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A sampling plan that may find applications in economics, biomedical re-
search, reliability and life testing consists of putting kn units on test in groups
of k each and observing the minimum value of each group. Thus, the obser-
vations are sampled minima and they are to be used to do inference about
the original distribution. In this investigation, we present properties of the
empirical distribution and sample moments and show how these estimates can
be used to do goodness of fit testing about the underlying distribution. c© 2002
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1. INTRODUCTION

In some economic, medical and reliability studies, a sampling plan that
may be used is described as follows: Put on test a set of kn units in groups of
k each. Observe only the minimum value of each group. Thus the sampled
data are minima of random variables. Let X11, . . . , X1k, . . . , X21, . . . , X2k,
. . . , Xn1, . . . , Xnk be a set of nk independent identically distributed (iid)
random variables (rv) from a distribution F . We only observe, however,
Zi, i = 1, . . . , n, where Zi = Zik = min

1≤j≤k
{Xij}. Thus the distribution of

Zi is G(x) = 1 − (1 − F (x))k. Set F = 1 − F and G = 1 − G. Based on
Z1, . . . , Zn we would like to do (nonparametric) inference about F .

Note that when the data are lives, if we define the “hazard rate” of X
by hF (x) and that of Z by hG(x), then these are related as follows:
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hG(x) = khF (x), x > 0 (1)

where hF (x) = f(x)/F (x), F (x) > 0 and hG is defined similarly. Thus
hazard analysis of F can be done easily from the Zi’s.

In this investigation we discuss some points pertaining to the inference
(estimation and hypothesis testing) about F using the data onG,Z1, . . . , Zn.
If one would like to estimate F (x) one notices

F (x) = 1−
(
G(x)

)1/k
(2)

Thus the empirical estimation of F is given by

Fn(x) = 1−
(
Gn(x)

)1/k
, (3)

where Gn(x) = 1−Gn(x) and Gn(x) =
1
n

n∑
i=1

I(Zi ≤ x). Basic properties

of Fn such as consistency and asymptotic normality can easily be obtained
from similar properties of Gn. We add to this by obtaining a representation
of the mean square error of Fn. Next, the r-th moment of X, µγ = EXγ =∫∞
−∞ xγdF (x) has the representation

µγ =
1
k

∫ ∞

−∞
xγ
(
G(x)

)−(k−1)/k
dG(x). (4)

We can estimate µγ by:

µn,γ =
1
k

∫ ∞

−∞
xγ
(
Gn(x)

)−(k−1)/k
dGn(x) = (kn)−1

n∑
i=1

Zγ
i G

−(k−1)/k

n (Zi).

(5)
The bias and mean square error of µn,γ will be discussed. Note also that
the asymptotic behavior of µn,γ can be studied from the L-Statistics form:

µγ,n =
(
n− 1
n

)(k−1)/k

(kn)−1
n∑

i=1

Z(i)[(n− i+ 1/n)]−(k−1)/k, (5∗)

where Z(i), . . . , Z(n) are the order statistics corresponding to Z1, . . . , Zn.
Another important problem pertaining to F is to test the null hypothesis

H0 : F = F0, F0 is completely known or known up to a set of parameters
against the alternative H1 : F 6= F0. In direct sampling (complete) case,
the Cramer-vonMises statistic based on the L2-norm between F and F0 is
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highly popular and useful. In our situation, however, we shall propose the
following norm:

∆(k) =
∫ ∞

−∞

[
F

k
(x)− F

k

0(x)
]2
ψ(F0(x))dF0(x), (6)

where ψ is a known function defined on [0, 1]. If we were to plug in Fn(x) as
our estimate of F in (6), then clearly

