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1. INTRODUCTION

If a contingent claim can be replicated by a self-financing trading strat-
egy, then the price of the contingent claim, under the principle of “free
of arbitrage opportunities”, is the cost of replication. For the problem of
maximizing the expected utility of terminal wealth, Karatzas, Lehoczky,
and Shreve (1987) and Karatzas, Lehoczky, Shreve and Xu (1991) devel-
oped a “replication method”. They showed that if some contingent claim
that they constructed can be replicated by a self-financing trading strategy
whose initial wealth is just the initial capital held by the investor, then the
trading strategy is optimal. Thus the notion of replication is important
in pricing contingent claims and maximizing the expected utility. In the
context of a complete market, any contingent claim can be replicated by
a self-financing trading strategy, thus both problems of pricing contingent
claims and maximizing the expected utility are well understood. While in
an incomplete market, there exist contingent claims that cannot be repli-
cated, thus many troubles appear when dealing with the problems of pricing
contingent claims and maximizing the expected utility.

Karatzas, Lehoczky, Shreve and Xu (1991) studied the problem of utility
maximization in an incomplete market with a diffusion model. In their
model, the market consists of a bond and m stocks, and the price processes
of the stocks are driven by a d-dimensional Brownian motion. Whenm < d,
that is, the market is incomplete, they augmented the market with certain
fictitious stocks so as to create a complete market. Under certain conditions
on the model, they showed that one can judiciously choose fictitious stocks
such that these fictitious stocks are superfluous in the optimal portfolio of
the completed market. In this case, the optimal portfolio of the completed
market is also optimal for the original incomplete market.

In general cases, the method of “fictitious completion” is no longer ap-
plicable, since the general models are infinite-dimensional ones. From the
point of mathematical view, a financial market is arbitrage-free if and only
if there exists an equivalent martingale measure for the discounted price
processes of the assets and the completeness of the market is equivalent
to the uniqueness of the equivalent martingale measure. Thus in incom-
plete markets there are various equivalent martingale measures. For incom-
plete markets, Xia and Yan (2000a, 2000b) proposed a martingale measure
method to solve the utility maximization problem and unified the so-called
“numeraire portfolio approach” and Esscher transform method in the the-
ory of pricing contingent claim. In a geometric Lévy process model, they
obtained the associated explicit results. In a discrete-time incomplete mar-
ket, Schäl (2000a) also studied the connections between martingale mea-
sures and portfolio optimization, but the utility functions he considered
are HARA utility functions Uγ with 0 ≤ γ < 1. In another paper, Schäl



MARTINGALE MEASURE METHOD FOR EXPECTED UTILITY 447

(2000b) studied the relations between arbitrage and utility maximization.
The underlying utility function he considered is required to be defined on
the positive half-line.

In this paper we consider the same problem as that considered by Xia
and Yan (2000a, 2000b), but for the discrete-time case. We first intro-
duce the general results of utility maximization problem for an incomplete
market in a general discrete-time setting. For a given utility function,
we choose a class of equivalent martingale measures. Corresponding to
each of the equivalent martingale measures of this class, we construct a
random variable following Karatzas, Lehoczky, Shreve and Xu (1991). If
one of these random variables can be replicated by a self-financing trad-
ing strategy, then the strategy is optimal and the associated martingale
measure is also “optimal” in some sense. For the utility function log x
(resp. 1

γ (xγ −1)(γ < 0)), the associated martingale measure minimizes the
relative entropy (resp. the Hellinger-Kakutani distance of order γ

γ−1 ); for

utility function −e−x(resp. −(1 − γx)
1
γ (γ < 0)), the associated martin-

gale measure minimizes the relative entropy (resp. the Hellinger-Kakutani
distance of order γ

γ−1 ) of dual form. For a special discrete-time market
model, the optimal trading strategies and the associated “optimal” equiv-
alent martingale measures for the above two classes of utility functions are
explicitly worked out.

2. THE GENERAL DISCRETE-TIME MODEL

Let the time index set be {0, 1, · · · , N}, and suppose that (Ω,F ,Fn,P) is
a stochastic basis, where (Ω,F ,P) is a probability space and (Fn)0≤n≤N is
an increasing complete filtration satisfying FN = F . We put F−1 = F0 =
{∅,Ω}.

Assume that in the economy there are one risk-free asset (bond) and d
risky assets (stocks) whose price processes are defined as follows:

1) The price of the risk-free asset at time n is S0
n, n = 0, 1, · · · , N , which

is strictly positive and predictable;
2) The price of the i-th risky asset at time n is Si

n, i = 1, · · · , d. For
i = 1, · · · , d, n = 0, 1, · · · , N, Si

n is strictly positive and Fn-measurable.
We denote Sn = (S1

n, · · · , Sd
n) and denote by βn the discount factor(S0

n)−1

at time n.
A trading strategy is a predictable Rd+1-valued stochastic sequence ψ =

(ψn)0≤n≤N , ψn = (φ0
n, φn), where φn = (φ1

n, · · · , φd
n), φ0

n and φi
n, i =

1, · · · , d, n = 0, 1, · · · , N , represent the number of units of the risk-free
asset and asset i held at time n respectively. The wealth Vn(ψ) of a trading
strategy ψ = {φ0, φ} at time n is Vn(ψ) = φ0

nS
0
n + φn ·Sn, where φn ·Sn =
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d∑
i=1

φi
nS

i
n. The discounted wealth is Ṽn(ψ) = βnVn(ψ) = φ0

n + φn · S̃n,

where S̃n = (βnS
1
n, · · · , βnS

d
n) is the vector of discounted prices. A trading

strategy ψ = {φ0, φ} is said to be self-financing, if

φ0
n−1S

0
n−1 + φn−1 · Sn−1 = φ0

nS
0
n−1 + φn · Sn−1, ∀1 ≤ n ≤ N.

