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To facilitate wide use of the bootstrap method in finance, this paper shows
by intuitive arguments and by simulations how it can improve upon existing
tests to allow less restrictive distributional assumptions on the data and to
yield more reliable (higher-order accurate) asymptotic inference. In particular,
we apply the method to examine the efficiency of CRSP value-weighted stock
index, and to test the well-known Fama and French (1993) three-factor model.
We find that existing tests tend to over-reject. c© 2006 Peking University Press
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1. INTRODUCTION

A fundamental problem in finance is to examine the tradeoff between
risk and return. Sharpe (1964) and Lintner’s (1965) capital asset pricing
model (CAPM) is perhaps one of the most important models in financial
economics, which states that the expected return on a security is a linear
function of its beta associated with the market portfolio. Question of its
empirical validity has generated an enormous amount of research. Kandel
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and Stambaugh (1989) and Shanken (1996) provide an excellent survey of
the earlier literature, while Shanken and Zhou (2006) analyze some of the
recent issues.

As the market portfolio is unobservable (Roll (1977)), tests of the CAPM
have been focused on testing the mean-variance efficiency of a given port-
folio. With normality assumption on stock returns, Gibbons, Ross, and
Shanken (1989) provide an exact test. Shanken (1987), Harvey and Zhou
(1991), and Kandel, McCulloch and Stambaugh (1995) assess the efficiency
in a Bayesian framework. As the normality assumption is usually rejected
by the data, Zhou (1993) provides efficiency tests under elliptical assump-
tion, of which the normality assumption is a special case. However, the
inference is legitimate only if the underlying elliptical distribution is cor-
rectly specified. Because the distribution of asset returns is never known a
priori in the real world, these studies may subject to a specification error
as the conclusions may not hold if the specific distributional assumption is
violated.

In this paper, we show that the bootstrap method can be used to obtain
more robust and reliable asset pricing tests. Originally proposed by Efron
(1979), it is a computation-intensive method for estimating the distribu-
tion of a test statistic or a parameter estimator by resampling the data.
It usually generates an estimate of the distribution that is at least as ac-
curate as that from standard asymptotic theory (first-order). Hence, it is
particularly useful in cases where the asymptotic distribution is difficult
to obtain or simply unknown. Moreover, the bootstrap method can often
yield, in many applications, higher-order accurate estimates of the distri-
bution that improves upon the usual asymptotic approximation. Because
of these advantages, it is not surprising to find applications of the boot-
strap method in finance. For examples, Ferson and Foerster (1994) and
Kothari and Shanken (1997) apply it to asset pricing and Lyon, Barber
and Tsai (1999), among others, use it in corporate finance. Despite its
various applications, however, there appears a lack of appreciation as to
why it should work and how it improves upon the usual asymptotic the-
ory. Indeed, existing studies in finance consider only the independently
and identically distributed case and some of them are problematic in de-
signing the bootstrap.1 Based on Shao and Tu (1995), and especially on
Hall (1992) and Hall and Horowitz (1996), we provide simple intuitions
underlying the bootstrap method that facilitates its design in applications.

In particular, we show how to obtain higher-order accurate confidence
intervals for security betas and for some other functions of interest. We
provide bootstrap tests for the mean-variance efficiency of a given port-

1Jeong and Maddala (1993), Vinod (1993), and especially Horowitz (1997), provide
excellent surveys of the use and mis-use of the bootstrap in econometrics.
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folio. The bootstrap tests allow two broad categories of distributions of
the data. The first is that the stock returns are independently and iden-
tically distributed (iid) over time. In this case, bootstrap tests are easily
constructed to have higher-order accuracy and to be more reliable than
the usual asymptotic χ2 test. The second category of distributions relaxes
the iid assumption by allowing for serial dependence. In this case, ex-
isting studies, such as MacKinlay and Richardson (1991), usually rely on
Hansen’s (1982) GMM (generalized method of moments) method. Based
on Hall and Horowitz (1996), we show how to obtain the bootstrap ana-
logues of GMM tests. Our procedure seems the first in the finance literature
that bootstraps a GMM test correctly in the presence of serial correlation
of the data.2 As the bootstrapped GMM test is obtained by using Hall and
Horowitz’s adjustments, it is of higher-order accuracy, and hence enjoys in
general much better finite sample properties than the usual GMM χ2 test.
Therefore, it appears that it pays off to use the bootstrapped GMM test
whenever possible. Because the GMM test is extensively used in finance,
there seem wide applications of the suggested bootstrap procedures.

The rest of the paper is organized as follows. Section 2 outlines the stan-
dard framework for testing the mean-variance efficiency of a given portfolio.
Section 3 introduces the bootstrap method, and shows how it can be used
to provide better approximations for the distribution of the beta estimates
and other functions of interest, as well as for the distribution of efficiency
tests. Section 4 discusses how the bootstrap method can be used to assess
the economic importance of portfolio inefficiency. Section 5 provides the
empirical applications. To further investigate their performance under vari-
ous alternative distributional assumptions, Section 6 performs Monte Carlo
experiments to document that the bootstrap tests have reliable test sizes
and they indeed offer important improvements over existing asymptotic
approximations. The last section concludes the paper.