√
n∆n,k = op(1) and the asymptotic

null distribution of n∆n,k is not easily obtainable as in the case for direct
sampling (cf. Schorak and Wellner (1986) and D’Agostino and Stephens
(1986) for details). Hence we utilize ideas developed in Ahmad (1993) to
provide an alternative estimate ∆̂n,k(γ) (depending on a known constant
0 < γ ≤ 1) which is asymptotically normal both under H0 (where it is
also distribution-free) and under H1 (thus we can also evaluate the power
of the test with little efforts). More recently, however, interest in the Lp-
norma for general p ≥ 2, became subject of investigation and extending
the Cramer-von Mises statistics to their case was studied (cf. Csorgo and
Horvath (1993) and references therein). Thus the Lp-version of (6) is given
by,

∆(k, p) =
∫ ∞

−∞

[
F

k
(x)− F

k

0(x)
]p
ψ(F0(x))dF0(x), p ≥ 2. (7)

We shall indicate how our test procedure can be extended to this case where
p is taken to be any integer larger than 2.

In the remainder of this investigation, all integrals not carrying limits
are to be taken over the entire real line. All proofs of results discussed here
are given in the appendix when warranted.

2. ESTIMATION OF F

Let Z1, . . . , Zn be a random sample from a df G(.) and we want to es-
timate the df F (x) related to G by the relation F =

(
G(x)

)1/k
for all

x ∈ (−∞,∞), where F = 1 − F (G = 1 − G). Let Gn =
1
n

n∑
i=1

I(Zi ≤ x)

denote the empirical df of G. We estimate F (x) by:

Fn(x) = 1−
(
Gn(x)

)1/k
. (8)

Using Part (1) of Rao (1973) p.385 we easily see that Fn(x) is asymptoti-

cally normal with mean F (x) and variance
1
nk2

1− F
k
(x)

F
k−2

(x)
(provided that
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F (x) > 0). Consistencies (Weak or Strong, pointwise or uniform) are easily
obtainable from the inequality:

|Fn(x)− F (x)| =
∣∣Fn(x)− F

∣∣ = ∣∣∣F k

n(x)− F
k
(x)
∣∣∣{ k∑

i=1

F
i

n(x)F
k−i

(x)

}−1

=
∣∣Gn(x)−G(x)

∣∣{ n∑
i=1

G
1/k

n (x)G
(k−1)/k

(x)

}−1

≤ k−1
∣∣Gn(x)−G(x)

∣∣ / (G(x) + ε
)
, for sufficiently large n

≤ (εk)−1 |Gn(x)−G(x)| . (9)

The next theorem gives the bias and the mean square error of Fn(x). The
proof is given in the Appendix.

Theorem 1. Up to the second order in n, we have

Bias(Fn(x)) ' − (k − 1)
2nk2

1− F
k
(x)

F
k−1

(x)
− (k − 1)(k − 2)(k − 3)

8n2k4

(
1− F

k
(x)
)2

F
2k−1

(x)
,

(10)
and

mse(Fn(x)) ' 1
nk2

1− F
k
(x)

F
k−2

(x)
− (k − 1)(k − 2)(2k + 1)

4n2k4

(
1− F

k
(x)
)2

F
2k−2

(x)
.

(11)
The choice of k can be made to minimize the mean square error (11). In
order to do that we propose the following global measure:

δk =
∫
E(Fn(x)− F (x))2F

2k−2
(x)dF (x). (12)

Thus it is easy to see that up to the second order,

δ ' 1
n

{
1

k(k + 1)(2k + 1)
− (k − 1)(k − 2)

2nk2(k + 1)

}
. (13)

Another estimate of F (x) that has received attention recently is the so-
called “Kernel estimate”; cf. Azzalini (1981) or Lejeune and Sarda (1992).
Let K be a known distribution function and {an} be a sequence of positive
reals such that (we shall write a for an henceforth). The Kernel estimate
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of G(x) is defined by:

Ĝn(x) =
1
n

n∑
i=1

K

(
Zi − x

a

)
. (14)

Hence, we estimate F (x) by:

F̂n(x) = 1−
(
Ĝn(x)

) 1
k

. (15)

To compare Fn(x) with F̂n(x) one need a result as the following theorem.