It means that at time n − 1, once the price vector Sn−1 is quoted, the
investor readjusts his/her positions from ψn−1 to ψn without bringing or
withdrawing any wealth. It is easy to prove that a trading strategy ψ =
{φ0, φ} is self-financing if and only if

Ṽn(ψ) = V0(ψ) +
n∑

k=1

φk ·∆S̃k, ∀1 ≤ n ≤ N, (1)

or equivalently, ∆Ṽn(ψ) = φn · ∆S̃n, n ≥ 1, where ∆Ṽn(ψ) = Ṽn(ψ) −
Ṽn−1(ψ). For any given Rd-valued predictable process ψ and any constant
z, it is easy to construct a unique real-valued predictable process (φ0

n) such
that (φ0

n, φn) is a self-financing strategy with initial wealth z.
A probability measure Q is called an equivalent martingale measure, if it

is equivalent to the historical probability measure P and if the discounted
price processes (S̃i

n) of risky assets are Q-martingale. We denote by P
the set of all equivalent martingale measures. For Q ∈ P, from (1) we
can see that for any self-financing trading strategy ψ, (Ṽn(ψ)) is a local
Q-martingale. It is well-known that there is no arbitrage in the market if
and only if P is not empty. Therefore, we assume that P is not empty to
exclude any arbitrage opportunity. The market is said to be complete if P
is a singleton, otherwise we say that the market is incomplete.

3. THE UTILITY MAXIMIZATION IN A GENERAL
SETTING

3.1. The utility maximization problem for a general utility func-
tion

We take the same setting and notations as those in Xia and Yan (2000a,
2000b). Here we only give the main results for easy reference.

We assume that in our model the agent has a utility function U :
(DU ,∞) −→ R for wealth, −∞ ≤ DU < ∞. Throughout this paper
we make the assumption that U is strictly increasing, strictly concave,
continuous, and continuously differentiable, and satisfies

U ′(DU )=̂ lim
x↓DU

U ′(x) = ∞, U ′(∞)=̂ lim
x→∞

U ′(x) = 0.
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The (continuous, strictly decreasing) inverse of the function U ′ is denoted
by I : (0,∞) −→ (DU ,∞).

From the concavity of U we have the following inequality:

U(I(y)) ≥ U(x) + y[I(y)− x], ∀x > DU , y > 0. (2)

We denote by Ψz
s the collection of self-financing strategies with initial

capital z > 0. It is easy to show that for any ψ ∈ Ψz
s , Q ∈ P, (Ṽn(ψ)) is a

Q-local martingale.
We will discuss the cases of DU > −∞ and DU = −∞, respectively.
In the case of DU > −∞, for a given initial capital z > 0, we denote

Ψz
s(DU )=̂{ψ : ψ ∈ Ψz

s , VN (ψ) > DU}.

We consider the problem of maximizing the expected utility of terminal
wealth E [U(VT (ψ))], over the class Ψz

s(DU ). A strategy ψ ∈ Ψz
s(DU ) which

maximizes the expected utility is called optimal. It is easy to show that
the wealth process of optimal trading strategies in Ψz

s(DU ) is unique.
For Q ∈ P, we denote ZQ

n =̂E
[

dQ
dP
∣∣Fn

]
, then (ZQ

n ) is a strict positive
martingale. Put

Pn=̂{ Q ∈ P : |E[βnZ
Q
n I(yβnZ

Q
n )]| <∞, ∀y ∈ (0,∞)}, n = 0, 1, · · · , N,

and we make the standing assumption that Pn is not empty. The follow-
ing notion was initiated by Karatzas, Lehoczky, Shreve and Xu (1991).
For every n = 0, 1, · · · , N and Q ∈ Pn, the function XQ

n : (0,∞) −→
(DUEQ[βn],∞), defined by

XQ
n (y)=̂E

[
βnZ

Q
n I(yβnZ

Q
n )
]
, 0 < y <∞

inherits from I the property of being a continuous, strictly decreasing map-
ping from (0,∞) onto (DUEQ[βn],∞), and hence XQ

n has a (continuous,
strictly decreasing) inverse YQ

n from (DUEQ[βn],∞) onto (0,∞). We define

ξQ
n (x)=̂I(YQ

n (x)βnZ
Q
n ), 0 ≤ n ≤ N, Q ∈ Pn, x ∈ (DUEQ[βn],∞). (3)

We can see that for ψ ∈ Ψz
s(DU ),Q ∈ P, (βnVn(ψ)) is a Q-martingale.

Associated with (2) and (3) we have

E
[
U(ξQ

N (z))
]
≥ E [U(VN (ψ))] ,Q ∈ PN , ψ ∈ Ψz

s(DU ). (4)
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From the discussion above we know that if there exists a probability
measure Q∗ ∈ PN and a trading strategy ψ̂ ∈ Ψz

s(DU ) such that ξQ∗
N (x) =

VN (ψ̂), then ψ̂ is optimal. Since ZQ
N is uniquely determined by ξQ

N (x), such
a Q∗ is unique. From (4) we see that Q∗ is also “optimal” in PN in the
sense that

(A). E
[
U(ξQ∗

N (x))
]
≤ E

[
U(ξQ

N (x))
]
,∀Q ∈ PN .