2. EFFICIENCY RESTRICTIONS AND THE GRS TEST

A test of the Sharpe-Lintner’s CAPM is a test of the mean-variance ef-
ficiency of the market portfolio. Given a proxy or benchmark portfolio,
this becomes a test of the efficiency of a given portfolio. In order to con-
duct such an efficiency test, a statistical model of asset returns has to be
specified. Consider the standard market model regression:

rit = αi + βirpt + εit, i = 1, . . . , N ; t = 1, . . . , T, (1)

2Although Ferson and Foerster (1994) show the advantage of using the bootstrap
method in the GMM framework, their sampling procedure assumes iid residuals.
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where

rit = the excess return on asset i in period t,

rpt = the excess return on a given portfolio p in period t,

whose efficiency is tested,

εit = the disturbance term for asset i in period t,

N is the number of assets, and T is the number of time series observations.
The error terms are assumed to be iid with mean zero and a constant
covariance matrix, i.e.,

E(εisεjt) =
{

σij , if s = t;
0, otherwise.

The iid assumption makes it easier for us to discuss Gibbons, Ross, and
Shanken (1989) efficiency test (the GRS test) and review the literature in
this section, but it will be relaxed to allow for serial dependence when we
bootstrap the GMM test in subsection 3.4.

The above model can be rewritten in a more compact form:

Rt = α + βrpt + εt, εt ∼ P (0,Σ), t = 1, . . . , T, (2)

where Rt is an N -vector of the excess returns; α = (α1, . . . , αN )′; β =
(β1, . . . , βN )′; and εt = (ε1t, . . . , εNt)′. The error term εt follows an un-
known distribution function P (0,Σ), whose mean is zero and the covariance
matrix is Σ.

Mean-variance efficiency of the portfolio p implies E(Rt) = βE(rpt).
This pricing restriction translates into the standard testable joint hypoth-
esis on the parameters of the market model regression:

H0 : α = 0. (3)

That is, if we regress the excess asset returns on those of an efficient port-
folio, the resulting intercepts should be indistinguishable from zero.

Despite the iid assumption, it is well known that statistically efficient
parameter estimates of the multivariate regression model (2) are the same
as those under the assumption that the model residuals are normally dis-
tributed. Hence, the alphas and betas can be estimated by standard ordi-
nary least squares (OLS) regression. In particular, the efficient estimator
of asset i’s alpha, α̂i, is given by OLS regression in the i-th equation, and
the efficient estimator of Σ is the average of the cross-product of the esti-
mated model residuals. Asymptotically, the null hypothesis can be tested
by using a Wald statistic that has an asymptotic chi-square distribution
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with N degrees of freedom, i.e.,

W ≡ h−1α̂′Σ̂−1α̂
asy∼ χ2

N , (4)

where h = 1
T (1 + θ̂2

p), and θ̂p = r̄p/sp is the observed Sharpe measure
of the portfolio p; r̄p and sp are the sample mean and sample standard
deviation of rp, respectively.3 The asymptotic Wald test is valid under the
iid assumption in large samples. However, under the normality assumption,
Gibbons, Ross, and Shanken (1989) show that the Wald test tends to over-
reject the null hypothesis in finite samples.

In fact, under the normality assumption, i.e., P is multivariate normal,
Gibbons, Ross, and Shanken (1989) obtain an exact test, the well-known
GRS test, that

GRS ≡ T −N − 1
N(T − 2)

h−1α̂′Σ̂−1α̂ ∼ FN,T−N−1(λ), (5)

where λ = h−1α′Σ−1α is the noncentrality parameter of the F distribution.
The GRS test has a noncentral F distribution with degrees of freedom N
and T − N − 1. Under the null hypothesis that α = 0, the distribution
of the GRS test reduces to the central F distribution. Hence, p-values
of the statistic are easily calculated. In addition to its easy computation,
Gibbons, Ross, and Shanken (1989) also provide an interesting economic
interpretation of the GRS test that the test statistic measures how far the
Sharpe measure of the given portfolio deviates from the Sharpe measure of
the ex post efficient portfolio. As a result, it is not surprising that we reject
the efficiency if the observed statistic is large. In comparison, the GRS test
and the Wald test are clearly statistically equivalent in the sense that the
exact p-values of the tests are identical. Furthermore, both are equivalent
to the likelihood ratio test.

Because the GRS test has both an interesting economic interpretation
and an easily computed exact distribution, it offers a nice solution to test-
ing the efficiency of a given portfolio. However, it is valid theoretically
only under the normality assumption. But, as shown by Richardson and
Smith (1994) and Zhou (1993), among others, the normality assumption
is strongly rejected by the data. On the other hand, the CAPM or mean-
variance efficiency is valid under the elliptical distribution, of which the
multivariate normal, multivariate t, and the mixture normal distributions
are special cases. It is therefore of interest to consider how to test the
efficiency without the normality assumption.

