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In this paper, we introduce a new concept of incomplete preference and
cover the known ordering relations such preferences as in economics and semi-
order in mathematics. In the sense of the incomplete preference, we obtain a
principle of maximal consumption allocations, by which, for a pure exchange
economy with infinitely many commodities and infinitely countable agents, we
first prove the existence of a quasi-equilibrium, and then conclude that such a
quasi-equilibrium can be extended to a general equilibrium of this economy if
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1. INTRODUCTION

Many scholars have been doing researches on economies with infinite
dimensional spaces and made many important achievements since Bewley’s
(1972) path breaking work. Most of the results on the existence of equilibria
have assumed either a finite number of agents as in Mas-colell (1986) and
Monteiro (1996) or a continuum of traders as in Zame (1986) or a measure
space of agents as in Jones (1983). In the case of infinitely countable agents,
Richard , Srivastara (1988) and Aliprantis et al. (1989) made many studies.

The above arguments critically depend on the preference completeness or
an utility function describing some preference. Clearly, the completeness of
a preference is a necessary condition for this preference to be represented
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by the utility functions, but certainly not all preferences satisfying the
completeness have utility representations, for example, it is observed by
Bryan Ellickson (1993) that Lexicographic preference in R2

+ hasn’t. We
can go a step further to see that an utility function builds a bridge between
mathematics and economics, and is an essential condition for the existing
mathematical tools to be applied in some economic problems. Therefore,
although it was found early that the preference completeness is often in
conflict with some reality markets, let alone utility functions satisfying the
completeness, so far there is no choice except the use of the preference
completeness because, without the preference completeness, the existing
tools are powerless for solving equilibrium theory, utility theory, choice
theory and even decision theory, see Fishburn (1991).

In this paper, we attempt to do research in this issue. The main char-
acteristics of this paper lie in two points. First, we delete the assumption
of the preference completeness and thus extend many known equilibrium
models as in Aliprantis, Brown and Burkinshaw (1989), Mas-colell (1986,
1991) and Richard , Srivastara (1988). Secondly, our method of the exis-
tence proof is different from the known those in essence. To overcome the
difficulty which we have no way of using any utility function in the absence
of the preference completeness, we propose and demonstrate a new principle
of maximal consumption allocations, by which we achieve our aim of this
paper. In addition, we weaken or delete other limitations, such as the uni-
formly proper conditions as in Richard and Zame (1986), lower continuity
and strictly convexity of preferences as in Aliprantis et al. (1989), so that
our economic models can describe the practical markets more precisely.

The present work will utilize the theory of Riesz spaces. For details of
the theory of Riesz spaces we refer the reader to Aliprantis and Burkinshaw
(1985).

The rest of this paper is organized as follows. Section 2 proposes a
concept called the incomplete preference which is more general than either
of the preference in economics and the semi-order in mathematics. In
the sense of the incomplete preference, Section 3 presents our model and
obtains a principle of maximal consumption allocations, by which Section 4
establishes the existence of equilibria for pure exchange infinite economies.
Section 5 provides some concluding comments.

2. INCOMPLETE PREFERENCES

In the ordering theory, we often meet the following assumptions related
to the ordering relations:

(1) the completeness, that is, either x ≤ y or y ≤ x for x, y ∈ X;
(2) the reflectivity, that is, x≤x for any x∈X;
(3) the transitivity, that is, x≤y and y≤z for x, y, z∈X imply x≤z;
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(4) the anti-symmetry, that is, x≤y and y≤x for x, y∈X imply x = y;
where X is a nonempty collection of consumption plans, ≤ represents an
ordering defined on X. In the equilibrium analysis of economies, it is
assumed generally that an ordering relation called preference satisfies com-
pleteness, reflectivity and transitivity and may not satisfy anti-symmetry.
In the meantime, there exists an ordering relation called semi-order which
satisfies reflectivity, transitivity and anti-symmetry and may not satisfy
completeness. The semi-order is mainly used in mathematics. To get a
more general equilibrium model of economies, we put forward a concept of
incomplete preference as follows.