In the case of DU = −∞, put

P ′=̂{Q ∈ P :
dQ
dP

∈ L2(Ω,FN ,P)},

Ψ̂z
s=̂{ψ : ψ ∈ Ψz

s , βnVn(ψ) ∈ L2(Ω,Fn,P), 0 ≤ n ≤ N},

and assume that P ′ is not empty. For ψ ∈ Ψ̂z
s ,Q ∈ P ′, it can be shown

that (βnVn(ψ)) is a Q-martingale. For the case of DU = −∞, we consider
the martingale measure in P ′ instead of P and replace the notion Pn corre-
sponding to P by P ′n and replace Ψz

s(DU ) with Ψ̂z
s . By the same way as in

the case of DU > −∞, we can see that if there exists a probability measure
Q∗ ∈ P ′N and a trading strategy ψ̂ ∈ Ψ̂z

s such that ξQ∗
N (z) = VN (ψ̂), then

ψ̂ is optimal over Ψ̂z
s and the measure Q is “optimal” over P ′N .

3.2. The HARA utility maximization, the minimum relative
entropy and the minimum Hellinger-Kakutani distance

In the sequel, we assume that (S0
n) is deterministic, then so is (βn). Here

we consider the HARA (hyperbolic absolute risk aversion) utility functions
given by

Uγ(x) =
{ 1

γ (xγ − 1), γ < 0,
log x, γ = 0.

For the HARA utility functions U = Uγ(x)(γ ≤ 0), we haveDU = 0, I(x) =
x

1
γ−1 and Pn = P for n = 0, 1, · · · , N . Put δ=̂ γ

γ−1 ∈ [0, 1), then 1
δ + 1

γ = 1
for γ < 0. From (3) we have

ξQ
n (x) =

x(ZQ
n )

1
γ−1

βnE[(ZQ
n )δ]

, n = 0, 1, · · · , N. (5)

Then for the HARA utility functions U = Uγ(γ ≤ 0), the statement (A)
in Section 3.1 is equivalent to the following statement (B)(resp. (C)) when
γ < 0 (resp. γ = 0):

(B). E
[
(ZQ∗

N )δ
]
≥ E

[
(ZQ

N )δ
]
, ∀Q ∈ P.

(C). E[logZQ∗
N ] ≥ E[logZQ

N ], ∀Q ∈ P.
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Definition 3.1. 1). Assume that probability measure Q is absolutely
continuous with respect to P and δ ∈ (0, 1). Put

Hδ(Q,P)=̂EP

[(
dQ
dP

)δ
]

= EP

[
(ZQ

N )δ
]
, dδ(Q,P)=̂2(1−Hδ(Q,P)).

Hδ(Q,P) and dδ(Q,P) are called the Hellinger integral and Hellinger-Kakutani
distance of order δ of P with respect to Q, respectively;

2). The relative entropy of a probability measure P with respect to Q is
defined by

IQ(P) = EQ

[
dP
dQ

log
dP
dQ

]
= −EP

[
log

dQ
dP

]
.

Both the Hellinger-Kakutani distance and the relative entropy are quan-
titative measures of the difference between Q and P. One should be aware
that in general dδ(Q,P)(resp. IQ(P)) is not equal to dδ(P,Q)(resp. IP(Q))
and it is easy to show that for δ ∈ (0, 1), dδ(Q,P) = d1−δ(P,Q).

For the HARA utility functions U = Uγ(γ ≤ 0), by the results in Sub-
section 3.1, we know that if there exist a probability measure Q∗ ∈ P and
a strategy ψ̂ ∈ Ψz

s(DU ) such that ξQ∗
N (x) = VN (ψ̂), then ψ̂ is optimal and

i) for U(x) = Uγ(γ < 0), the Hellinger-Kakutani distance of order δ of
the historical measure P with respect to Q∗ is the minimum over P, that
is, dδ(Q∗,P) = min

Q∈P
dδ(Q,P), where δ satisfies 1

δ + 1
γ = 1;

ii) for U(x) = log x, the relative entropy of P with respect to Q∗ is the
minimum over P, that is IQ∗(P) = min

Q∈P
IQ(P).

3.3. Results of dual form
In the following we consider the class of utility functions given by

Wγ(x) =
{
−(1− γx)

1
γ , γ < 0,

−e−x, γ = 0.

Since Uγ(−Wγ(x)) = −x(γ ≤ 0), we say that Wγ(x) is the dual utility
function of Uγ(x). For Wγ(x)(γ ≤ 0) we have

DU =
{ 1

γ , γ < 0
−∞, γ = 0

, I(x) =

{
1−x

γ
1−γ

γ , γ < 0
− log x, γ = 0.

When γ < 0, we have Pn = P for n = 0, 1, · · · , N and when γ = 0, PN =
{ Q ∈ P : |IP(Q)| <∞}. Put δ=̂ γ

γ−1 , then 1
δ + 1

γ = 1 and δ ∈ [0, 1). In this
subsection we replace the notation ξQ

n (x) with ζQ
n (x) (resp. ηQ

n (x)) when



452 PING LI, JIANMING XIA, AND JIA-AN YAN

γ < 0 (resp. γ = 0). Thus from (3) we have

ζQ
n (x) =

1
γ

1− βn − γx

βn

(ZQ
n )

γ
1−γ

E
[
(ZQ

n )
1

1−γ

]
 , (6)

ηQ
n (x) =

x

βn
+ E[ZQ

n logZQ
n ]− logZQ

n . (7)

Then for utility functions Wγ(x), the statement (A) above is equivalent
to the following statement (D)(resp. (E)) when γ < 0 (resp. γ = 0):