3The sample standard deviation is not adjusted for degrees of freedom. Specifically,

sp =
q

1
T

P
(rpt − r̄p)2.
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Although one could use the GRS test without the normality assumption,
Affleck-Graves and McDonald (1989) find that when the sample nonnor-
malities are severe, the size and power of the GRS test can be seriously
mis-stated. Thus, the asymptotic Wald test seems the only available al-
ternative test under the iid assumption. However, since it is known that
the test is unreliable under the normality assumption, its use in the iid
case seems limited. To overcome this problem, we advocate the use of the
bootstrap method. Like the asymptotic Wald test, the bootstrap test is
also valid under the iid assumption, but it has higher-order accuracy than
the asymptotic Wald test. As shown by simulations in Section 6, the boot-
strap test is reliable in commonly used small sample sizes not only under
the normality assumption, but also under plausible alternative assump-
tions. Indeed, it performs as well as the GRS test under the normality
assumption, and performs much better than the asymptotic Wald test in
general.

3. BOOTSTRAP TEST

In this section, we explain first the intuition why the bootstrap should
work to deliver at least as accurate approximations as that of the asymp-
totic theory. Then, in subsection 3.2, we discuss why it improves upon the
approximations of the usual asymptotic theory for a large class of estima-
tors and statistics. Based on these intuitions, we develop, in subsection 3.3,
a straightforward bootstrap procedure for testing the efficiency of a given
portfolio under the iid assumption. Finally, in subsection 3.4, we show how
to bootstrap the GMM test when the iid assumption is relaxed.

3.1. Why does bootstrap work?
The bootstrap method, introduced by Efron (1979), is a computation-

intensive method for estimating the distribution of an estimator or a test
statistic by resampling the data at hand. It treats the data as if they were
the population. Under mild regularity conditions, the bootstrap method
generally yields an approximation to the sampling distribution of an es-
timator or test statistic that is at least as accurate as the approximation
obtained from traditional first-order asymptotic theory (see, e.g., Horowitz
(1997)). In many instances, the sampling distribution of a statistic or an
estimator can be very difficult, if not impossible, to derive even asymp-
totically, while the bootstrap method, on the other hand, may be easily
applied to obtain the sampling distribution of the statistic via repeatedly
resampling from the data. Hence, the bootstrap method can serve as an
important and interesting alternative to the standard asymptotic theory.

Based on Shao and Tu (1995), we in what follows introduce the idea of
bootstrap and explain the intuition why it works. This may be helpful in
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applying the method widely and correctly to various models. However, as
pointed out earlier, one of the major uses of the bootstrap method is to use
it to improve upon the approximations of the usual asymptotic theory for
a large class of estimators and statistics. To make the presentation more
accessible, we focus here on the basic question concerning why the method
should work at all, while leaving discussions on why it works even better
than the asymptotic theory to the next subsection.

Let x1, . . . , xT be an iid random sample from an unknown distribution
F with mean µ and variance σ2. Then, the sample variance is

σ̂2 =
1
T

T∑
t=1

(xt − x̄)2, (6)

where x̄ is the sample mean. The sample variance σ̂2 is an estimator of
the unknown variance σ2. Suppose we are interested in the accuracy of
the estimation, and want to compute the standard error of σ̂2. To do so,
consider first the second moment of σ̂2,

E(σ̂2)2 =
∫

(σ̂2)2 dF (x1, . . . , xT ), (7)

where the integration is carried out over the joint distribution of (x1, . . . , xT ).
Notice that σ̂2 = σ̂2(x1, . . . , xT ) is a function of x1, . . . , xT . Because of the
iid assumption, dF (x1, . . . , xT ) = f(x1) · · · f(xT ) dx1 · · · dxT , where f(x)
is the unknown density function of the data. Hence, the second moment
computation involves the integration of T variables. Since f(x) or F is
unknown, the above integral cannot be computed exactly.

Intuitively, if F is replaced by an estimator, F̂ , then E(σ̂2)2 can be
approximated by using F̂ in the integral. Indeed, a simple non-parametric
estimator of F is its empirical distribution:

F̂ (x ≤ y) =
1
T

T∑
t=1

I(xi ≤ y), (8)

where I(A) is an indicator function which takes value 1 if A is true, and 0
otherwise. This amounts to assigning an equal probability to each of the
observations:

F̂ (x = xi) =
1
T

, i = 1, . . . , T. (9)

With F̂ , the second moment of σ̂2 can be approximated as

E(σ̂2)2 ≈
∫

(σ̂2)2 dF̂ (x1, . . . , xT ). (10)
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Since F̂ is known, the above integral can be computed by standard Monte
Carlo integration. Samples {zm = (x∗m1, . . . , x