Definition 2.1. Let X be a nonempty collection of consumption plans.
An ordering defined on X is called an incomplete preference denoted by
� if this ordering � satisfies reflexivity and transitivity, where the relation
x�y for x, y∈Ω means that y is at least as preferable as x; X is called
an incomplete preference set termed by (X, �); x is said to be indifferent
to y for x, y∈X if both x�y and y�x hold, and this indifference relation
is denoted by x∼y; y is said to be preferred to x for x, y∈Ω if x�y but
x6∼y, and this strong preference relation is denoted by x≺y, where x6∼y
means that x is not indifferent to y; a nonempty set M⊂X in X is called
a complete preference subset if either x�y or y�x holds for any x, y∈M .

For clarity, the rest of this paper always terms an incomplete preference
by �, and terms a semi-order by ≤. Obviously, the incomplete preference
� indicates that the relations x�y and y�x only imply x∼y but not neces-
sarily x = y and the relation x∼y can be deduced from x = y. By a direct
proof, the indifference relation ∼ satisfies reflectivity, symmetry and tran-
sitivity required for an equivalence relation on X. Hence we have Lemma
1.

Lemma 1. The indifference relation ∼ on X is an equivalence relation.

3. MAXIMAL CONSUMPTION ALLOCATIONS

In this section, for convenience we first give some concepts and conclu-
sions.

The letter E will denote a Riesz space, where the Riesz space E means
a lattice-ordered space which has a linear operation compatible with the
ordering in E. An order bounded linear functional f : E → R is said
to be order continuous whenever xα

o→ θ in E implies f(xα) → 0 in E,
where the notation o→ means that a sequence is order convergent to some
element, θ denotes the zero element in E. We term E∼ the vector space of
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all order bounded linear functionals and E∼
n the vector space of all order

continuous linear functionals. Obviously E∼
n ⊂ E∼. A subset H of E is

said to be a solid set whenever |x| ≤ |y| and y ∈ H imply x ∈ H. A solid
vector subspace of E is known as an ideal. A Riesz dual system 〈E, E′〉 is
a Riesz space E together with an ideal E′ of E∼ that separates the points
of E such that the duality is the natural one, i.e., 〈x, x′〉 = x′(x) holds for
all x ∈ E and x′ ∈ E′. A Riesz dual system 〈E, E′〉 is called symmetric
whenever 〈E′, E〉 is also a Riesz dual system.

In the following, let 〈E, E∼
n 〉 be a Riesz dual system which describes

the commodity-price duality, where E is the commodity space and E∼
n is

the price space. Thus the locally convex topology generated by the family
of semi-norm {|f(x)| : ∀f ∈ E∼

n } (which will be denoted by σ(E,E∼
n ))

makes E a locally convex topological space. In the following, we give two
known conclusions found in Kantorovitch–Akilov (1955) and in Aliprantis–
Burkinshaw (1985) respectively.

Lemma 2. The topological dual E∗ generated by the topology σ(E,E∼
n )

coincides with the order dual E∼
n of E, i.e.,

(E, σ(E,E∼
n ))∗ = E∼

n .

Lemma 3. If 〈E, E∼
n 〉 is a symmetric Riesz dual system, then

(1) every order interval of E is σ(E,E∼
n )-compact;

(2) E is an Archimedean Riesz space, that is, 1
nx is order convergent to

θ for x ∈ E and x > θ when n →∞.

Let the positive cone E+ of E denote a consumption set, where E+ =
{x ∈ E|x ≥ θ}. An incomplete preference � on the positive cone E+ is
said to be:

(1) monotone (or strictly monotone) , whenever θ ≤ x < y implies x � y
or (x ≺ y) for x, y ∈ E+;

(2) upper convex (or lower convex), whenever the set {y ∈ E+ : x � y}
(or {y ∈ E+ : y � x}) is convex for each x ∈ E+; and

(3) upper continuous (or lower continuous ), if the set{y ∈ E+ : x � y}
(or {x ∈ E+ : y � x}) is σ(E,E∼

n )−closed in E+ for each x ∈ E+.