(D). E
[
(ZQ∗

N )
1

1−γ

]
≥ E

[
(ZQ

N )
1

1−γ

]
, ∀ Q ∈ P,

(E). E[ZQ∗
N logZQ∗

N ] ≤ E[ZQ
N logZQ

N ],∀ Q ∈ PN .
By the results in Subsection 3.1 we know that if there exist a probability

measure Q∗
1 ∈ P and a strategy ψ̂1 ∈ Ψz

s(DU ) such that ζQ∗1
N (z) = VN (ψ̂1),

then ψ̂1 is optimal for Wγ(γ < 0) and the Hellinger-Kakutani distance of
order δ of Q∗

1 with respect to P is the minimum over P, that is, dδ(P,Q∗
1) =

min
Q∈P

dδ(P,Q), where δ satisfies 1
δ + 1

γ = 1; if there exist a probability measure

Q∗
2 ∈ P ′ with finite relative entropy IP(Q∗

2) and a strategy ψ̂2 ∈ Ψ̂z
s such

that ξQ∗2
N (z) = VN (ψ̂2), then ψ̂2 is optimal for W0 = −e−x and the relative

entropy of Q∗
2 with respect to P is the minimum over P ′N , that is IP(Q∗

2) =
min
Q∈P

IP(Q).

4. THE UTILITY MAXIMIZATION PROBLEM FOR A
SPECIAL MARKET MODEL

4.1. The market model and the characterization of equivalent
martingale measures

In this section we consider a discrete-time incomplete financial market
in which there are only two assets: one risk-free asset (bond) and one risky
asset (stock) whose price processes S0

n and Sn satisfy:
1) S0

0 = 1, S0 is a positive constant;
2) S0

n = S0
n−1(1 + rn) and rn is a positive constant, for n = 1, · · · , N ;

3) ∀n = 1, · · · , N, Sn = Sn−1(1 + Rn), where Rn is an Fn-measurable
random variable independent of Fn−1, and Rn > −1, a.s..

Assume that for each n = 1, · · · , N,Fn = σ(R1, · · · , Rn),F0 = {∅,Ω}.
For notational convenience, we put F−1 = F0.

We assume that for each n, there exist two constants dn and un such that
dn < rn < un, P(dn ≤ Rn ≤ un) = 1, and for any ε > 0,P(Rn ≥ dn−ε) > 0
and P(Rn ≤ un − ε) > 0. Consequently, the support of the distribution of
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Rn is [dn, un]. Readers can refer to Li and Yan (1999) for the economic
meaning of the above conditions.

From the above 2) and 3) we have

S0
n =

n∏
k=1

(1 + rk), Sn = S0

n∏
k=1

(1 +Rk), ∀n = 1, · · · , N. (8)

Recalling that βn = (S0
n)−1, we have

S̃n = βnSn, ∆S̃n = S̃n − S̃n−1 = S̃n−1

(
1 +Rn

1 + rn
− 1
)

= S̃n−1
Rn − rn
1 + rn

.

For a self-financing trading strategy ψ = {φ0, φ}, we put

π0
n =

φ0
nS

0
n−1

Vn−1
, πn =

φnSn−1

Vn−1
, n = 1, · · · , N.

Then π0
n and πn represent the proportion of the wealth Vn−1 invested in

the risk-free asset and the risky asset at time n, respectively. Since

Vn−1 = φ0
n−1S

0
n−1 + φn−1Sn−1 = φ0

nS
0
n−1 + φnSn−1,

we have π0
n = 1− πn. We also call (π0

n, πn) a portfolio at time n. Thus

Ṽn − Ṽn−1 = ∆Ṽn = φn∆S̃n = φnS̃n−1
Rn − rn
1 + rn

= πnṼn−1
Rn − rn
1 + rn

.

Consequently,

Vn = Vn−1[1 + rn + πn(Rn − rn)].

When πn takes value in
(
− 1+rn

un−rn
, 1+rn

rn−dn

)
, Vn(ψ) is strictly positive.

We denote by (V z,π
n ) the solution of the equation

∆Ṽ z,π
n = πnṼ

z,π
n−1

Rn − rn
1 + rn

, V z,π
0 = z.

Then V z,π
n = Vn(ψ) = z

n∏
k=1

[1 + rk + πk(Rk − rk)].

From (8) we have

S̃n = βnSn = S0

n∏
k=1

1 +Rk

1 + rk
= S0

n∏
k=1

(
1 +

Rk − rk
1 + rk

)
. (9)
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Let (Mn) be a local martingale with M0 = 0. Since Mn ∈ Fn, from
the Doob Representation Theorem we know that there exists an n-variate
Borel-measurable function gn(x1, · · · , xn) such that

Mn = gn

(
R1 − r1
1 + r1

, · · · , Rn − rn
1 + rn

)
, n = 1, · · · , N. (10)

From E(∆Mn|Fn−1) = 0 we know that

Mn−1 = E
[
gn

(
R1 − r1
1 + r1

, · · · , Rn − rn
1 + rn

)∣∣∣∣Fn−1

]
, n = 1, · · · , N.

