ (ϕ, ϕ∗], ϕL(ϕ) ∈ [ϕ∗, ϕ), ∀ϕ ∈ [ϕ∗, ϕ∗];
(iii) ϕH(ϕH(ϕH(· · ·ϕ))) → ϕ∗, ϕL(ϕL(ϕL(· · ·ϕ))) → ϕ∗, ∀ϕ ∈ [ϕ∗, ϕ∗].

Proof. See Appendix.

Given Lemmas 1 to 5, we are now ready to describe the optimal path
of production of the monopoly firm, which is the main objective of this
section. In the first period, the firm will choose capacity ϕ0 that is equal
to either ϕ∗ or ϕ∗ depending on the initial state of demand (say, S), produce
Q = QS(ϕ0), and charge a price that clears the market. In the subsequent
periods, the firm chooses the current capacity ϕt and output Qt according
to ϕt = ϕS(ϕt−1) and Qt = QS(ϕt) depending on the current demand
situation S. In period t, ϕt must be between ϕ∗ and ϕ∗; if the high-
demand (or low-demand) state occurs consecutively, ϕt approaches ϕ∗ (or
ϕ∗) monotonically and asymtotically.

Because capacity is costly to alter, the adjustment of capacity is not as
quick as in the absence of adjustment costs. Therefore, we may suspect
that there is a positive correlation between the capacity in any two consec-
utive periods, even though the demands in those periods are independent.
Because of this, the outputs in these periods could also be positively corre-
lated. To claim these relationships, we need to establish one more lemma.

Lemma 6. Suppose that g1(x) and g2(x) are both positive and strictly
increasing functions, and the random variable x has a non-degenerate c.d.f.
F . Then∫ ∞

−∞
g1(x)g2(x)dF (x) >

∫ ∞

−∞
g1(x)dF (x) ·

∫ ∞

−∞
g2(x)dF (x).

Proof. See Appendix.

Lemma 6 relates two random variables, generated by g1(x) and g2(x)
respectively. Because they are both positive and increasing functions,
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when x is large, both g1(x) and g2(x) become large. When x is small,
both g1(x) and g2(x) become small. Therefore, there is positive correla-
tion between the two. In expectation terms, the inequality in Lemma 6
can be rewritten as E(g1(x)g2(x)) > E(g1(x)) · E(g2(x)), or equivalently,
E{[g1(x)− E(g1(x))][g2(x)− E(g2(x))]} > 0. This implies that g1(x) and
g2(x) are statistically positively correlated.

Looking ahead from period 0, the firm’s optimal capacities and outputs
in periods t − 1 and t, ϕt−1, ϕt, Qt−1, and Qt are all random variables.
Since ϕt = ϕS(ϕt−1) (where S is the demand state in period t) is an
increasing function (from Lemma 1), we can conclude from Lemma 6 that
ϕt and ϕt−1 are two positively correlated variables. Furthermore, since
Qt−1 = QS′(ϕt−1) (where S′ is the demand state in period t−1) and Qt =
QS(ϕt) = QS(ϕS(ϕt−1)) are both positive and strictly increasing functions
of ϕt−1, from Lemma 6, Qt−1 and Qt are also positively correlated. Hence,
we have the following theorem; its proof is directly from Lemma 6.

Theorem 1. E(ϕt−1 ·ϕt) > E(ϕt−1) ·E(ϕt); E(Qt−1 ·Qt) > E(Qt−1) ·
E(Qt). That is, ϕt−1 and ϕt are positively correlated, and Qt−1 and Qt

are also positively correlated.

Even though demands are independent across time, the capacities and
the outputs are interdependent because of the presence of adjustment costs
in the capacity.4 This implies that capacities and outputs do not fluctuate
as severely as the industry demand. In some sense, capacities in this model
serve as a stabilizer for the industry output. The results obtained in this
paper should also apply to the situation where the costs of production
depend solely on output and where there are costs for adjusting outputs.
It will become clearer in the next section that the optimal collusive path
of oligopolistic competitors also shares the same properties.

3. THE CASE OF A DUOPOLY

In previous section, there is only one firm in the industry. When there
is more than one firm competing with another, is capacity still used as a
stabilizer to absorb the shocks in demand? Or is it used as an amplifier to
exaggerate the shocks? When is a firm most tempted to deviate from the
collusive strategy? These and other questions will be investigated in this
section.