Theorem 2. If F is twice differentiable, then up to the first order in n,

Bias
(
F̂n(x)

)
' a2

2k
σ2

k

(
f ′(x)− f2(x)/F (x)

)
, (16)

and

mse
(
F̂n(x)

)
' 1− F

k
(x)

nk2F
k−2

(x)
− a

nk2
S(k)

f(x)

F
k−1

(x)

+ σ4
ka

4

(
kf ′(x)F (x)− k(k − 1)f2(x)

)2
k2F

k
(x)

, (17)

where R(k) =
∫
k2(u)du and S(k) =

∫
uk(u)K(u)du.

In order to find the optimal bandwidth a, one needs a global criterion
for minimizing the mse

(
Fn(x)

)
. So, we suggest using

δn,k(a) = E

∫
mse

(
F̂n(x)

)
F

k
(x)dF (x). (18)

Hence using (18) and integrating we get that

δn,k(a) =
1

3nk(k + 3)
− a

nk
S(k)U(f) +

a4

4
σ4

kVk(f), (19)

where Vk(f) =
∫ (
f ′(x)F (x)− (k − 1)f2(x)

)2
dF (x) and

U(f) =
∫
F

2
(x)f(x)dF (x), assumed finite. Therefore the value of a that

minimizes (19) is equal to:

a0 pt =
{
S(k)U(f)
knσ4

kVk(f)

} 1
3

. (20)
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As is clear from (20), the optimal choice of a depends on the unknown
functions f or F or both. Thus one is in need of a mechanism to provide
data dependent choices of a. This we will do elsewhere. Note here that
while the order of a0 pt is the same as in direct sampling (of size kn), its
constants are different, hence data dependent choices of a will differ as well.
The related and interesting problem of estimating the density function f(x)
will be dealt with in a different investigation.

Next, let us discuss estimating the moments of X, E(Xr). Note that

µr = E(Xr) =
∫
xrf(x)dx =

1
k

∫
xr
[
G

(k−1)/k
(x)
]
dG(x). (21)

Based on the sample Z1, . . . , Zn fromG(x) = F
k
(x), we propose to estimate

µr by:

µr,n =
(
n− 1
n

)(k−1)/k
{

(nk)−1
n∑

i=1

Zr
i /
(
Gn(Zi)

)(k−1)/k

}
. (22)

Note that µr,n can also be written as:

µr,n =
(
n− 1
n

)(k−1)/k
{

(nk)−1
n∑

i=1

Zr
(i)/ ((n− i+ 1)/n)(k−1)/k

}
, (23)

where Z(1), . . . , Z(n) denote the order statistics corresponding to Z1, . . . , Zn.
Thus we easily see that µr,n is a generalized L-estimate (cf. Jureckova and
Sen (1996) for detailed discussion of this class of statistics) and hence its
limiting normality can be attested by known results on L-statistics. It is
also possible to obtain a representation of the bias and mean square error
of µr,n directly. Thus we have,

Theorem 3. Up to the second order

Bias(µr,n) ' (k − 1)(k − 2)
2k2(n− 1)

Ar,k(F ), (24)

where Ar,k =
∫
xrF

−k
(x)
(
1− F

k
(x)
)
dF (x) assumed to exist and is finite.

mse(µr,n) ' σ2
r

nk2
+

(k − 1)(2k − 1)
2k4

1
n

[Cr,k(F )− µrAr,k(F )]

+
(k − 1)(3k − 1)
n(n− 1)k4

1
n(n− 1)

Br,k(F ), (25)
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where σ2
r = V (Xr), Br,k =

∫
x2rF

−2k
(x)
(
1− F

k
(x)
)2

dF (x) and Cr,k(F )

= k2
∫ ∫

xryr
(
F (x)F (y)

)−2k
[
F

k
(min(x, y))− F

k
(x)F

k
(y)
]
dF (x)dF (y).