Therefore,

Mn =
n∑

k=1

[
gk

(
R1 − r1
1 + r1

, · · · , Rk − rk
1 + rk

)
− E

(
gk

(
R1 − r1
1 + r1

, · · · , Rk − rk
1 + rk

)∣∣∣∣Fk−1

)]
. (11)

If Q is a probability measure and is equivalent to P, we put Zn=̂E
[

dQ
dP
∣∣Fn

]
,

then (Zn) is a strictly positive martingale. Put Mn =
n∑

k=1

∆Zk

Zk−1
, then

(Mn) is a local martingale and Zn =
n∏

k=1

(1 + ∆Mk). From the above

analysis we know that there exists an n-variate Borel-measurable function
gn(x1, · · · , xn) such that (10) holds. Hence the density process (Zn)1≤n≤N

associated with g = (gn)1≤n≤N is

Zg(n) =̂
n∏

k=1

[
1 + gk

(
R1−r1
1+r1

, · · · , Rk−rk

1+rk

)
− E

(
gk

(
R1−r1
1+r1

, · · · , Rk−rk

1+rk

)∣∣∣Fk−1

)]
, 1 ≤ n ≤ N.

(12)

Specifically, if Q is an equivalent martingale measure, that is, (S̃n) is a
Q-martingale, then EQ(Rn|Fn−1) = rn. Thus E[Zg(n)(Rn−rn)|Fn−1] = 0.
From (12) we have

Zg(n− 1)E
[
(Rn − rn)

(
1 + gn

(
R1 − r1
1 + r1

, · · · , Rn − rn
1 + rn

)
− E

(
gn

(
R1 − r1
1 + r1

, · · · , Rn − rn
1 + rn

)∣∣∣∣Fn−1

))∣∣∣∣Fn−1

]
= 0.
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That is,

E
[
(Rn − rn)

(
1 + gn

(
R1−r1
1+r1

, · · · , Rn−rn

1+rn

)
− E

[
gn

(
R1−r1
1+r1

, · · · , Rn−rn

1+rn

)∣∣∣Fn−1

])∣∣∣Fn−1

]
= 0.

(13)

In the following we denote by G the collection of all g=̂(gn)1≤n≤N , where
gn is an n-variate Borel-measurable function and (Zg(n))1≤n≤N is a strictly
positive martingale and denote the probability measure associated with
g ∈ G by Qg, that is, Zg(n) = E

(
dQg

dP

∣∣∣Fn

)
. The random variable ξQg

n

is denoted for short by ξg
n. Then from the above analysis we obtain the

following theorem which gives a characterization for equivalent martingale
measures.

Theorem 4.1. A probability measure Q is an equivalent martingale mea-
sure if and only if Q = Qg for some g ∈ G such that (13) holds.

4.2. The HARA Utility Maximization for the Special Model
In this subsection, we will explicitly work out the optimal trading strat-

egy, the minimum relative entropy martingale measure and the minimum
Hellinger-Kakutani distance martingale measure for the HARA utility func-
tions U = Uγ(x)(γ ≤ 0).

Lemma 4.1. For n = 1, · · · , N, let Fn be the distribution function of Rn

and assume that
∫

R |x|Fn(dx) <∞. For given γ ≤ 0 we put

fn(a) =
∫

R

x− rn
(1 + rn + a(x− rn))1−γ

Fn(dx), a ∈
(
− 1 + rn
un − rn

,
1 + rn
rn − dn

)
.(14)

If E[Rn] = rn, then fn(a) = 0 has a unique solution π∗n = 0. In other
case, fn(a) = 0 has a unique solution π∗n in (− 1+rn

un−rn
, 1+rn

rn−dn
) if and only if

lim
a↓− 1+rn

un−rn

fn(a) > 0, lim
a↑ 1+rn

rn−dn

fn(a) < 0. (15)

Proof. See the appendix.

In the following we assume that (15) holds and π∗n ∈
(
− 1+rn

un−rn
, 1+rn

rn−dn

)
is

the unique solution of the equation fn(a) = 0, (V z,π∗

n ) is the wealth process

corresponding to π∗. Then V z,π∗

n = z
n∏

k=1

[1 + rk + π∗k(Rk − rk)].
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Theorem 4.2. Let

g∗n(x1, · · · , xn) =
(1 + π∗nxn)γ−1

E[(1 + π∗nxn)γ−1]
, 1 ≤ n ≤ N.

Then g∗ ∈ G,Qg∗ ∈ P and ξg∗

N (z) = V z,π∗

N for the utility function Uγ(x)(γ ≤
0).

Proof. See the appendix.

By Theorem 4.2 and the results in Subsection 3.2 we know that the
strategy corresponding to π∗ is optimal for the HARA utility functions
U = Uγ(γ ≤ 0) and Qg∗ is just the associated optimal martingale measure.
That is, when γ < 0,Qg∗ minimizes the Hellinger-Kakutani distance (of
order δ) dδ(Q,P) over P, where δ satisfies 1

δ + 1
γ = 1; when γ = 0, Qg∗

minimizes the relative entropy IQ(P) over P.

4.3. Results of dual form
In this subsection we will work out the optimal strategies, the minimum

relative entropy martingale measure and the minimum Hellinger-Kakutani
distance martingale measure of dual form for the utility function Wγ′(γ′ ≤
0) given by

W ′
γ(x) =

{
−(1− γ′x)

1
γ′ , γ′ < 0,

−e−x, γ′ = 0.

We will first consider the case of γ′ < 0. In this case, DU = 1
γ′ . Put

δ′ = γ′

γ′−1 , then 1
δ′ + 1

γ′ = 0. Let γ = 1
γ′ ,

1
δ + 1

γ = 1, then δ = γ
γ−1 = 1− δ′.

Under the notation of Section 3.3 and Section 4.1 and the condition of
Theorem 4.2 we put

ζg∗

n (x) =
1
γ′

1− βn − γ′x

βn
· (Zg∗(n))

γ′
1−γ′

E[(Zĝ(n))
1

1−γ′ ]

 .