Suppose that there are two firms competing in the industry. (The case of
N firms can be considered similarly. See Footnote 5.) These two firms have

4Scheinkman and Weiss (1986) show similarly that the equilibrium path of outputs
in their model exhibits higher order serial correlation than the exogenous uncertainty.
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identical production technology, which is the same as in the last section.
As in the case of a single firm, these firms observe the state of demand
(S) in the current period before they make their decisions on ϕ, Q and
P simultaneously. All ϕ, Q, and P of both firms in the past become
common knowledge. We shall look for a symmetric capacity and production
path that maximizes their joint profits. Given that their initial capacities
are the same, the firms will select, along the path, the same capacity,
produce the same amount of output, and set the same price. Since the cost
function C(Q,ϕ) is convex, splitting their output in any period minimizes
the total cost of production; that is, C(2Q,ϕ) > 2C(Q, ϕ). Let Qt denote
the production of one firm in period t. Then 2Qt represents the joint output
in the collusive path. Replacing PS(Qt) by PS(2Qt) in (1), since now there
are two firms each producing Qt. We define the solution to the following
equations as their optimal collusive path of production:5

V (ϕt−1) = θV H(ϕt−1) + (1− θ)V L(ϕt−1) (4)

and

V S(ϕt−1) = max
Q,ϕ

{
PS(2Q)Q− C(Q,ϕ)−H(ϕ− ϕt−1) + δV (ϕ)

}
. (5)

(5) is similar to (1) in the case of monopoly. Therefore, we can similarly
confirm the existence and the uniqueness of the solution to the above dy-
namic optimization problem. It is easy to see that the properties obtained
in the previous section also apply to this optimal collusive path. Therefore,
capacity in the case of duopoly also serves as a stabilizer for outputs under
demand shocks.

Because the firms are competing with each other, a collusive plan may not
be viable. At any time, if it wishes to, a firm may undercut the other firm’s
price and take over the entire market. (Consumers choose to purchase from
the firm with the lower price. If the prices are the same, they choose each
firm with equal probability.) Of course, this firm’s take-over is temporary.
The other firm may retaliate the next period and charge a lower price. This
price war could last for a very long period of time. There are two issues
that we intend to investigate. The first issue is under what circumstance
the two firms can cooperate all the time. Note that this cooperation is
tacit. Overt agreements on collusion are not allowed by law and therefore
not enforceable. Still, firms may not deviate and undercut their rival’s price
due to the loss of profits during the likely retaliation. The second issue is
how capacity is related to the possibility of deviation. Is deviation more

5Replace P S(2Q) by P S(NQ) in (5) when there are N firms competing in the industry.
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likely to happen when a firm’s capacity is large, or when a firm’s capacity
is small. If a firm has a large capacity and the demand is high, it is very
tempting for this firm to undercut the other firm’s price and take over the
entire market. But then the other firm’s large capacity makes the price
war that follows more nasty and the loss of future revenue more severe.
Further investigation is needed on this issue.

We first argue that the collusive path is viable and can be sustained
in a subgame-perfect equilibrium when discounting is small (i.e., when
δ is large and close to 1). A subgame-perfect equilibrium requires the
prescribed strategies to be in Nash equilibrium in every proper subgame.
Abreu (1986, 1988) has shown that in a repeated (super)game all subgame-
perfect equilibrium payoff paths can be obtained by very simple strategies.
It will be more difficult to obtain the subgame-perfect strategies in our
game, since the game is not repeated identically in each period (due to the
capacity adjustment). Nevertheless, following the lines of Fudenberg and
Maskin (1986) and Bernheim and Whinston (1987), in principle, we are
able to construct a subgame-perfect equilibrium such that no firm wants
to deviate from the optimal collusive path.

We shall see that any attainable levels of profit can be sustained in a
subgame-perfect equilibrium, as long as δ is sufficiently large and the level
of profit for a firm exceeds its minimax payoff in the one-period game, which
is equal to zero here. Suppose that a firm deviates from the proposed path,
the other firm can set a large capacity and produce a large amount of
output for several periods so that the deviating firm’s gain from the devi-
ation is negated by this punishment. After that, the two firms return to
the proposed collusive path. In case that the punishing firm deviates from
punishment, it will be punished by its rival using a similar strategy. There-
fore, to sustain the optimal collusive outcome described, we can punish any
deviator by an equilibrium yielding zero profit to the deviating firm. As
long as δ is sufficiently close to 1, the collusive path described by (4) and
(5) is indeed an equilibrium path in our dynamic game.