3. GOODNESS OF FIT TESTING ONE-SAMPLE CASE.

Here we want to test H0 : F = F0 against H1 : F 6= F0, F0 is a known df .
Based on a sample Z1, . . . , Zn drawn for G(x) = 1 − F

k
(x). Since testing

F = F0 is equivalent to testing F
k
(x) = G(x) is equal to F

k

0 = G0(x), say,
one can base testing on the empiricalGn(x), the nullG0(x) and a functional
(distance) between them but that will not reflect the effort of the parameter
k. Thus we proposed the functional (6), which can be estimated by:

∆̂n,γ(k) =
∫
F

2k

n (x)Ψ(F0(x))dF0(x)

− 2
∫
F

k

n,γ(x)F
k

0(x)Ψ(F0(x))dF0(x) + C0(k), (26)

where C0(k) =
∫
F

2k

0 (x)Ψ(F0(x))dF0(x) is a known positive constant,

F
2k

n (x) =
2

n(n− 1)

∑
i<j

I(min(Zi, Zj) > x), (27)

and

F
k

n,γ = n−1
n∑

i=1

Ci,n(γ)I(Zi > x), (28)

with {Ci,n(γ)}n
i=1 a triangular array of constants such that

1
n

n∑
i=1

Ci,n(γ) →

1 and
1
n

n∑
i=1

C2
i,n(γ) → C2(γ) > 1 for all 0 < γ ≤ 1. A special choice of

these constants, cf. Ahmad (1993) is to choose Ci,n(γ) = 1 − γ for i odd
and Ci,n(γ) = 1 + γ for i even. Now, we have the following theorem.

Theorem 4. As n → ∞,
√
n
(
∆̂n,γ(k)−∆(k)

)
converges in distribu-

tion to a normal distribution with 0 mean and variance σ2
k,γ given in (A.24).
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Under H0,∆(k) = 0 and the null variance is

σ
(0)2
k,γ = (C2(γ)− 1)

{∫∫
F

k
0(max(x, y))F

k
0(y)Ψ(F0(x))Ψ(F0(y))dF0(x)dF0(y)

−
[∫

F
2k
0 (x)Ψ(F0(x))dF0(x)

]2}
. (29)

In the important special case Ψ(u) = 1 we get

σ
(0)2
k,γ = 4k(C2(γ)− 1)/(2k + 1)2(3k + 2). (30)

In the above special case of Ci,n(γ) we have C2(γ) = 1 + γ2.

Next, in order to show how to extend the above procedure to the Lp-case
where p ≥ 2 is an integer, note that (7) can be written as follows:

∆k,p = C0(k, γ,Ψ)− pδ1,p

(
F

k
, F

k(p−1)

0 ,Ψ
)

+
p∑

r=2

(−1)p

(
p
r

)
δr,p

(
F

kr
, F

k(p−r)

0 ,Ψ
)
, (31)

where C0 = C0(k, p,Ψ) =
∫
F

kp

0 (x)Ψ(F0(x))dF0(x) is a known positive
constant and

δk,r,p = δk,r,p

(
F

kr
, F

k(p−r)

0 ,Ψ
)

=
∫
F

kr
(x)F

k(p−r)

0 (x)Ψ(F0(x))dF0(x),

r = 1, . . . , p. Thus we propose to estimate ∆(k, p) by:

∆̂n,ν(k, p) = C0 − pδ̂1,p

(
F

k

n,γ , F
k(p−1)

0 ,Ψ
)

+
p∑

r=2

(−1)r

(
p
r

)
δr,p

(
F

kr

n , F
k(p−r)

0 ,Ψ
)
, (32)

where F
k

n,γ(x) is as given in (28) and for r = 2, . . . , p,

F
kr

n (x) =
1(
n
r

) ∑
1≤i1<···<ir≤n

I(min(Zi1 , . . . , Zir
) > x). (33)

We now state the following theorem.
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Theorem 5. As n → ∞,
√
n
(
∆̂n,γ(k, p)−∆(k, p)

)
is asymptotically

normal with mean 0 and variance given in (A.24). Under H0, the variance
is equal to

σ
(0)2
k,p,γ = p2(C2(γ)− 1)