Then from Theorem 4.2 we have

(Zg∗(n))
γ′

1−γ′

E
[
(Zg∗(n))

1
1−γ′

] =
(Zg∗(n))

1
γ−1

E [(Zg∗(n))δ]
=
βnξ

g∗

n (z)
z

=
βnV

z,π∗

n

z
.

Thus

ζg∗

n (z) =
1
γ′

+
(

1− βn

γ′z

)
V z,π∗

n .
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Now we construct self-financing strategy ψ̂ = {φ̂0, φ̂} defined as follows:
let ψ = (φ0, φ) be the strategy corresponding to the portfolio π∗, we put
φ̂0

n =
(
1− βN

γ′z

)
φ0

n + βN

γ′ , φ̂n = (1− βN

γ′z )φn. Then

Ṽn(ψ̂) =
βN

γ′
+ βn

(
1− βN

γ′z

)
V z,π∗

n , n = 1, · · · , N.

Specifically

VN (ψ̂) =
1
γ′

+
(

1− βN

γ′z

)
V z,π∗

N .

Recalling that V z,π∗

n > 0, thus Ṽn(ψ̂) > 1
γ′ . Consequently, ψ̂ ∈ Ψz

s(DU )

and VN (ψ̂) = ζg∗

N (z). Then from the results in Section 3.3 we know that ψ̂
is optimal for W ′

γ(x) = −(1 − γ′x)
1

γ′ (γ′ < 0) and the martingale measure
Qg∗ minimizes the Hellinger-Kakutani distance (of order δ′) dδ′(P,Q) over
P.

For utility function W0(x) = −e−x, we have DU = −∞. And for g =
(gn) ∈ G,

ηg
n(x) =

x

βn
+ E[Zg(n) logZg(n)]− logZg(n).

Lemma 4.2. For n = 1, · · · , N, let Fn be the distribution function of Rn

and assume that∫
R |x|Fn(dx) <∞. Put

hn(a) =
∫

R
(x− rn)e−a x−rn

1+rn Fn(dx), 1 ≤ n ≤ N (16)

Then there exists some bn(−∞ ≤ bn ≤ 0) such that hn(a) is +∞ for a ≤ bn
and finite for a > bn. Furthermore, hn(a) = 0 has a unique solution π̂n in
(bn,∞) if and only if lim

a↓bn

hn(a) > 0.

Proof. See the appendix.

In the following we assume that lim
a↓bn

hn(a) > 0, for n = 1, · · · , N . Then

hn(a) = 0 has a unique solution π̂n ∈ (bn,∞). For n = 1, · · · , N, define
φn

k = βnπ̂k

βk−1Sk−1
, k = 1, · · · , n, and denote by ψn the corresponding self-

financing strategy with the initial wealth z. Then the discounted wealth of
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ψn is

Ṽn(ψn) = z +
n∑

k=1

φn
k∆S̃k = z +

n∑
k=1

φn
kβk−1Sk−1

Rk − rk
1 + rk

= z +
n∑

k=1

βnπ̂k
Rk − rk
1 + rk

= z + βn

n∑
k=1

π̂k
Rk − rk
1 + rk

.

Thus

Vn(ψn) =
z

βn
+

n∑
k=1

π̂k
Rk − rk
1 + rk

.

Theorem 4.3. Let

ĝn(x1, · · · , xn) =
e−π̂nxn

E[e−π̂nxn ]
, 1 ≤ n ≤ N.

Then ĝ ∈ G,Qĝ ∈ P ′ and ψN ∈ Ψ̂z
s , η

ĝ
N (z) = VN (ψN ) for the utility

function W0(x) = −e−x.

Proof. See the appendix.

By Theorem 4.3 and the results in Section 3.3 we know that the strategy
ψN is optimal for the utility function −e−x and Qĝ is just the equivalent
martingale measure minimizing the relative entropy IP(Q) over P ′N .

5. CONCLUSION

For the problem of maximizing the expected utility of terminal wealth,
Karatzas, Lehoczky, and Shreve (1987) and Karatzas, Lehoczky, Shreve
and Xu (1991) developed a “replication method” and gave satisfactory re-
sults for complete markets. For an incomplete market, Karatzas, Lehoczky,
Shreve and Xu (1991) studied this problem in a market with a diffusion
model using the method of “fictitious completion”. In their model, the
market consists of a bond and m stocks, and the price processes of the
stocks are driven by a d-dimensional Brownian motion. When m < d, that
is, the market is incomplete, they augmented the market with certain ficti-
tious stocks so as to create a complete market and showed that the optimal
portfolio of the completed market is also optimal for the original incomplete
market. But for general infinite-dimensional market models, the “fictitious
completion” method is no longer applicable. For continuous-time incom-
plete markets, Xia and Yan (2000a, 2000b) proposed a martingale measure
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method to solve the utility maximization problem and obtained the asso-
ciated results for a geometric Lévy process model.

In this paper we study the utility maximization problem for discrete-
time incomplete markets using the method of martingale measure method.
We first introduce the general results of utility maximization problem for
a general discrete-time incomplete market. For a given utility function we
construct a random variable following Karatzas, Lehoczky, Shreve and Xu
(1991). If one of these variables can be replicated by a self-financing trad-
ing strategy, then the strategy is optimal and the associated martingale
measure is also “optimal” in some sense. For the utility function log x
(resp. 1

γ (xγ −1)(γ < 0)), the associated martingale measure minimizes the
relative entropy (resp. the Hellinger-Kakutani distance of order γ

γ−1 ); for

utility function −e−x(resp. −(1− γx)
1
γ (γ < 0)), the associated martingale

measure minimizes the relative entropy (resp. the Hellinger-Kakutani dis-
tance of order γ

γ−1 ) of dual form. The major characteristics of this paper
is that for a special discrete-time market model, we work out explicitly the
optimal trading strategies and the associated “optimal” equivalent martin-
gale measures for the above two classes of utility functions.