In what follows, we shall investigate the incentive for a firm to deviate
from the collusive path in each state of the demand. Our goal is to find
out whether a firm has more incentive to deviate in the high-demand state
or the low-demand state and when the capacity is high or low. To do so,
we set up an artificial value function that includes a possible deviation in
either state. Let λ ∈ [0, 1] index the demand situation, with 0 representing
low demand and 1 representing high demand. Let k ∈ [1, 2] index the
number of firms supplying the market. If they collude, both firms supply
the market, and k = 2. However, if one firm deviates, only that firm
supplies the market (in that period), and k = 1. λ and k are allowed to
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change continuously for technical convenience. Define

Ṽ (ϕt−1, k, λ) (6)
= max

Q,ϕ
{[λPH(kQ) + (1−λ)PL(kQ)]Q− C(Q,ϕ)

− H(ϕ−ϕt−1) + δ(k−1)V (ϕ)}

where k ∈ [1, 2], λ ∈ [0, 1]. Then

Ṽ (ϕt−1, 2, 0) = V L(ϕt−1),

and

Ṽ (ϕt−1, 2, 1) = V H(ϕt−1).

Assume that the optimal price a firm chooses when deviating is always
lower than the price in the collusive path. This is reasonable because a
deviating firm, anticipating a larger demand for its product during the
deviation, would always choose a larger capacity. This makes producing
more output cheaper. Thus the optimal price the deviator would charge is
very likely to be lower than the collusive price. 6 Let Ṽ (ϕt−1, 1, 0) represent
the profit of deviation from the optimal collusive path in the low-demand
state, and Ṽ (ϕt−1, 1, 1) represent that profit in the high-demand state.
Thus, Ṽ (ϕt−1, 1, 0) − Ṽ (ϕt−1, 2, 0) is the gain from deviation in the low-
demand state, and Ṽ (ϕt−1, 1, 1)− Ṽ (ϕt−1, 2, 1) is the gain from deviation
in the high-demand state.

Let ϕ∗ and ϕ∗ again be the ϕt−1 as that maximize V H(ϕt−1) and
V L(ϕt−1) respectively (c.f. (4) and (5)). As in the previous section a
firm will always choose a ϕ that is between ϕ∗ and ϕ∗ along the collusive
path. We further assume that PS(0) > CQ(0, ϕ∗). This stronger assump-
tion on PS(Q) is needed to guarantee that a firm always produces a positive
amount of output in any period on the optimal collusive path.

To characterize the equilibrium conditions and to compare the deviation
incentives, we need the following lemma:

Lemma 7. There exists an ε > 0 such that if H ′(ϕ∗ − ϕ∗) < ε, then

∂2Ṽ (ϕt−1, k, λ)
∂ϕt−1∂k

< 0, (7)

6In the unusual case that some of the prices are higher than those in the collusive
path, (A.14) in the proof of Lemma 7 is no longer valid and the deviating firm can charge
no higher than the prices in the collusive path. In this case, the firm’s deviating profit
is lower than what is calculated. We hope that this will not alter the qualitative results
in the rest of the paper.
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∀ϕt−1 ∈ [ϕ∗, ϕ∗], k ∈ [1, 2], λ ∈ [0, 1].

Proof. See Appendix.

Lemma 7 characterizes the condition under which the incentive to deviate
is an increasing function of capacity, noting that −∂Ṽ (ϕt−1,k,λ)

∂k represents
the gradual change from two firms to one firm. The condition H ′(ϕ∗ −
ϕ∗) < ε does not necessarily imply that H(·) has to be small. In the case
where H(·) is large, ϕ∗ and ϕ∗ are very close to each other, since adjusting
capacity is quite costly. In this case, H ′(ϕ∗ − ϕ∗) < ε is easy to satisfy.