{∫∫
F

k

0(max(x, y))F
k(p−1)

0 (x)F
k(p−1)

0 (y)

Ψ(F0(x))Ψ(F0(y))dF0(x)dF0(y)

−
[∫

F
kp

0 (x)Ψ(F0(x))dF0(x)
]2}

(34)

In the special case Ψ(u) = 1, the null variance reduces to:

σ
(0)2
k,p,γ = p2k(C2(γ)− 1)/(kp+ 1)(2kp− k + 2) (35)

Note that with p = 2, Theorem 5 yields Theorem 4. Thus it suffices to
prove Theorem 5. This we do in the Appendix.

APPENDIX

Proof of Theorem 1:
Recall that if W denotes the standard normal variate, then

Fn(x) = G
1
k

n (x) =

{
G(x) +W

(
G(x)G(x)

n

) 1
2
} 1

k

= G
1
k (x)

{
1 +W

(
G(x)
nG(x)

) 1
2
} 1

k

' G
1
k (x)

{
1 +

W

k

(
G(x)
nG(x)

) 1
2

− (k − 1)
2k2

W 2

(
G(x)
nG(x)

)

+
(k − 1)(k − 2)

6k3
W 3

(
G(x)
nG(x)

) 3
2

− (k − 1)(k − 2)(k − 3)
24k4

W 4

(
G(x)
nG(x)

)2

+ · · ·

}
. (A.1)
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Then

EF n(x)

' G
1
k (x)

{
1− k − 1

2k2

(
G(x)

nG(x)

)
− (k − 1)(k − 2)(k − 3)

8k4

(
G(x)

nG(x)

)2

+ O(n−3)

}

= F (x)

{
1− k − 1

2k2

(
1− F

k
(x)

nF
k
(x)

)

− (k − 1)(k − 2)(k − 3)

8k4

(
1− F

k
(x)

nF
k
(x)

)2

+ O(n−3)

}
. (A.2)

Now, (10) follows from (A.2) above.
Next, by similar argument we see that

EF
2
n(x) = G

2/k
(x)E

{
1 + W

(
G(x)

nG(x)

) 1
2
}2/k

= F
2
(x)E

1 + W

(
1− F

k
(x)

nF
k
(x)

) 1
2


2/k

' F
2
(x)

{
1− k − 2

k2

(
1− F

k
(x)

nF
k
(x)

)

− (k − 2)(k − 1)(3k − 2)

4k4

(
1− F

k
(x)

nF
k
(x)

)2

+ O(n−3)

}

= F
2
(x)− k − 2

k2

(
1− F

k
(x)

nF
k−2

(x)

)

− (k − 2)(k − 1)(3k − 2)

4k4

(
(1− F

k
(x))2

n2F
2k−2

(x)

)
+ O(n−3). (A.3)

Hence, (11) follows from (A.2) and (A.3) after simplification.
Proof of Theorem 2:
Using standard theory, cf. Wand and Jones (1995), we see that

Ĝn(x) ' G(x)− a2

2
g′(x)σ2

k −
a4

24k
g(3)(x)νk(4) + op(a4)

+ W

[
G(x)G(x)

n
− a

n
g(x)S(k)

]
+ op

((a
n

) 1
2
)
. (A.4)
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Using the simple expansion (1− θ)1/k ≈ 1− θ
k −

θ2(k−1)
2k2 we get that

E
(
Ĝn(x)

) 1
k '

(
G(x)

) 1
k

{
1− a2

2k
g′(x)
G(x)

σ2
k −

a4

24k
g(3)(x)
G(x)

ν2
k(4)

− k − 1
4k2

a4

(
g′(x)
G(x)

)2

σ4
k

+
k − 1
2k2

[
G(x)
nG(x)

− a

n

g(x)

G
2
(x)

S(k)

]}
(A.5)

Now, (16) follows from (A.5) when we put G(x) = F
k
(x) and simplify.