APPENDIX

Proof of Lemma 4.1. Since for a ∈
(
− 1+rn

un−rn
, 1+rn

rn−dn

)
and x ∈ [dn, un]

we have

(1+rn +a(x−rn))γ−1 ≤ (1+rn−a(rn−dn))γ−1∧(1+rn +a(un−rn))γ−1,

we see that fn(a) is well-defined. Let a ∈
(
− 1+rn

un−rn
, 1+rn

rn−dn

)
, and ε > 0

such that a+ ε ∈
(
− 1+rn

un−rn
, 1+rn

rn−dn

)
. Since

(x− rn)
[
(1 + rn + (a+ ε)(x− rn))γ−1 − (1 + rn + a(x− rn))γ−1

]
< 0,

for x ∈ [dn, un], it follows that

fn(a+ ε)− fn(a)

=
∫

R
(x− rn)

[
(1 + rn + (a+ ε)(x− rn))γ−1

− (1 + rn + a(x− rn))γ−1
]
Fn(dx) < 0.

Thus fn(a) is a strict decreasing function in
(
− 1+rn

un−rn
, 1+rn

rn−dn

)
. By the

monotone convergence theorem, fn(a) is also continuous in
(
− 1+rn

un−rn
, 1+rn

rn−dn

)
.

Then the conclusion follows.
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Proof of Theorem 4.2. From (12) we have

Zg∗(n) =
n∏

k=1

(
1 + π∗k

Rk−rk

1+rk

)γ−1

E
[(

1 + π∗k
Rk−rk

1+rk

)γ−1
]

=
n∏

k=1

(1 + rk + π∗k(Rk − rk))γ−1

E
[
(1 + rk + π∗k(Rk − rk))γ−1

] .

Since ∀k = 1, · · · , n, π∗k ∈
(
− 1+rk

uk−rk
, 1+rk

rk−dk

)
, we have 1+rk+π∗k(Rk−rk) >

0, thus Zg∗(n) is strictly positive. Obviously (Zg∗(n)) is a martingale, thus
g∗ ∈ G. On the other hand, since π∗n is the solution of fn(a) = 0, we have
fn(π∗n) = 0, that is E[(Rn − rn)(1 + rn + π∗n(Rn − rn))γ−1] = 0. Conse-
quently (13) holds for g∗. Thus from Theorem 4.1 we know that Qg∗ ∈ P.
Therefore, (Ṽ z,π∗

n ) is a Qg∗ -martingale, that is, E[Zg∗(n)βnV
z,π∗

n ] = z.

Recall that V z,π∗

n = z
n∏

k=1

[1 + rk + π∗k(Rk − rk)]. Thus

Zg∗(n)V z,π∗

n = z
n∏

k=1

(1 + rk + π∗k(Rk − rk))γ

E[(1 + rk + π∗k(Rk − rk))γ−1]
.

Therefore,

1
βn

=
1
z

E(Zg∗(n)V z,π∗

n ) =
n∏

k=1

E[(1 + rk + π∗k(Rk − rk))γ ]
E[(1 + rk + π∗k(Rk − rk))γ−1]

.

On the other hand, for δ = γ
γ−1 and n = 1, · · · , N , we have

Zδ
g∗(n) =

n∏
k=1

(1 + rk + π∗k(Rk − rk))γ

(E[(1 + rk + π∗k(Rk − rk))γ−1])δ
,

E[Zδ
g∗(n)] =

n∏
k=1

E[(1 + rk + π∗k(Rk − rk))γ ]

(E[(1 + rk + π∗k(Rk − rk))γ−1])δ
.
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Thus

ξg∗

n (z) =
z

βn

(Zg∗(n))
1

γ−1

E[Zδ
g∗(n)]

=
z

βn

n∏
k=1

1 + rk + π∗k(Rk − rk)

(E[(1 + rk + π∗k(Rk − rk))γ−1])
1

γ−1

×
n∏

k=1

(
E[(1 + rk + π∗k(Rk − rk))γ−1]

)δ
E[(1 + rk + π∗k(Rk − rk))γ ]

=
z

βn

n∏
k=1

(1 + rk + π∗k(Rk − rk))E[(1 + rk + π∗k(Rk − rk))γ−1]
E[(1 + rk + π∗k(Rk − rk))γ ]

=
z

βn
·

n∏
k=1

(1 + rk + π∗k(Rk − rk)) · βn

= z
n∏

k=1

(1 + rk + π∗k(Rk − rk)) = V z,π∗

n , n = 1, 2, · · · , N.

Specifically, ξg∗

N (z) = V z,π∗

N . Thus the conclusion follows.
Proof of Lemma 4.2. According to the assumption that Rn > −1, we

know that Rn−rn

1+rn
> −1. Since

∣∣∣((x− rn)e−a x−rn
1+rn

)
I{| x−rn

1+rn
|≤1}

∣∣∣ ≤ e|a|(1 + rn),

Thus ∫
R

∣∣∣(x− rn)e−a x−rn
1+rn

∣∣∣ I{| x−rn
1+rn

|≤1}Fn(dx) <∞.

On the other hand, it is clear that there exists some bn(−∞ ≤ bn ≤ 0)
such that

∫
R(x− rn)e−a x−rn

1+rn I{| x−rn
1+rn

|>1}Fn(dx) is +∞ for a < bn and finite
for a > bn. Thus the first property of hn(a) follows.