Integrating (7) from k = 1 to k = 2, we have

∂

∂ϕt−1

[
Ṽ (ϕt−1, 2, λ)− Ṽ (ϕt−1, 1, λ)

]
< 0,

or equivalently,

∂

∂ϕt−1

[
Ṽ (ϕt−1, 1, λ)− Ṽ (ϕt−1, 2, λ)

]
> 0. (8)

This implies the following theorem; it characterizes one necessary and suf-
ficient condition under which the optimal path is an equilibrium path:

Theorem 2. Let ε be given by Lemma 7 and let H ′(ϕ∗−ϕ∗) < ε. Then
the optimal collusion path can be sustained in a subgame-perfect equilibrium
if and only if

Ṽ (ϕ∗, 1, 0) = V L(ϕ∗) and Ṽ (ϕ∗, 1, 1) = V H(ϕ∗). (9)

Proof. From (8), the gain from deviation is increasing in ϕt−1 . There-
fore ϕ∗ maximizes both Ṽ (ϕt−1, 1, 0)− V L(ϕt−1) and Ṽ (ϕt−1, 1, 1)
= V H(ϕt−1). If, and only if, the conditions in (9) hold, neither of the devia-
tions is profitable.

This theorem states that the optimal path is an equilibrium path if and
only if a firm does not want to deviate at the largest capacity (ϕ∗). If
these firms cooperate when their capacities are the largest, they have more
incentive to cooperate when their capacities are smaller. This is because a
deviation increases the current-period demand for the deviating firm. Since
the adjustment cost function is convex, a larger capacity in the previous
period reduces the cost of adjustment due to the increase in output to
meet the demand. At the same time, since the deviating firm is punished
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from the next period on, it earns zero total profit in the future. Therefore,
the deviating firm needs not take into account the fluctuation in demand
starting from the next period. As long as the adjustment cost involved is
small the consideration of adjustment costs has only a small effect which
is then dominated by the direct effect of the increasing capacity. Thus, the
most profitable time to deviate is when ϕt−1 = ϕ∗, which is, therefore, the
most likely time for the collusive agreement to break down.

Condition (9) relates the incentive to deviate to a firm’s capacity. How
the demand situations relate to the deviation incentives is still unknown.
Does a firm have more incentive to deviate when the demand is high, or
when the demand is low?

Applying the Envelope Theorem to (6), we have for the optimal Q,

∂Ṽ

∂λ
=

[
PH(kQ)− PL(kQ)

]
Q.

So

∂2Ṽ

∂k∂λ
=

[
PH(kQ)− PL(kQ)

] dQ

dk
(10)

+ Q
[
PH

Q (kQ)− PL
Q(kQ)

]
(Q + k

dQ

dk
).

If PH
Q (kQ)− PL

Q(kQ) is sufficiently uniformly small, the price difference
between the high demand and the low demand states does not vary too
much across different output levels. This implies that an increase in out-
put will be rewarded consistently. Since the increase in output (when a
firm deviates) is higher when the total demand is high, given any level of
capacity, it is always more tempting to deviate when the demand is high.
Mathematically, when PH

Q (kQ) − PL
Q(kQ) is sufficiently uniformly small,

the second term on the right-hand side of (10) is dominated by the first
term. We have the following theorem:

Theorem 3. Let ε be given by Lemma 7 and let H ′(ϕ∗ − ϕ∗) < ε. If
PH

Q −PL
Q is sufficiently uniformly small, then the most profitable deviation

is when the demand is high.

Proof. If H ′(ϕ∗ − ϕ∗) < ε is satisfied, dϕ
dk < 0. From (26) in the proof

of Lemma 7, we conclude that dQ
dk < 0. When PH

Q − PL
Q is sufficiently

uniformly small, ∂2Ṽ
∂k∂λ < 0. Integrating this inequality both sides from

k = 1 to k = 2 and from λ = 0 to λ = 1, we have

Ṽ (ϕ, 2, 1)− Ṽ (ϕ, 2, 0) < Ṽ (ϕ, 1, 1)− Ṽ (ϕ, 1, 0),
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or equivalently,

Ṽ (ϕ, 1, 1)− V H(ϕ) > Ṽ (ϕ, 1, 0)− V L(ϕ).

That is, deviation at high demand is most profitable.

Theorems 2 and 3 characterize sufficient conditions under which a firm
has more incentive to deviate at higher level of capacity or at high-demand
state. As a special case, suppose that a firm has no capacity constraint and
the cost of production depends solely on how much a firm produces. In this
case, the capacity variable ϕ does not show up in the cost function, i.e.,
C(Q,ϕ) reduces to C(Q), and H(·) ≡ 0. In this case, simpler conditions
could be obtained. We have the following corollary of Theorem 3:

Corollary 1. Suppose that PH
Q (Q) > PL

Q(Q), ∀Q. Then a firm has
more incentive to deviate in the high-demand state if C ′′(Q) is sufficiently
uniformly small. A firm has more incentive to deviate in the low-demand
state if C ′′(Q) is sufficiently uniformly large.