To evaluate the mse
(
F̂n(x)

)
we use (1− θ)2/k ' 1− 2θ

k + θ2 k−2
k2 . Thus,

E
(
Ĝn(x)

)2/k

'
(
G(x)

)2/k
{

1− a2

k

g′(x)

G(x)
σ2

k −
a4

12k

(
g(3)(x)

G(x)

)
νk(4)

− k − 2

4k2
a4

(
g′(x)

G(x)

)2

σ4
k +

k − 2

k

[
G(x)

nG(x)
− a

n

g(x)

G
2
(x)

S(k)

]}
. (A.6)

Hence

E
(
F̂ n(x)− F (x)

)2

= E

(
Ĝ

1/k

n (x)−G
1/k

(x)

)2

= EĜ
2/k

n (x)− 2G
1/k

(x)EĜ
1/k

n (x) + G
2/k

(x)

' 1

k2G
2(k−1)/k

{[
G(x)G(x)

n
− a

n
g(x)S(k)

]
+ a4σ4

k(g′(x))2
}

. (A.7)

Note that
(
G(x)

)1/k
= F (x) gives that g(x) = kf(x)

(
F

k−1
(x)
)
, g′(x) =

kf ′(x)F
k−1

(x)− k(k− 1)f2(x)F
k−2

(x). Plugging in these and simplifying
yields the result.

Proof of Theorem 3:
For i = 1, 2, . . . , n denote by

Gi,(n−1)(Zi) = (n− 1)−1
∑
j 6=i

I(Zj > Zi). (A.8)

Hence we see that

Gn(Zi) =
n− 1
n

Gi,(n−1)(Zi), i = 1, 2, . . . , n. (A.9)
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Thus, by the central limit theorem of empirical df ’s and conditioning on
Zi, we see that

Gn(Zi) =
(
n− 1
n

)
G(Zi)

{
1 +W

(
G(Zi)

(n− 1)G(Zi)

) 1
2
}
, (A.10)

where W is the standard normal variate. Hence conditioning on Zi we
have, (

Gn(Zi)
)(k−1)/k

'
(

n− 1

n

)(k−1)/k (
G(Zi)

)(k−1)/k

{
1− k − 1

k
W

(
G(Zi)

(n− 1)G(Zi)

) 1
2

+
(k − 1)(2k − 1)

2k2
W 2

(
G(Zi)

(n− 1)G(Zi)

)}
+ Op(n−3/2), (A.11)

i = 1, 2, . . . , n. Thus conditioning on Zi we get that

E{G(k−1)/k
n (Zi)|Zi}

'
(

n− 1

n

)(k−1)/k

(G(Zi))
(k−1)/k

{
1 +

(k − 1)(2k − 1)

2k2(n− 1)

G(Zi)

G(Zi)

}
+ O(n−3/2). (A.12)

Hence

Eµr,n ' µr +
(k − 1)(2k − 1)

2k2(n− 1)

∫
xr
(
G(x)

)(2k−1)/k
G(x)dG(x).

Substituting for G(x) = F
k
(x) yields the result.

Next, let us evaluate

Eµ2
r,n = E

{(
n− 1
n

)(k−1)/k 1
nk

n∑
i=1

Zn
i /(Gn(Zi))(k−1)/k

}2

.

Note that we can write µ̂2
r,n =

(
n

n−1

)(k−1)/k

µ2
r,n. Thus,

Eµ̂2
r,n =

(
1
nk

)2
{

n∑
i=1

EZ2r
i /(Gn(Zi))2(k−1)/k

+
∑
i 6=j

EZn
i Z

n
j /(Gn(Zi)Gn(Zj))(k−1)/k

 .