Definition 3.1. A pure exchange infinite economy ε is a triplet

ε = (〈E, E∼
n 〉, {wi : i = 1, 2, · · · }, {�i: i = 1, 2, · · · }),

where the components of ε satisfy the following properties:
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(1) the commodity-price duality 〈E, E∼
n 〉 is a symmetric Riesz dual sys-

tem;
(2) there is an infinite countable number of consumers;
(3) each consumer i has an initial endowment wi > 0, and the total en-

dowment w is defined by w =
∑∞

i=1 wi, where the supremum w is assumed
to exist in E+;

(4) each consumer i has an upper convex and monotone incomplete pref-
erence �i on his consumption set E+.

Remark 3.1. Since, under the same conditions, the equilibrium existing
in an economy with infinitely countable consumers must also exist in an
economy with finite consumers, without loss of generality, we assume an
economy with infinitely countable consumers in Definition 2 directly, and
only provide the proof of this case in this paper. It is obvious that the
conclusions of this paper are true for economies with finite consumers. In
addition, the supremum w in general exists because of the finiteness of the
endowment in the reality world, i.e., the assumption (3) in Definition 2 is
reasonable.

Here are many examples of symmetric Riesz dual systems (see Aliprantis,
Brown and Burkinshaw (1989)):

〈Lp(µ), Lq(µ)〉, 〈lp, lq〉 (1 < p, q < +∞,
1
p

+
1
q

= 1), 〈Rn, Rn〉, 〈l∞, l1〉.

If the measure µ is σ−finite, then

〈L1(µ), L∞(µ)〉, 〈L∞(µ), L1(µ)〉

are also symmetric Riesz dual systems. In particular,

(Lp(µ))∼n = Lq(µ), (lp)∼n = lq, (Rn)∼n = Rn,

(l∞)∼n = l1, (L1(µ))∼n = L∞(µ), (L∞(µ))∼n = L1(µ).

The above examples show that many widely used Riesz dual systems are
all symmetric.

Definition 3.2. A vector (x1, · · · , xi, · · · ) is called a feasible allocation
of the infinite economy ε for xi ∈ E+ and i = 1, 2, · · · , if

∑∞
i=1 xi ≤ w;

the set of all feasible allocations in the infinite economy ε is denoted by
A. A vector (x1, · · · , xi, · · · ) is called an effective allocation of the infinite
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economy ε for xi ∈ E+ if
∑∞

i=1 xi = w; the set of all effective allocations
in the infinite economy ε is denoted by B.

Clearly A ⊂ (E+)∞, where (E+)∞ represents a product space formed
by infinite countable Riesz spaces E+, the product topology on (E+)∞

is induced by the topology σ(E,E∼
n ) on E+ and denoted by τ . For any

x = (x1, · · · , xi, · · · ) ∈ (E+)∞, we define a mapping ρi from the product
space (E+)∞ into the i− th space E+ by

ρix = xi, i = 1, 2, · · · . (1)

We know that the mapping ρi : (E+)∞ −→ E+ is continuous.

Definition 3.3. For x = (x1, · · · , xi, · · · ), y = (y1, · · · , yi, · · · ) ∈
(E+)∞, y is said to be at least as preferable as x, which is denoted by
x � y, if xi �i yi holds for each i; y is said to be preferred to x, which is
denoted by x ≺ y, if xi �i yi holds for each i, and there is at least one i0
with xi0 ≺i0 yi0 .

Clearly, if each �i is an incomplete preference for i = 1, 2, · · · , the rela-
tion � given by Definition 4 is also an incomplete preference, and thus the
product space (E+)∞ is an incomplete preference set under �. Moreover,
we can get the following property further.

Lemma 4. If each incomplete preference �i on E+ is upper continuous
for i = 1, 2, · · · , then � on (E+)∞ is also upper continuous.