Proof. See Appendix.

When C ′′ is uniformly small, the marginal cost of production C ′(Q) does
increase too dramatically when the firm increases its output. Therefore, de-
viating when the demand is high is more profitable, as the demand stolen
from the other firm is larger. One special case is when firms have con-
stant marginal costs. In that case, a similar result has been obtained by
Rotemberg and Saloner (1986).

When C ′′ is sufficiently large, the marginal cost of production C ′(Q)
increases dramatically, and an equal increase in the output will cost the
firm more when the output is higher. Since it is too costly to increase
output when the output level is already high, a firm prefers to deviate
when the demand is low.

4. CONCLUDING REMARKS

In this paper, we presented and analyzed a model in which a firm’s cost of
production depends on both its output and capacity. This model is different
from most conventional models in that the adjustment of capacity is costly.
Because of this adjustment cost, a firm’s capacity acts like a stabilizer for
its output, which does not fluctuate as violently as the market demand.
This feature of our model is unique; previous models do not possess such
a property.

In the previous sections, we characterized the optimal path of production
for a monopoly industry and for a duopoly industry. When there are more
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than two firms, the analysis can be directly generalized. It was shown that
the optimal collusive path of production of a duopoly exhibits the same
properties as the optimal path of a monopoly firm, even though a firm
may want to deviate from time to time. Furthermore, we found that when
the cost of adjustment is sufficiently low, the greatest incentive to deviate
occurs at the largest capacity. We also derived conditions under which
deviations are more profitable when the demand is high, regardless of the
firms’ capacities.

The analysis in this paper relates a firm’s productivity to its capacity
under demand uncertainty and costs of adjustment. A firm is less efficient
if it has a small capacity but produces a large amount, or if it has a large
capacity but produces a small amount. Our analysis shows that a firm is
more efficient when the demand is more consistent. High efficiency takes
place when high demand occurs consecutively, or when low demand occurs
consecutively. If demand fluctuates tremendously, efficiency is harder to
obtain.

The model in this paper could be used to analyze the production deci-
sions of firms of different sizes, especially those with cost functions which
are not identical. It can also be used to analyze situations where firms pro-
duce related but not identical products, and demand uncertainty affects all
products in a similar way. Of course, the calculations involved could be-
come very complex and useful conclusions may or may not be forthcoming.
As these studies may never be carried out (due the complexity involved),
the intuition developed in this paper could provide a useful reference for
those more complicated situations.

APPENDIX: PROOFS OF LEMMAS AND THEOREMS IN
THE TEXT

Proof of Lemma 1
(i) Differentiating (2) with respect to ϕt , we have

ΠS
QQ(Qt, ϕt)

dQS(ϕt)
dϕt

+ ΠS
Qϕ(Qt, ϕt) = 0. (A.1)

ΠS
QQ < 0 and ΠS

Qϕ = −CQϕ > 0 imply that dQS(ϕt)
dϕt

> 0.
(ii) Let ϕt = ϕS(ϕt−1) and ϕ̂t = ϕS(ϕ̂t−1). We have

ΠS(QS(ϕt), ϕt)−H(ϕt−ϕt−1) + δV (ϕt) (A.2)
≥ ΠS(QS(ϕ̂t), ϕ̂t)−H(ϕ̂t−ϕt−1) + δV (ϕ̂t)
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and

ΠS(QS(ϕ̂t), ϕ̂t)−H(ϕ̂t−ϕ̂t−1) + δV (ϕ̂t) (A.3)
≥ ΠS(QS(ϕt), ϕt)−H(ϕt−ϕ̂t−1) + δV (ϕt).

Adding (A.2) and (A.3), simplifying, and rearranging terms, we have

[H(ϕ̂t − ϕt−1)−H(ϕt − ϕt−1)]− [H(ϕ̂t − ϕ̂t−1)−H(ϕt − ϕ̂t−1)] ≥ 0.

Since H(·) is twice continuously differentiable, using Taylor’s Theorem
twice, we have

H ′′(ϕ̃t − ϕ̃t−1)(ϕ̂t − ϕt−1)(ϕ̂t − ϕt−1) ≥ 0, (A.4)

where ϕ̃t−1 is between ϕ̂t and ϕt, and ϕ̃t−1 is between ϕ̂t−1 and ϕt−1.
H ′′ > 0 and (A.4) imply that if ϕ̂t−1 > ϕt−1 , then ϕ̂t ≥ ϕt . That is,
ϕS(ϕt−1) is monotone increasing.