=
(

1
nk

)2

{I1,t,n + I2,r,n}, (A.13)
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Now, again conditioning on Zi,

(
Gn(Zi)

)2(k−1)/k

'
(

n− 1

n

)2(k−1)/k

(G(Zi))
2(k−1)/k

{
1− 2(k − 1)

k
W

(
G(Z0)

(n− 1)GZi

) 1
2

+
(k − 1)(3k − 1)

k2
W 2

(
G(Zi)

(n− 1)G(Zi)

)}
. (A.14)

Hence,

E
{(

Gn(Zi)
)2(k−1)/k |Zi

}
'
(

n− 1

n

)2(k−1)/k

(G(Zi))
2(k−1)/k

{
1 +

(k − 1)(3k − 1)

k2

G(Zi)

(n− 1)G(Zi)

}
,

which leads to the following:

I1,r,n '
(

n− 1

n

)2(k−1)/k

nµ(2)
r +

(
n− 1

n

)2(k−1)/k

× (k − 1)(3k − 1)

k2

n

n− 1

∫
x2rG(x)G

−(3k−2)/k
(x)dG(x) (A.15)

Next, conditioning on Zi and Zj

Gn(Zi)Gn(Zj)

=

(
n− 1

n

)2

Gi(n−1)(Zi)Gj(n−1)(Zj)

'
(

n− 1

n

)
G(Zi)G(Zj)

1 + W

(
G(min(Zi, Zj))−G(Zi)G(Zj)

(n− 1)G
2
(Zi)G

2
(Zj)

) 1
2

 .

Therefore

(
Gn(Zi)Gn(Zj)

)(k−1)/k

'
(

n− 1

n

)(k−1)/k (
G(Zi)G(Zj)

)(k−1)/k

×

1− k − 1

k
W

(
G(min(Zi, Zj))−G(Zi)G(Zj)

(n− 1)G
2
(Zi)G

2
(Zj)

) 1
2

+
(k − 1)(2k − 1)

2k2
W 2

(
G(min(Zi, Zj))−G(Zi)G(Zj)

(n− 1)G
2
(Zi)G

2
(Zj)

)}
.
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Hence

E
{

(Gn(Zi)Gn(Zj))(k−1)/k|Zi, Zj

}
=
(
n− 1
n

)2(k−1)/k (
G1(Zi)G(Zj)

)−(k−1)/k
{

1 +
(k − 1)(2k − 1)

2k2

×

(
G(min(Zi, Zj))−G(Zi)G(Zj)

(n− 1)G
2
(Zi)G

2
(Zj)

)}
, (A.16)

which leads to the following:

I2,r,n '
(

n− 1

n

)2(k−1)/k

n(n− 1µ2
r

+ n(n− 1)
(k − 1)(2k − 1)

2k2

(
n− 1

n

)−2(k−1)/k

× 1

(n− 1)

∫∫
xryr(G(x)G(y))−(3k−1)/k

×
[
G(min(x, y))−G(x)G(y)

]
dG(x)dG(y). (A.17)

Using (A.15) and (A.17) into (A.13) we get that:

Eµ̂2
r,n '

(
n− 1
n

)−2(k−1)/k { 1
nk2

µ(2)
r +

(k − 1)(3k − 1)
k4n(n− 1)

Br,k(F )

+
(n− 1)
nk2

µ2
r +

(k − 1)(2k − 1)
2k4

(
1
n

)
Cr,k(F )

}
. (A.18)

Using (24) and (A.18) in the definitions of mse(µr,n) yields the desired
result.

Proof of Theorem 5.
Note that

δ̂1,p,γ = δ̂1,p

(
F

k

n,γ , F
k(p−1)

0 ,Ψ
)

=
1
n

n∑
i=1

C0,n(γ)
∫ ∞

Zi

F
k(p−1)

0 (x)Ψ(F0(x))dF0(x)

=
1
n

n∑
i=1

Ci,n(γ)ξk,p,F0(Zi), (A.19)
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For r = 2, . . . , p,

δ̂r,p =

(
n

r

)−1 ∑
1≤i1<···<ir≤n

∫ ∞

min(Zi1 ,...,Zir )

(
F 0(x)

)k(p−r)
Ψ(F0(x))dF0(x)

=

(
n

r

)−1 ∑
1≤i1<···<ir≤n

ϕk,r,p,F0(Zi1 , . . . , Zir ), (A.20)

Set

ϕ
(1)
k,r,p,F0

(Z1) = E [ϕk,r,p,F0(Z1, . . . , Zr)|Z1] (A.21)

Thus by standard theory of U-statistics we easily see that

δ̂k,r,p =
r

n

n∑
i=1

ϕ
(1)
k,r,p(Zi) + op

(
n−

1
2

)
, r = 2, . . . , p. (A.22)

Set for r = 2, . . . , p,

T̂k,r,p = δ̂k,r,p − δk,r,p and T̂k,l,p = δ̂k,l,p,γ − δk,l,p.