Definition 3.4. Suppose that (Ω, �) is a nonempty incomplete pref-
erence set. An element x∗ ∈ Ω is called a maximal element of Ω if there
exists no x∈Ω such that x∗�x and x∗ 6∼x. A element x∗ ∈ E+ is called
an maximal consumption allocation of the infinite economy ε if x∗ is a
maximal element of A and an effective allocation of the economy ε, where
A is a set of all feasible allocations in the economy ε.

Theorem 1. Assume that

ε = (〈E, E∼
n 〉, {wi : i = 1, 2, · · · }, {�i: i = 1, 2, · · · })

is a pure exchange infinite economy and each incomplete preference �i

is upper continuous for i = 1, 2, · · · , then the economy ε must have a
maximal consumption allocation.
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4. ECONOMIC EQUILIBRIA

In this section, we will discuss the existence of the quasi-equilibrium and
the general equilibrium of economies with infinitely many commodities and
countably many agents in the sense of incomplete preference.

Definition 4.1. An effective allocation (x∗1, · · · , x∗i , · · · ) ∈ A is a quasi-
equilibrium for the economy ε if there exists a non-zero price p∗ ∈ E∼

n such
that for each i,

(a) p∗x∗i = p∗wi;
(b) x∗i �i x in E+ implies p∗wi ≤ p∗x; and
(c)

∑∞
i=1 x∗i = w.

Definition 4.2. An effective allocation (x∗1, · · · , x∗i , · · · ) ∈ A is a
general equilibrium for the economy ε if there exists a non-zero price p∗ ∈
E∼

n such that
(1) for each i, x∗i is a maximal element in the ith consumer’s budget set

Bi(p∗) = {x ∈ E+ : p∗x ≤ p∗wi}; and
(2)

∑∞
i=1 x∗i = w.

Any non-zero price p∗ for which x∗i �i x in E+ implies p∗wi ≤ p∗x is
called a supporting price of the effective allocation (x∗1, · · · , x∗i , · · · ). Any
supporting price p∗ is necessarily a positive price. To see this, let y ∈ E+,
then x∗i �i x∗i + ny for any positive integer n, and so p∗wi ≤ p∗(x∗i + ny).
That is , p∗y ≥ 1

np∗(wi−x∗i ) holds for any n, by which we have that p∗y ≥ 0
for n → ∞, i.e., p∗ is a positive price. In addition, it is easy to see that a
general equilibrium must be a qusi-equilibrium.

Theorem 2. If the infinite economy ε satisfies that
(i) for each i = 1, 2, · · · , �i is strictly monotone and upper continuous;
(ii) for any effective allocation (x1, · · · , xi, · · · ), there exists some i0

such that the set {y ∈ E+|xi0 ≺i0 y} has at least one interior point;
(iii) the set B of all effective allocations is a τ closed set in (E+)∞.

Then the economy ε has a quasi-equilibrium.

Remark 4.1. In some widely used spaces such as all finite dimensional
spaces, l∞ and L∞(µ), the assumptions (ii) and (iii) of Theorem 2 are
automatically satisfied.
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Theorem 3. Assume that (x∗1, · · · , x∗i , · · · ) ∈ (E+)∞ is a quasi-equilibrium
supported by a price p∗ ∈ E∼

n , and for each i,
(i) the quasi-equilibrium income distribution is strictly positive, i.e., p∗wi >

0 for each i;
(ii) there exists some δ ∈ (0, 1) such that x∗i ≺i δxi holds if x∗i ≺i xi for

some xi ∈ E+.
Then (x∗1, · · · , x∗i , · · · ) is a general equilibrium allocation supported by the
price p∗.

Remark 4.2. The straight proof indicates that when each preference
�i is complete and upper continuous, i = 1, 2, · · · , the assumption (ii) of
Theorem 3 is automatically fulfilled.

The next theorem implies that the quasi-equilibria possess the following
welfare property which was also established in Aliprantis et al. (1989).
The proof of Theorem 4 is also analogue of Theorem 6.3 in Aliprantis et
al. (1989).