Proof of Lemma 2 Let

P (Q;α) ≡ αPH(Q) + (1− α)PL(Q), α ∈ [0, 1], (A.5)

and

Π(Q,ϕ;α) ≡ P (Q;α)Q− C(Q,ϕ). (A.6)

So P (Q; 0) = PL(Q), and P (Q, 1) = PH(Q). Maximizing Π with respect
to Q, we have

ΠQ(Q,ϕ;α) = 0, (A.7)

and

ΠQQ(Q, ϕ;α) ≤ 0.

Differentiating (A.7) with respect to α, we have

ΠQQ
dQ

dα
+ ΠQα = 0.

Since

ΠQα = [PH
Q (Q)− PL

Q(Q)]Q + [PH(Q)− PL(Q)] > 0,
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we conclude that dQ
dα > 0. Therefore, Q is strictly increasing in α and

QH(ϕ) > QL(ϕ).

Proof of Lemma 3 Let P (Q;α) and Π(Q,ϕ;α) be as defined in (A.5)
and (A.6), and let

W (Q,ϕt, ϕt−1;α) ≡ Π(Q, ϕt;α)−H(ϕt − ϕt−1) + δV (ϕt).

Note that V (ϕt) does not depend on α, because we vary the demand in
the current period (period t) only. Maximizing W (Q,ϕt, ϕt−1;α), we have
the following first-order conditions:

WQ = 0, Wϕt = 0, Wϕt−1 = 0.

Differentiating the above equations with respect to α, we have

WQQ
dQ

dα
+ WQϕt

dϕt

dα
+ WQϕt−1

dϕt−1

dα
+ WQα = 0, (A.8)

WϕtQ
dQ

dα
+ Wϕtϕt

dϕt

dα
+ Wϕtϕt−1

dϕt−1

dα
+ Wϕtα = 0,

and

Wϕt−1Q
dQ

dα
+ Wϕt−1ϕt

dϕt

dα
+ Wϕt−1ϕt−1

dϕt−1

dα
+ Wϕt−1α = 0.

Let

A =

 WQQ WQϕt
WQϕt−1

WϕtQ Wϕtϕt
Wϕtϕt−1

Wϕt−1Q Wϕt−1ϕt
Wϕt−1ϕt−1

 .

Then  dQ
dα
dϕt

dα
dϕt−1

dα

 = −A−1 ·

 WQα

Wϕtα

Wϕt−1α

 .

Simple calculations show that

WQα = [PH
Q (Q)−PL

Q(Q)]Q+[PH(Q)−PL(Q)] > 0, Wϕtα = 0, Wϕt−1α = 0,
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WQQ = ΠQQ, WQϕt
= ΠQϕt

= −CQϕt
> 0, WQϕt−1 = 0,

Wϕtϕt
= Πϕtϕt

−H ′′ + δV ′′, Wϕtϕt−1 = H ′′ > 0,

Wϕt−1ϕt−1 = H ′′ < 0,

and

| A |= −ΠQQH ′′

[
δV ′′ + Πϕϕ −

Π2
Qϕ

ΠQQ

]
.

From the second-order condition for the maximization, A is negative def-
inite. Thus, | A |< 0. Since ΠQQ < 0, and H ′′ > 0, we have

δV ′′ + Πϕϕ −
Π2

Qϕ

ΠQQ
< 0. (A.9)

From dQ
dα
dϕt

dα
dϕt−1

dα

 = − 1
| A |

 H ′′(Cϕϕ − δV ′′) ∗ ∗
CQϕt

H ′′ ∗ ∗
CQϕtH

′′ ∗ ∗

  WQα

0
0

 , (A.10)

we have

dϕt

dα
=

dϕt−1

dα
=

CQϕt
H ′′WQα

| A |
> 0.

Hence, ϕt and ϕt−1 are increasing functions of α. Since ϕ∗ is the optimal
ϕt corresponding to α = 1, and ϕ∗ is the optimal ϕt corresponding to
α = 0, we conclude that ϕ∗ > ϕ∗.