We get that (
∆̂n,γ(k, p)−∆(k, p)

)
= −T̂k,l,p +

p∑
r=2

(−1)n

(
p
r

)
T̂k,r,p + op

(
n−

1
2

)
. (A.23)

Hence
√
n
(
∆̂n,γ(k, p)−∆(k, p)

)
is asymptotically normal with mean 0

and variance

σ2(k, p) = nV ar{T̂k,l,p}+ n

p∑
r=2

(
p

r

)
V ar{T̂k,r,p}

− 2n

p∑
r=2

(−1)

(
p

r

)
cov

(
T̂k,l,p, T̂k,r,p

)
− 2

∑
r 6=s

∑
(−1)r+s

(
p

r

)(
p

s

)
cov

(
T̂k,r,p, T̂k,s,p

)
. (A.24)

But as n→∞,

nV ar
(
T̂k,l,p

)
→ p2C2(γ)

{∫∫
F

k
(min(x, y))F

k(p−1)

0 (x)F
k(p−1)

0 (y)

× Ψ(F0(x))Ψ(F0(y))dF0(x)dF0(y)

−
[∫

F
k
(x)F

k(p−1)

0 (x)Ψ(F0(x))dF0(x)
]2}

. (A.25)
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Also, for r = 2, . . . , p, as n→∞,

nV ar
(
T̂k,r,p

)
→ r2

{∫∫
F

k
(min(x, y))F

k(r−1)
(x)F

k(r−1)
(y)

× F
k(p−r)
0 (x)F

k(p−r)
0 (y)Ψ(F0(x))Ψ(F0(y))dF0(x)dF0(y)

−
[∫

F
rk

(x)F
k(p−r)
0 (x)Ψ(F0(x))dF0(x)

]2}
, (A.26)

while we also have as n→∞,

nCov
(
T̂k,l,p, T̂k,r,p

)
→ rp

{∫∫
F

k
(min(x, y))F

k(r−1)
(x)F

k(p−r)
0 (x)F

k(p−1)
0 (y)

× Ψ(F0(x))Ψ(F0(y))dF0(x)dF0(y)

−
[∫

F
kr

F
k(k−r)
0 (x)Ψ(F0(x))dF0(x)

]
×

[∫
F

k
(x)F

k(p−1)
0 (x)Ψ(F0(x))dF0(x)

]}
, (A.27)

and finally for r 6= s, as n→∞,

nCov
(
T̂k,r,p, T̂k,l,p

)
→ rs

{∫∫
F

k
(min(x, y))F

k(r−1)
(x)F

k(p−r)
0 F

k(s−1)
(y)F

k(p−s)
(y)

× Ψ(F0(x))Ψ(F0(y))dF0(x)dF0(y)

−
[∫

F
kr

(x)F
k(p−r)
0 Ψ(F0(x))dF0(x)

]
×

[∫
F

ks
(x)F

k(p−s)
0 (x)Ψ(F0(x))dF0(x)

]}
. (A.28)

Collecting terms and substituting into (A.24) one gets the asymptotic
variable. Under H0, all terms in { } are equal and the total number of
terms is equal to:

p2(C2(γ)− 1) +

{
p∑

r=1

(−1)r

(
p
r

)}2

= p2(C2(γ)− 1) + p2

{
p−1∑
r=1

(−1)r

(
p− 1
r − 1

)}2

= p2(C2(γ)− 1). (A.29)

When Ψ(u) = 1, direct integration gives the result.
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