∗
mT ) : m = 1, . . . ,M} can

be drawn from F̂ , and the integral is numerically close to

E(σ̂2)2 ≈ 1
M

M∑
m=1

[σ̂2(zm)]2, (11)

where M is the number of draws and σ̂2(zm) is the σ̂2 estimator valued at
the sample zm = (x∗m1, . . . , x

∗
mT ). This procedure gives an approximated

value of the second moment E(σ̂2)2.
Recall that we want to determine the standard error of σ̂2. This is the

squared root of E(σ̂2)2 minus the square of E(σ̂2). So, what we need to do
now is to compute the unknown mean E(σ̂2) = σ2. At the above sample
draws, σ2 can clearly be computed as 1

M

∑M
m=1[

1
T

∑T
t=1(x

∗
mt−x̄∗m)2], where

x̄∗m is the sample mean of the m-th draw. Hence, the standard error of σ̂2

is determined.
The above procedure is actually the standard bootstrap method for ob-

taining the standard error of σ̂2. Clearly, this standard error can also be
obtained by using the standard asymptotic theory. In fact, there is theo-
retically no advantage in using the bootstrap method in this case since it
does not offer better approximations than the standard asymptotic theory.
The example here is merely for illustration of the idea behind the boot-
strap. From this presentation, it is obvious that the bootstrap method also
works (under certain regularity conditions) for any estimator or statistic
other than σ̂2. This requires only replacing σ̂2 with the appropriate func-
tion in the integrand. In particular, the bootstrap method offers tractable
solutions to the standard errors of Kandel, McCulloch and Stambaugh’s
(1995) portfolio efficiency measures and to our utility measures proposed
later, for which it is not obvious at all how one can obtain the associated
asymptotic approximations.

Our discussions show that the bootstrap method is a combination of two
methods: an analogy principle and a numerical integration. The analogy
principle (see Manski (1988)) replaces the unknown distribution F by F̂ ,
and the numerical integration is carried out by the Monte Carlo integration.
Viewing the bootstrap method this way, countless versions can be proposed.
First, various parametric or non-parametric estimators of F may be used.
Second, different accelerated Monte Carlo integration methods, such as
the control variate and antithetic techniques, may be used in the numerical
integration. Because it is the combination of the analogy principle and
the numerical integration, the bootstrap method has two sources of error.
The first is from replacing F by F̂ . This error depends on the sample
size and the problem at hand, i.e., the true but unknown distribution F .
However, as the sample size gets large, F̂ approaches F , and the error
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approaches zero. The second error is caused from the numerical integration,
but this error is controllable in the sense that one can choose M large
enough to make potentially the error as small as one would like. Hence,
the bootstrap error is primarily caused by the first error. In general, the
accuracy of the bootstrap method is at least as good as the usual asymptotic
theory, and so it can be very useful in cases where the asymptotic theory
is difficult to obtain. In addition, as pointed out by Horowitz (1997) and
others, the bootstrap method is still useful when the asymptotic theory is
available because it serves as an indicator for the accuracy of the latter.
When the two yield substantially different results, the asymptotic theory is
usually unreliable. However, a major use of the bootstrap method is that
it offers higher-order accurate results in many applications, as shown in the
following subsection.

3.2. Why is bootstrap better?
Hall (1992) and Horowitz (1997) provide excellent discussions and anal-

ysis on situations where the bootstrap method actually offers higher-order
approximations than the usual asymptotic theory. The improvements gen-
erally occur for “asymptotically pivotal” statistics whose asymptotic dis-
tributions are independent of any unknown population parameters. For
example, the Wald statistic W is clearly asymptotically pivotal because
its limiting distribution is χ2 that is independent of any parameters. The
reason for the improvements is that such a pivotal statistic, say J , usually
admits an Edgeworth expansion of the form

P (J < x) = Φ(x) + T−1/2q(x)φ(x) + O(T−1), (12)

where Φ(x) is the asymptotic distribution of J , q(x) an even quadratic
polynomial, φ(x) some density function, and T the sample size. Further-
more, under almost the same regularity conditions for (12), the bootstrap
statistic, J∗, also admits a similar Edgeworth expansion

P (J∗ < x) = Φ(x) + T−1/2q̂(x)φ(x) + O(T−1), (13)

where q̂(x) is an bootstrap estimate of q(x). As it is often the case that
[q̂(x)− q(x)] = O(T−1/2), it follows from (12) and (13) that the difference
between the bootstrap probability, P (J∗ < x), and the true probability,
P (J < x), is of order 1/T . In contrast, the asymptotic distribution Φ(x)
has accuracy of only order 1/

√
T . Furthermore, one can write out the

O(1/T ) terms explicitly, and show that the bootstrap error can be reduced
to o(1/T ), and, for symmetrical tests and iid data, even to a high order of
O(1/T 2).