Since WQQ < 0, WQϕt > 0, dϕt

dα > 0, WQϕt−1 = 0, and WQα > 0, from
(A.8) we conclude that

dQ

dα
> 0. (A.11)

As QH(ϕ∗) and QL(ϕ∗) are the optimal Q’s corresponding to α = 1 and
α = 0 respectively, QH(ϕ∗) > QL(ϕ∗).
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Proof of Lemma 5
(i) Differentiating (3) with respect to ϕt−1 and solving for dϕt

dϕt−1
, we

have

dϕt

dϕt−1
=

H ′′

H ′′ −
[

dΠS
ϕ

dϕt
+ δV ′′

] .

From (A.1) and Lemma 4, we have

dΠS
ϕ

dϕt
+ δV ′′ = ΠϕQ

dQ

dϕt
+ Πϕϕ + δV ′′ = Πϕϕ −

Π2
Qϕ

ΠQQ
+ δV ′′ < 0.

Therefore, dϕt

dϕt−1
< 1.

(ii) Integrating dϕt

dϕt−1
< 1, both sides from ϕ to ϕ∗, we have ϕH(ϕ∗)−

ϕH(ϕ) < ϕ∗ − ϕ. Since ϕH(ϕ∗) = ϕ∗, we have ϕH(ϕ) > ϕ. Suppose that
ϕH(ϕ) = ϕ̃ > ϕ∗. Then

Π(Q, ϕ̃)−H(ϕ̃− ϕ) + δV (ϕ̃)
< Π(Q, ϕ̃)− [H(ϕ̃− ϕ∗) + H(ϕ∗ − ϕ)] + δV (ϕ̃)
= [Π(Q, ϕ̃)−H(ϕ̃− ϕ∗) + δV (ϕ̃)]−H(ϕ∗ − ϕ)
≤ [Π(Q,ϕ∗)−H(ϕ∗ − ϕ∗) + δV (ϕ∗)]−H(ϕ∗ − ϕ)
= Π(Q,ϕ∗)−H(ϕ∗ − ϕ) + δV (ϕ∗)

where we made use of the convexity of H(·) in the first inequality, ϕ∗ max-
imizing V H(ϕ) in the second inequality, and H(0) = 0 in the last equality.
Therefore, ϕH(ϕ) > ϕ∗ can never happen. Together with ϕH(ϕ) = ϕ, we
have ϕH(ϕ) ∈ (ϕ, ϕ∗]. Similarly, we can prove that ϕL(ϕ) ∈ [ϕ∗, ϕ).

(iii) From (ii) ϕ∗ ≥ ϕH(ϕ) > ϕ, ∀ϕ ∈ [ϕ∗, ϕ∗]. Therefore,

ϕH
n (ϕ) ≡

n︷ ︸︸ ︷
ϕH(ϕH(ϕH(· · ·ϕ)))

is an increasing sequence but bounded by ϕ∗, and thus must have a limit.
From (ii), ∀ϕ̂ < ϕ∗, ϕH(ϕ̂) > ϕ̂; thus ϕ̂ cannot be the limit of ϕH

n (ϕ).
Hence,

lim
n→∞

ϕH
n (ϕ) = ϕ∗, ∀ϕ ∈ [ϕ∗, ϕ∗].

Similarly, we can prove that ϕ∗ is the limit of ϕL(ϕL(ϕL(· · ·ϕ))), ∀ϕ ∈
[ϕ∗, ϕ∗].
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Proof of Lemma 6
Let E1 =

∫∞
−∞ g1(x)dF (x) be the mean of g1(x). Then ∃x∗, such that

g1(x) > E1 if x > x∗, and g1(x) < E1 if x < x∗. Since g2(x) is positive and
strictly increasing, we have∫ ∞

x∗
[g1(x)− E1] · g2(x)dF (x) >

∫ ∞

x∗
[g1(x)− E1] · g2(x∗)dF (x), (A.12)

∫ x∗

−∞
[g1(x)− E1] · g2(x)dF (x) >

∫ x∗

−∞
[g1(x)− E1] · g2(x∗)dF (x).(A.13)

Adding the above (A.12) and (A.13), we have∫ ∞

−∞
[g1(x)− E1] · g2(x)dF (x) >

∫ ∞

−∞
[g1(x)− E1] · g2(x∗)dF (x)

= g2(x∗)
∫ ∞

−∞
[g1(x)− E1]dF (x) = 0.

i.e., ∫ ∞

−∞
g1(x) · g2(x)dF (x) >

∫ ∞

−∞
g1(x)dF (x) ·

∫ ∞

−∞
g2(x)dF (x).