For any a ∈ (bn,∞) and ε > 0 we have

(x− rn)e−(a+ε) x−rn
1+rn − (x− rn)e−a x−rn

1+rn < 0, ∀x ∈ R.

Consequently hn(a+ ε)−hn(a) < 0, which means that hn(a) is strictly de-
crease in (bn,∞). By monotone convergence theorem, hn is also continuous
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in (bn,∞). Since

lim
a↑∞

hn(a) = lim
a↑∞

∫
R
(x− rn)e−a x−rn

1+rn Fn(dx)

= lim
a↑∞

∫
{x≥rn}

(x− rn)e−a x−rn
1+rn Fn(dx)

+ lim
a↑∞

∫
{x<rn}

(x− rn)e−a x−rn
1+rn Fn(dx)

= 0−∞ = −∞

Thus hn(a) = 0 has a unique solution π̂n ∈ (bn,∞) if and only if lim
a↓bn

hn(a)

> 0.
Proof of Theorem 4.3. Similar to Theorem 4.2, from (12) we have

Zĝ(n) =
n∏

k=1

e
−π̂k

Rk−rk
1+rk

E
[
e
−π̂k

Rk−rk
1+rk

] .
Obviously, (Zĝ(n)) is a strictly positive martingale, thus ĝ ∈ G. Note that
π̂k ∈ (bk,∞), Rk ∈ [dn, un], a.s., thus Zĝ(N) is P-square-integrable. Since
π̂n is the solution of hn(a) = 0, we have hn(π̂n) = 0. That is,

E
[
(Rn − rn)e−π̂n

Rn−rn
1+rn

]
= 0.

Thus (13) holds for ĝ. From Theorem 4.1 we know that Qĝ is an equivalent
martingale measure and Qĝ ∈ P ′. Then (Ṽn(ψn)) is a Qĝ-martingale, that
is, EQĝ

[βnVn(ψn)] = E[Zĝ(n)βnVn(ψn)] = z. Therefore,

z

βn
= E[Zĝ(n)Vn(ψn)] = E

[
Zĝ(n)

(
z

βn
+

n∑
k=1

π̂k
Rk − rk
1 + rk

)]

= E

 z

βn
·

n∏
k=1

e
−π̂k

Rk−rk
1+rk

E
[
e
−π̂k

Rk−rk
1+rk

]
+ E

[
Zĝ(n)

(
n∑

k=1

π̂k
Rk − rk
1 + rk

)]

=
z

βn
+ E

[
Zĝ(n)

(
n∑

k=1

π̂k
Rk − rk
1 + rk

)]
.

Then we have

E

[
Zĝ(n)

(
n∑

k=1

π̂k
Rk − rk
1 + rk

)]
= 0.
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Thus

E[Zĝ(n) log(Zĝ(n))] + log

(
n∏

k=1

E
[
e
−π̂k

Rk−rk
1+rk

])

= E

Zĝ(n) log

 n∏
k=1

e
−π̂k

Rk−rk
1+rk

E[e−π̂k
Rk−rk
1+rk ]

+ log

(
n∏

k=1

E
[
e
−π̂k

Rk−rk
1+rk

])

= E

[
Zĝ(n)

n∑
k=1

(
−π̂k

Rk − rk
1 + rk

− log E
[
e
−π̂k

Rk−rk
1+rk

])]

+ log

(
n∏

k=1

E
[
e
−π̂k

Rk−rk
1+rk

])

= E

[
−

(
Zĝ(n)

n∑
k=1

π̂k
Rk − rk
1 + rk

)
− Zĝ(n) log

(
n∏

k=1

E
[
e
−π̂k

Rk−rk
1+rk

])]

+ log

(
n∏

k=1

E
[
e
−π̂k

Rk−rk
1+rk

])

= E

[
−Zĝ(n) log

(
n∏

k=1

E
[
e
−π̂k

Rk−rk
1+rk

])]
+ log

(
n∏

k=1

E
[
e
−π̂k

Rk−rk
1+rk

])

= − log

(
n∏

k=1

E
[
e
−π̂k

Rk−rk
1+rk

])
Zĝ(n) + log

(
n∏

k=1

E
[
e
−π̂k

Rk−rk
1+rk

])
= 0.

Thus for n = 1, · · · , N,

ηĝ
n(z) =

z

βn
+ E[Zĝ(n) logZĝ(n)]− logZĝ(n)

=
z

βn
+ E[Zĝ(n) logZĝ(n)]− log

 n∏
k=1

e
−π̂k

Rk−rk
1+rk

E
[
e
−π̂k

Rk−rk
1+rk

]


=
z

βn
+ E[Zĝ(n) logZĝ(n)]−

n∑
k=1

[
−π̂k

Rk − rk

1 + rk
− log

(
E
[
e
−π̂k

Rk−rk
1+rk

])]

=
z

βn
+ E[Zĝ(n) logZĝ(n)] +

n∑
k=1

π̂k
Rk − rk

1 + rk
+ log

(
n∏

k=1

E
[
e
−π̂k

Rk−rk
1+rk

])

=
z

βn
+

n∑
k=1

π̂k
Rk − rk

1 + rk
= Vn(ψn).
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Particularly, ηĝ
N (z) = VN (ψN ). Since Ṽn(ψN ) = z + βN

n∑
k=1

π̂k
Rk−rk

1+rk
, we

know that ψN ∈ Ψ̂z
s . Thus the conclusion follows.
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