In finance, there are several important cases where the bootstrap method
provides higher-order accurate results than what the standard asymptotic
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theory can provide. First, the method provides better confidence intervals
for security betas and the associated t test. However, it does not provide
asymptotic improvements for the estimation of the expected returns and
for the estimation of the variance of the market model residuals, unless
certain adjustments of the standard bootstrap method are made (see Hall
(1992) for details). The second case, of our interest here, is that the boot-
strapped Wald efficiency test, as provided in the next subsection, will enjoy
better accuracy than the asymptotic theory. As most asset pricing tests
are asymptotically pivotal and have simple chi-squared asymptotic distri-
butions, it is expected that the bootstrap method can provide more reliable
tests that are useful in a variety of contexts.

However, it should be pointed out that, although the accuracy of the
bootstrap method is theoretically at least as high as that of the asymptotic
theory in most cases, and it is of higher-order in certain cases, the boot-
strap distributions are still approximations and the performance can be
poor for some particular applications. As pointed out by Horowitz (1997)
and others, for estimators whose asymptotic covariances are nearly singu-
lar, the bootstrap is likely to fail. Hence, despite its simplicity and good
theoretical properties, the bootstrap method should not be used carelessly
or uncritically.

3.3. Bootstrap test: iid case
With the intuitive reason why the bootstrap should work, it becomes

almost straightforward to compute the bootstrap distributions for the pa-
rameter estimates in the multivariate regression model (2), and to develop
a bootstrap efficiency test. Under the iid assumption, the sampling dis-
tributions of the bootstrapped tests are clearly obtained by resampling
the data and re-estimating the model by the OLS regression. However,
some care must be exerted in resampling the data. There are three possi-
ble assumptions one may make on the distribution of the data. The first
assumption is that the model residuals are iid and the benchmark port-
folio returns (the regressors) are treated as fixed constants. In this case,
the fitted residuals should be resampled. The second assumption is that
both the asset returns and the benchmark portfolio returns are jointly iid.
Then, the returns should be jointly resampled. The third assumption is
that the benchmark portfolio returns and the model residuals are jointly
iid. In this case, one must resample the benchmark portfolio returns and
the model residuals jointly. As explained in Hall (1992), the bootstrap
approximations provide refinements over asymptotic distributions for the
security betas under both the first and third assumptions, but not the sec-
ond. However, the bootstrap test will always provide refinements over their
asymptotic analogues regardless of the assumptions.
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To develop the bootstrap analogue of the Wald test, we need to com-
pute the statistic by resampling the data. Following the usual assumption
that the errors are iid, we need resample the errors rather the returns.
However, the errors are not directly observable, thus fitted residuals must
be used. Either unrestricted or restricted residuals can be used because
both of which provide approximations to the true but unknown residual
distribution. However, in contrast to bootstrapping the distribution of the
parameter estimates, we need to generate data from the model under the
null hypothesis, which is not the same as the original data in most appli-
cations. This point, as emphasized by Shao and Tu (1995), seems obvious
from the analysis of the simple bootstrap example in subsection 3.1, but
is ignored in some existing studies. Formally, we can design the bootstrap
efficiency test as follows:

1. Estimate the multivariate regression model (2) by using the OLS to
obtain α̂ and ε̂t. Let Σ̂ = 1

T

∑T
t=1 ε̂tε̂

′
t. Calculate the Wald statistic:

W = h−1α̂′Σ̂−1α̂. (14)

2. Estimate the model under the null hypothesis to get βres, β′
res =

(r′prp)−1r′pR, where r′p = (rp1, . . . , rpT ) and R′ = (R1, . . . , RT ).
3. Repeat the following steps a large number of times (we use 10,000).

(a) Draw ε∗t (t = 1, . . . , T ) from {ε̂t}T
t=1 (with replacement). Then

generate data from R∗
t = βresr

∗
pt + ε∗t , t = 1, . . . , T.

(b) Estimate the model by using the OLS to obtain the estimates α̂∗

and Σ̂∗ with the bootstrapped data R∗′ = (R∗
1, . . . , R

∗
T ) and rp’s. Calculate

W ∗ = h−1α̂∗′Σ̂∗−1α̂∗. (15)

4. Calculate the percentage of W ∗’s that are greater than W .

The percentage is the p-value of the bootstrap test. Theoretical justifica-
tions of this procedure can be found in Shao and Tu (1995, Chapter 7), and
especially in Hall (1992), Horowitz (1997) and references therein. An al-
ternative procedure is to use the residuals under the null for the bootstrap,
rather than the unrestricted ones {ε̂t}T

t=1. Since the restricted residuals in
general do not have zero means, they must be “centered”, i.e, de-meaned,
before used as bootstrap samples. However, both procedures are equivalent
asymptotically. To be focused, we use only the first procedure as outlined
above in the rest of the paper.
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3.4. Bootstrap test: Non-iid case
Theoretically, the CAPM, as a one-period model, still holds even if the

stock returns are elliptically distributed at each period, irrespective of het-
eroscedasticity and serial dependence. However, in the presence of het-
eroscedasticity and serial dependence, the model is myopic. Nevertheless,
as a fundamental model, it is still of interest to test its empirical impli-
cations under a very general statistical assumption. Based on the GMM
framework of Hansen (1982), MacKinlay and Richardson (1991) provide a
robust GMM test for the CAPM. Since the asymptotic GMM test often
over-rejects, we refine this test below via the bootstrap method to yield a
test of second-order accuracy.