Proof of Lemma 7 Simplifying notations, let P (Q) = λPH(Q)+(1−
λ)PL(Q). Differentiating the right-hand side of (6) with respect to Q and
ϕ, we have the following first order conditions for maximization:

P (kQ) + kQP ′(kQ)− CQ(Q,ϕ) = 0, (A.14)

and

−Cϕ(Q,ϕ)−H ′(ϕ− ϕt−1) + δ(k − 1)V ′(ϕ) = 0. (A.15)

Differentiating (A.14) and (A.15) with respect to k, we have

R′′(kQ)(Q + k
dQ

dk
)− CQQ

dQ

dk
− CQϕ

dϕ

dk
= 0, (A.16)

and

−CQϕ
dQ

dk
− Cϕϕ

dϕ

dk
−H ′′ dϕ

dk
+ δV ′ + δ(k − 1)V ′′ dϕ

dk
= 0. (A.17)
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Solving for dϕ
dk and dQ

dk in (A.16) and (A.17), we have

dϕ

dk
=

−QR′′CQϕ − δV ′(ϕ)[kR′′ − CQQ]
[−Cϕϕ −H ′′ + δ(k − 1)V ′′](kR′′ − CQQ)− C2

Qϕ

, (A.18)

and

dQ

dk
=

1

CQϕ
·
[−Cϕϕ − H ′′ + δ(k − 1)V ′′](−QR′′CQϕ) − δV ′C2

Qϕ

[−Cϕϕ − H ′′ + δ(k − 1)V ′′](kR′′ − CQQ) − C2
Qϕ

. (A.19)

Since RS
QQ < 0, R′′ = λRH

QQ + (1−λ)RL
QQ < 0. If V ′′ ≤ 0, then because

CϕϕCQQ − C2
Qϕ > 0, the denominator of (A.18) is positive. If V ′′ > 0,

δ(k − 1)V ′′ ≤ δV ′′ because k ∈ [1, 2]. From Lemma 4,

δV ′′(ϕ) <
Π2

Qϕ

ΠQQ
−Πϕϕ =

C2
Qϕ

R′′ − CQQ
+ Cϕϕ.

Therefore,

−Cϕϕ −H ′′ + δ(k − 1)V ′′ <
C2

Qϕ

R′′ − CQQ
−H ′′ < 0.

Since

C2
Qϕ

R′′ − CQQ
(kR′′ − CQQ)− C2

Qϕ > 0,

we conclude that the denominator of (A.18) is positive. Applying the
Envelope Theorem to (5), we have

dV S(ϕt−1)
dϕt−1

= H ′(ϕ− ϕt−1).

Since H ′′ > 0, ϕ and ϕt−1 ∈ [ϕ∗, ϕ∗], H ′(ϕ− ϕt−1) ≤ H ′(ϕ∗ − ϕ∗). From
(4),

V ′(ϕt−1) = θ
dV S(ϕt−1)

dϕt−1
+ (1− θ)

dV S(ϕt−1)
dϕt−1

≤ H ′(ϕ∗ − ϕ∗).

Let ε = minQ,ϕ,k
QCQϕR′′

δ[−R′′k+CQQ] . Since Q is bounded from below, ϕt ∈
[ϕ∗, ϕ∗], and k ∈ [0, 1], we have ε > 0. Thus, if H ′(ϕ∗ − ϕ∗) < ε,

V ′(ϕt−1) = H ′(ϕ− ϕt−1) < H ′(ϕ∗ − ϕ∗) < ε.
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From (A.18), dϕ
dk < 0. Therefore,

∂2Ṽ (ϕt−1, k, λ)
∂ϕt−1∂k

=
H ′(ϕ− ϕt−1)

dk
= H ′′(ϕ− ϕt−1)

ϕ

dk
< 0.

Proof of Corollary Letting CQϕ = 0 in (A.16) and solving for dQ
dk ,

we have

dQ

dk
=

R′′Q

C ′′ −R′′k
< 0.

From (10), we have

∂2Ṽ

∂k∂λ
=

R′′Q(PH − PL) + C ′′Q2(PH
Q − PL

Q)
C ′′ −R′′k

. (A.20)

Recall that R′′ < 0. If C ′′ is sufficiently uniformly small, (A.20) is always
negative. By constructing a parallel analysis to the proof of Theorem 3, we
can show that the firm has more incentive to deviate in the high-demand
state. If C ′′ is sufficiently uniformly large, (A.20) is always positive, and
the firm has more incentive to deviate in the low-demand state.
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