Theorem 4. If there exists a pure exchange infinite economy in which
each incomplete preference is strictly monotone and upper continuous, then
every quasi-equilibrium which is supported by a price with strictly positive
income distribution is a Pareto maximal allocation.

5. CONCLUSIONS

Without the preference completeness required in all the known docu-
ments for the equilibrium existence problems, this paper still show the
existence of maximal consumption allocations for infinite economies, which
is a main contribution in this paper. The proving idea and the principle
of maximal allocations make us avoid the standard method of using utility
representations and succeed in finding a quasi-equilibrium of an infinite
economy in the absence of the preference completeness. Then, under some
suitable conditions for preferences, we extend such a quasi-equilibrium to
a general equilibrium of the infinite economy further. The basic idea of
our proof is due to Aliprantis et al. (1989) who first looked for a quasi-
equilibrium and then extended this quasi-equilibrium to the original econ-
omy, which has been also applied by Konrad (1996). However, as mentioned
in the introduction of our paper, the lack of the preference completeness
adds the difficulty greatly and makes the existing method powerless for
proving the equilibrium existence, which directly results in such a fact that
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our arguments in this paper differ substantially from those in Aliprantis et
al. (1989) and Konrad (1996). In particular, it is worth noting that we can
no longer make use of any convenience of utility representations which is
crucial for arguments in almost all known documents with respect to the
equilibrium analysis. Instead, and this is the technical innovation of our
paper, we employ arguments of ordering theory.

With regard to the assumption (ii) of Theorem 2 , which requires that the
positive cones of Riesz spaces have nonempty interior points and has been
used by many researchers such as Richard, Zame (1986), although all finite
dimensional spaces, infinite spaces l∞ and L∞(µ) having nonempty interior
points are the most widely used spaces in the arguments for the equilibrium
problems, such as in Bewly (1972), Richard and Srivastara (1988), we can,
of course, see that since the positive cones of most infinite dimensional Riesz
spaces haven’t interior points, this assumption is not fully satisfactory. To
tackle this problem, some researchers formulate several improved ways for
preferences or commodity spaces, but the results are not too ideal yet.
Hence, we have to leave this open problem to be solved in the future.

APPENDIX A

In this appendix, we shall prove Theorem 1–Theorem 3 by a series of
lemmas.

Proof of Lemma 4 We only need to show that for ∀x = (x1, · · · , xi, · · · )
∈ (E+)∞, the set {y ∈ (E+)∞|x � y} is closed in (E+)∞. Let

Ui = {yi ∈ E+|xi �i yi},

where i = 1, 2, · · · , xi = ρix, and the mapping ρi is defined by (1) in
Section 3. In light of the relation between �i and � as well as by direct
proof, we can have

{y ∈ (E+)∞|x � y} =
∞⋂

i=1

ρ−1
i (Ui).

Since each incomplete preference �i is upper continuous, the set Ui is closed
in E+. By the continuity of ρi, the set ρ−1

i (Ui) is also closed in (E+)∞,
and thus so is the set

⋂∞
i=1 ρ−1

i (Ui). Therefore, for ∀x = (x1, · · · , xi, · · · ) ∈
(E+)∞, the set {y ∈ (E+)∞|x � y} is closed in (E+)∞, i.e., the incomplete
preference � is upper continuous.

Lemma 5. With the assumptions of Theorem 1, the set A of all feasible
allocations is compact closed under the product topology τ of (E+)∞.
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Proof. Since the commodity-price duality 〈E, E∼
n 〉 is a symmetric Riesz

dual system, E∼
n is complete, i.e., if x 6= θ, there exists some f ∈ E∼

n with
f(x) 6= 0. Thus E is a Hausdorff space under the topology σ(E,E∼

n ). In
view of Lemma 3, the ordering interval [θ, w] = {x ∈ E|θ ≤ x ≤ w} is
σ-compact. Since all compact subset in a Hausdorff space are closed, the
ordering interval [θ, w] is a closed set in E.