The GMM estimator is obtained by minimizing a weighted quadratic
form of the sample moments:

min g′T (θ)WT gT (θ), (16)

over the parameter space θ = (α, β), where gT (θ) = 1
T

∑T
t=1 εt(θ) ⊗ Zt,

Zt = (1, r′pt)
′, εt(θ) = Rt − α − βrpt, and WT , 2N × 2N , is the weighting

matrix. As noted by MacKinlay and Richardson (1991), in the present
model without imposing the null hypothesis, the GMM estimator is in-
dependent of the weighting matrix, and always coincides with the OLS
estimator because there are 2N moments conditions and 2N parameters.

There are several versions of the GMM test. For simplicity, we consider
first the Wald-type GMM test used by MacKinlay and Richardson (1991),
and then a more general one that is based on the constrained moment
conditions. The Wald-type GMM test is defined as

J1 = T α̂′ [η[D′
T S−1

T DT ]−1η′
]−1

α̂, (17)

where η = IN ⊗ (1 0) such that ηθ̂ = α̂, DT = − 1
T

∑T
t=1[IN ⊗ ZtZ

′
t],

and ST = 1
T

∑T
t=1[εtε

′
t ⊗ ZtZ

′
t]. This efficiency test has an asymptotic χ2

distribution with degrees of freedom N .
To bootstrap the distribution of the J1 statistic, we need to draw samples

{ε∗t } from an approximate distribution of the residuals. In the presence of
serial dependence, we cannot resample the residuals the same way as before,
because the empirical distribution (see (8)) of the residuals no longer ap-
proximates the unknown residual distribution. This is evident because the
empirical distribution ignores any time dependency of the data. It assumes
time-independent distribution, and weighs them equally in computing the
distribution at any time.

Various parametric or non-parametric density estimators of the residuals
can be developed. But it is not a trivial matter to draw samples from
them. Fortunately, there is a simple and elegant solution. As pointed
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out by Shao and Tu (1995, Chapter 9), we can draw samples {ε∗t } from
{ε̂t} in blocks. To be more specific, we can divide the residual time series
into, say l, blocks such that each block has m elements with lm = T .
Both m and l may depend on T . For example, m may be equal to 2
or 5 percent of T . In this way, block 1 consists of ε1, . . . , εm, block 2
of εm+1, . . . , ε2m, etc. The bootstrap is implemented by drawing l blocks
randomly with replacement from the empirical residuals. Like the iid case,
the artificial returns can be generated from R∗

t = βresr
∗
pt +ε∗t , t = 1, . . . , T ,

upon which the bootstrapped J1 statistic is easily calculated. Then, the
empirical distribution is straightforward to obtain.

Intuitively, the block length captures dependence of the data up to the
m-th lag. If some fixed m is already appropriate in capturing the data
dependence, the blocks should be approximately independent, and each
block draw approximates a draw from the joint distribution of the entire
residuals. As l goes large, the blocks should converge to the joint distribu-
tion of the elements in each block. Then, the bootstrap draws are close to
draws from the distribution of the entire data. For a complex dependence
structure, a fixed m may not be appropriate. But as both m and l ap-
proach to infinity, the bootstrap draws should eventually capture the true
distribution of the residuals. Theoretically, m may be chosen as propor-
tional to some fixed power of T such that m/T goes to zero as T increases.
The block procedure applies to many dependence structures. In particular,
it works for m-dependence residuals, which assumes that the time series
of residuals, {. . . , εt−1, εt} and {εt+m+1, εt+m+2, . . . , }, are independent for
all t. The m-dependence process is a simple dependence structure of the
residuals, which includes the m-th order moving average time series model
as a special case. The block draws are generally robust to the order of
the moving averages, and to a stationary autoregressive process as well.
Although the latter is a moving average process of an infinite order, a cer-
tain finite order moving average process will approximate it with negligible
errors.

The above bootstrap procedure is simple and intuitive, and applies to
tests of almost any regression models with instrumental variables. However,
some important asset pricing models may not be cast into the regression
framework, and a genuine GMM set-up may have to be used. More impor-
tantly, unless certain adjustments are made, the above procedure will not
necessarily provide higher-order accurate approximations than the asymp-
totic distribution of the test. This is because the block draws may not
exactly replicate the data generating process, and this effect must be taken
into consideration. Hence, certain adjustments must be made to ensure
that the bootstrap method works and does better, regardless of whether in
regression models or in the more general GMM framework.
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Hall and Horowitz (1996) provide adjustments of the standard boot-
strap procedure in the general GMM framework such that the computed
bootstrap distribution has, at least in theory, higher-order accuracy than
the asymptotic theory. To apply Hall-Horowitz adjustments into testing
portfolio efficiency, consider first the GMM estimation problem. Following
Hansen (1982), the GMM parameter estimation and test are obtained in
two steps. First, a fixed constant weighting matrix Ω, perhaps the identity
matrix, is used to obtain the GMM estimator under the null, θ̃, by solving

min

[
1
T

T∑
t=1

f(Xt, θ)

]′
Ω

[
1
T

T∑
t=1

f(Xt, θ)

]
, (18)

where θ = β is the parameter vector under the null, f(Xt, θ) = (Rt−βrpt)⊗
Zt, 2N × 1, is the moment conditions of the model, and Xt = (R′

t, Z
′
t)
′,

(N + 2) × 1, is the model variables and instruments. In the second step,
the optimal GMM estimator, θ̂, is obtained from solving

min

[
1
T

T∑
t=1

f(Xt, θ)

]′
WT

[
1
T

T∑
t=1

f(Xt, θ)

]
, (19)

where the optimal weighting matrix WT = S−1
T , and ST is a consistent

estimator of the covariance matrix of the model residuals given by

ST =
1
T

T∑
t=0

[
f(Xt, θ̃)f(Xt, θ̃)′ +

κ∑
s=1

h(Xt, Xt+s, θ̃)

]
, (20)

and h(Xt, Xt+s, θ̃) = f(Xt, θ̃)f(Xt+s, θ̃)′+f(Xt+s, θ̃)f(Xt, θ̃)′. The kappa,
κ, is some integer such that, at the true parameter θ0, E[f(Xt, θ0)f(Xs, θ0)′] =
0 when |s− t| > κ. It should be pointed out that this condition is not re-
quired and a consistent estimator of the residual covariance may have a
more general form than (20) in the GMM setup of Hansen (1982). But it
is needed here to ensure theoretically that the bootstrapped GMM test has
a better approximation. However, the condition on the covariance of the
moments is not as restrictive as it appears. In most asset pricing models,
we have moment conditions like E[f(Xt, θ0) | It] = 0 conditional on infor-
mation available at t. Suppose s < t without loss of generality. Then Xs is
contained in It. It follows by law of expectation that E[f(Xt, θ0) |Xs] = 0,
and hence E[f(Xt, θ0)f(Xs, θ0)′] = 0, implying that κ = 0 in this case.

The GMM test of the efficiency hypothesis is the standard GMM over-
identification test. The test statistic is the minimized quadratic form of the
second-step estimation multiplied by T . It is distributed asymptotically
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χ2 with the degrees of freedom equal to the number of over-identification
conditions. In general, one has to use non-linear numerical optimization
techniques to solve the two-step GMM estimation problem in order to com-
pute the GMM test statistic. However, in the present case of testing for
efficiency, the estimation problem can be analytically solved. Let Z be a
T×2 matrix of the instruments. Recall that R and rp are a T×N matrix of
the asset returns and a T×1 matrix of the benchmark returns, respectively.
Then, the θ̃ is given explicitly by

θ̃ = (x′Ωx)−1x′Ωy, (21)

where y = 1
T vec(Z ′R) and x = 1

T IN⊗(Z ′rp), both of which are 2N vectors.
Clearly, with Ω replaced by WT , the same formula holds for the second-step
GMM estimation θ̂. In addition, the GMM statistic can be written as

J2 = Ty′[WT −WT x(x′WT x)−1x′WT ]y, (22)

where WT is the second-step weighting matrix, WT = S−1
T with ST given

by (20).
Now we want to obtain the bootstrapped analogue of the GMM test

J2. Following Hall and Horowitz (1996), we can still sample the Xt’s in
blocks. For each of the bootstrap samples, we need to carry out the GMM
estimation and compute the test statistic. The GMM estimation process
will be similar to the previous real data case, but differs in one important
aspect. The moment function has to be centered for the bootstrapped data,
for it may not have zero expectation at all under the empirical probability.
The centered moment function is

f∗(X, θ) = f(X, θ)− 1
T

T∑
t=1

f(Xt, θ̂), (23)

where θ̂ is the GMM estimator from the real data. With the centered mo-
ment function, we obtain, at each sampling draw, the bootstrapped GMM
estimator in the same way as the usual GMM estimation. Specifically,
let X∗

t = {(X∗
i+1, . . . , X

∗
i+m), i = 1, . . . , l} be a bootstrap sample drawn

randomly with replacement from the l blocks of data, the first-step boot-
strapped GMM estimator, θ̃∗, is obtained by solving

min

[
1
T

T∑
t=1

f∗(X∗
t , θ)

]′
Ω

[
1
T

T∑
t=1

f∗(X∗
t , θ)