In the following, we show that A is τ−closed. Clearly, A ⊂ [θ, w]∞,
where [θ, w]∞ represents a product space formed by infinite countable
ordering intervals [θ, w]. Suppose that a directed set {xα}α∈Γ in A has
a limit x = (x1, x2, · · · , xi, · · · ) of net convergence under the topology
τ , which is denoted by xα

net−→ x, where xα = (x1,α, · · · , xi,α, · · · ), we
prove x ∈ A. It is clear that for α ∈ Γ and any positive integer n,∑n

i=1 xi,α ≤ w, and
∑n

i=1 xi,α
net−→

∑n
i=1 xi under the topology σ(E,E∼

n ).
Since the ordering interval [θ, w] is a closed set,

∑n
i=1 xi ∈ [θ, w], i.e.,∑n

i=1 xi ≤ w. Noting that
∑n

i=1 xi,α is order convergent to
∑∞

i=1 xi for
n → ∞, we have that

∑∞
i=1 xi ≤ w, that is, x ∈ A, and hence A is

a τ−closed set in [θ, w]∞. By virtue of Tychonoff theorem and on ac-
count of the compactness of the ordering interval [θ, w], the product space
[θ, w]∞ is a compact set, which, along with the closeness of A in [θ, w]∞,
implies that the set A is compact closed under the product topology τ .

Proof of Theorem 1 Regarding the subset A as a topological subspace
of [θ, w]∞, we get a quotient space denoted by A/∼ relative to the equiv-
alence relation ∼ which is shown by Lemma 1, that is, A/∼ = {x̃|∀x∈A},
where x̃ = {y∈A|y∼x} is an equivalence set for x∈A, the topology of A/∼
is a quotient topology with respect to the topology of A and the natu-
ral mapping r, here the nature mapping r from A into A/∼ is defined by
rx = x̃∈A/∼ for any x∈A. Then, an ordering on A/∼ is defined by x̃≤ỹ
for x̃, ỹ∈X/∼ if and only if there exist u∈x̃ and v∈ỹ such that u�v, here
x̃ and ỹ are viewed as equivalence sets in A. It is easy to follow that the
ordering ≤ in A/ ∼ satisfies reflexivity, transitivity and anti-symmetry, i.e.,
the ordering ≤ is a semi-order, and so A/∼ is a semi-order set. For a∈A,
set

A(a) = {x∈A|a�x}, A(ã) = {x̃∈A/∼|ã≤x̃},
where ã = ra. Obviously, A(a) = A

⋂
{x∈(E+)∞|a�x}. Noting the upper

continuity of �i for each i as well as Lemma 4 and Lemma 5, we have
that A(a) is compact closed in A. By direct proof, it is easy to follow the
following conclusions:

Conclusion (a) The natural mapping

r : A−→A/∼

is continuous and surjective, and r(r−1(S)) = S for S⊂A/∼;
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Conclusion (b) r−1(A(ã)) = A(a).
Take a complete semi-order set N from A(ã), and let

N∗ = r[c(r−1(N))].

where c(.) denotes a closure of the set in brackets (), which is the same
sense in the following. Frist, we shall show that N∗ is a compact set in
A/∼ and N⊂N∗⊂A(ã). Since A(a) is compact closed in A, by Conclusion
(b)

c(r−1(N))⊂r−1(A(ã)) = A(a), (A.1)

which means that the closure c(r−1(N)) is a compact set in A(a). Ob-
serving the continuity of r and the definition of N∗, we have that N∗ is
a compact subset in A/∼. Since r−1(N)⊂r−1[c(N)]⊂r−1(A(ã)) = A(a)
holds and the continuity of r implies that r−1(c(N)) is a closed set in A(a),
by (A.1)

r−1(N) ⊂ c(r−1(N))⊂r−1(c(N)) ⊂ r−1(A(ã)),

and by Conclusion (a)

N = r(r−1(N))⊂r[c(r−1(N))] = N∗⊂r[r−1(c(N))] ⊂ A(ã). (A.2)

Hence, by the above discussions, N∗ is a compact set in A(ã) and N⊂N∗⊂A(ã)
holds.

Secondly, we shall show that N has an upper bound in A(ã). For each
x̃∈N . , we let

A(x̃) = {ỹ∈N∗|x̃≤ỹ}.

Obviously A(x̃) = A(x̃)∩N∗, which, by the closeness of A(x̃) in A/∼,
means that A(x̃) is a closed set in the topological subspace N∗. Take any
finite members {A(x̃i)|i = 1, 2, . . ., n} in {A(x̃)|x̃ ∈ N} and let

x̃0 = max{x̃i|i = 1, 2, . . ., n}.

Since N is a complete ordered set and {x̃i|i = 1, 2, . . ., n} ⊂ N , x̃0 ∈ N
makes sense. Clearly x̃0∈

⋂n
i=1A(x̃i), thus

⋂n
i=1A(x̃i)6=∅. By the compact-

ness of N∗ and according to the finite intersection property of compact
sets, we get

⋂
x̃∈N A(x̃)6=∅. Taking ỹ∈

⋂
x̃∈N A(x̃) and by the definition of

A(x̃), we have ỹ∈N∗⊂A(ã) and x̃≤ỹ for any x̃∈N . Hence ỹ is an upper
bound of N in A(ã). Thus it follows from Zorn’s lemma that A(ã) has a
maximal element x̃∗. Then, by way of contradiction and in view of the
definitions of the sets A(a) and A(ã), it is easy to prove that any x∗ of the
equivalent set x̃∗ = {y∈A|y∼x∗} is a maximal element of A.
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Finally, letting x∗ = (x∗1, · · · , x∗i , · · · ) ∈ x̃∗, we show that
∑∞

i=1 x∗i = w,
i.e., x∗ is an effective allocation of the infinite economy ε. If otherwise,∑∞

i=1 x∗i < w must hold because of x∗ ∈ A. Let

η = w −
∞∑

i=1

x∗i ,

thus η > θ. We construct an element x = (x1, · · · , xi, · · · ) as follows:
x1 = x∗1 +η and xi = x∗i for i ≥ 2. Clearly

∑∞
i=1 xi = w ∈ A and x∗ ≺ x by

Definition 4, which contradicts that x∗ is a maximal element of A. To sum
up, we show that x∗ is a maximal consumption allocation of the infinite
economy ε.

Proof of Theorem 2 Let

C =
∞⋂

i=1

ρ−1
i (

⋂
p∈(E∼n )+

({xi ∈ E+|pxi ≤ pwi})), D = B
⋂

C,

where the mapping ρi : (E+)∞ −→ E+ is defined by (1) in Section 3.
Clearly D 6= φ due to (w1, · · · , wi, · · · ) ∈ D, and by condition (iii) and the
continuity of ρi, the set D is nonempty τ -closed in (E+)∞. The relation
D ⊂ B ⊂ A and Lemma 5 imply that D is τ -compact closed in [0, w]∞.
On account of Theorem 1 and noting the upper continuity of �i, we have
that D has a maximal allocation x∗ = (x∗1, · · · , x∗i , · · · ).

Next, we prove that if x∗i �i xi for each i, there exists a non-zero price
p∗ ∈ E∼

n with

p∗w ≤ p∗
∞∑

i=1

xi. (A.3)

Since
∑∞

i=1 x∗i = w and θ < w, we can find an element x∗i1 ∈ {x∗i |i =
1, 2, · · · } with x∗i1 > θ. Obviously there exists y ∈ E+ such that x∗i1 ≺i1 y.
In fact, on account of the strict monotoneity of �i1 , x∗i1 ≺i1 y must hold
for y = αx∗i1 and α > 1. Let

U(x∗i1) = {y ∈ E+|x∗i1 ≺i1 y}, V (x∗i ) = {y ∈ E+|x∗i �i y},

G = U(x∗i1) +
∑
i 6=i1

V (x∗i ), H =
∞∑

i=1

V (x∗i ).

By the fact just discussed above, U(x∗i1) 6= ∅, and it is clear that G ⊂ H,
and V (x∗i ) is also nonempty due to x∗i ∈ V (x∗i ) for each i. Since each
consumer i has an upper convex incomplete preference �i, U(x∗i1), V (x∗i )
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are all nonempty convex sets for each i, and so G is also a nonempty convex
set. Uniting

∑∞
i=1 x∗i = w with the definition of G, we know w 6∈ G. In

addition, it is easy to follow from condition (ii) that G has at least one
interior point. On account of separation theorem of convex sets, there
exists p∗ ∈ E∗ for any x ∈ G with

p∗w ≤ p∗x, (A.4)

where E∗ is a conjugate space of the topological space E. By Lemma 2,

(E, σ(E,E∼
n ))∗ = E∼

n ,

hence p∗ ∈ E∼
n also holds. By means of the strict monotoneity of �i, the

order continuity of p∗ and (A.5), it is easy to prove that for each x ∈ H,
p∗w ≤ p∗x, which, along with the definition of the set H, implies that (A.4)
holds.

Now, we prove, for any k and any element y ∈ E+ with x∗k �k y,

p∗x∗k ≤ p∗y. (A.5)

Define an element (y1, · · · , yi, · · · ) ∈ (E+)∞ by yi = x∗i for i 6= k and yi = y
for i = k. Clearly x∗i �i yi for each i, and so by (A.4) p∗w ≤ p∗(

∑∞
i=1 yi).

Taking w =
∑∞

i=1 x∗i into account, we get

p∗(
∞∑

i=1

x∗i ) ≤ p∗(
∞∑

i=1

yi). (A.6)

Clearly
∑n

i=1 x∗i and
∑n

i=1 yi converge in order to
∑∞

i=1 x∗i and
∑∞

i=1 yi

for n → ∞ respectively. Hence, by the order continuity of p∗ and (A.7),
we have

∑∞
i=1 p∗x∗i ≤

∑∞
i=1 p∗yi, which, by yi = x∗i for i 6= k, implies that

(A.6) holds.
Finally, we show that the conclusions (a) and (b) in Definition 6 hold.

Since w =
∑∞

i=1 wi =
∑∞

i=1 x∗i holds, and
∑n

i=1 x∗i and
∑n

i=1 wi converge
in order to

∑∞
i=1 x∗i and

∑∞
i=1 wi for n →∞ respectively,

∞∑
i=1

p∗wi =
∞∑

i=1

p∗x∗i ,

that is,
∞∑

i=1

(p∗wi − p∗x∗i ) = 0. (A.7)
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By the discussions in Section 4 and according to (6), we get θ ≤ p∗, i.e., p∗ ∈
(E∼

n )+, which, together with (x∗1, · · · , x∗i , · · · ) ∈ C ⊂ (E+)∞, indicates
p∗x∗i ≤ p∗wi for each i. Taking (A.8) into account, we get p∗x∗i = p∗wi,
i.e., the conclusion (a) in Definition 6 holds. From the conclusion (a) and
(A.6), it follows that the conclusion (b) in Definition 6 holds. Therefore,
the economy ε has a quasi-equilibrium.

Proof of Theorem 3 If the conclusion is not true, there exists some
i0 and xi0 ∈ Bi(p∗) defined by Definition 7 such that x∗i0 ≺i0 xi0 , and so
p∗xi0 ≥ p∗wi0 , which, together with xi0 ∈ Bi(p∗), means p∗xi0 = p∗wi0 .
Since condition (ii) indicates that there exists δ ∈ (0, 1) with x∗i0 ≺i0 δxi0 ,
δp∗xi0 ≥ p∗wi0 . Noting condition (i), i.e., p∗wi0 > 0, we have

p∗wi0 ≤ δp∗xi0 = δp∗wi0 < p∗wi0 ,

which is impossible. Therefore, each x∗i is a maximal element Bi(p∗), and
thus (x∗1, · · · , x∗i , · · · ) is a general equilibrium allocation supported by the
price p∗.
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