]
, (24)

where f∗(X∗
t , θ) is the centered moment function f∗(X, θ) valued at X =

X∗
t . Fortunately, in our present application, the solution to (24) is analyt-
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ically available,

θ̃∗ = (x∗′Ωx∗)−1x∗′Ωy∗, (25)

where y∗ = 1
T vec(Z∗′R∗) − f̄(θ̂), x∗ = 1

T IN ⊗ (Z∗′r∗p), and
f̄(θ̂) = 1

T

∑T
t=1 f(Xt, θ̂). Clearly this formula is the same as (21) except

that the real data is replaced by the bootstrapped one, and an adjustment
term of f̄(θ̂) is present for the centering. The analytical solution makes
it easy later to determine the empirical size of the bootstrapped GMM
test. With θ̃∗, the second-step weighting matrix, W ∗

T , which is an ana-
logue of WT , can be obtained from the bootstrapped data. Then, with Ω
replaced by W ∗

T , the above formula yields the second-step bootstrapped
GMM estimator, θ̂∗. Hence, the bootstrap analogue of J2 is obtained, but
its distribution is complex, and will not necessarily approximate the exact
distribution of J2 accurately.

To ensure that the computed bootstrap distribution has higher-order ac-
curacy than the asymptotic one, one must apply Hall and Horowitz’s (1996)
adjustments to the bootstrap covariance estimators and to the eventual test
statistic. Intuitively, the adjustments are necessary at least due in part to
the centering of the moment conditions. There is also the fact that the block
draw may not exactly replicate the dependence structure of the data. For
example, adjacent blocks will not generally be independent, but maintain
certain dependence structures at the ends. As a result, it is not surprising
that the asymptotic covariance matrix of the bootstrapped model residuals
has the following form,

S̃∗
T =

1
T

l−1∑
i=0

m∑
j=1

m∑
k=1

f∗(X∗
im+j , θ̂)f

∗(X∗
im+k, θ̂)′, (26)

which is not ST , the asymptotic covariance matrix of the true model
residuals. Hence, the covariance matrix of the asymptotic distribution of√

T
∑T

t=1 f∗(X∗
t , θ̂∗) becomes (see, e.g., Hansen (1982, Lemma 4.1)),

Ψ∗
T = W

∗−1/2
T N∗

T (W ∗1/2
T S̃∗

T W
∗1/2
T )N∗

T W
∗−1/2
T , (27)

where

N∗
T = I2N −W

∗1/2
T D∗

T (D∗′
T W ∗

T D∗)−1D∗′
T W

∗1/2
T , (28)

and D∗
T is the first order derivatives of the moment condition,

1
T

∑T
t=1 ∂f∗(X∗

t , θ̂∗)/∂θ. Then, W
∗1/2
T Ψ∗

T W
∗′1/2
T is not even a diagonal

matrix. Therefore, the minimized quadratic form multiplied by T will no
longer have an asymptotic χ2 distribution. Nevertheless, there are two
ways to obtain a bootstrapped χ2 statistic.
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The first approach, as suggested by Hall and Horowitz (1996), is to
compute the Moore-Penrose generalized inverse, V −1

T , of the matrix

V ∗
T = N∗

T W
∗1/2
T S̃∗

T W
∗1/2
T N∗

T , (29)

where W ∗
T is the second-step optimal weighting matrix valued at θ̂, and D∗

T ,
2N × N , is the first order derivatives of the moment condition,
1
T

∑T
t=1 ∂f(X∗

t , θ̂)/∂θ. Then, the bootstrapped GMM statistic is obtained
as

J∗
2 = Tg(X∗, θ̂∗)′W ∗1/2

T V −1
T W

∗1/2
T g(X∗, θ̂∗), (30)

where g(X∗, θ̂∗) = 1
T

∑T
t=1 f∗(X∗

t , θ̂∗) and θ̂∗ is the bootstrapped GMM es-
timator with the second-step weighting matrix W ∗

T . Clearly, the asymptotic
covariance matrix of W

∗1/2
T

1
T

∑T
t=1 f∗(X∗

t , θ̂∗) is W
∗1/2
T Ψ∗

T W
∗′1/2
T = V ∗

T .
As V

−1/2
T V ∗

T V
−′1/2
T is a diagonal matrix whose diagonal elements are zero

and ones, it is not surprising that the adjusted statistic, J∗
2 , is asymp-

totically χ2 distributed. Furthermore, its empirical distribution provides
asymptotic refinements over J2. Indeed, under certain regularity condi-
tions, Hall and Horowitz (1996) show that the critical value of J∗

2 approx-
imates the exact one with an error of order 1/T and the error is through
O(1/T ), that is,

P (J2 > z∗τ ) = τ + o(1/T ), (31)

where z∗τ is the τ -level critical value of J∗
2 , and o(1/T ) is the error term

which after dividing by T goes to zero as the sample size goes to infinity. In
contrast, the standard χ2 approximation of the exact distribution of J2 has
an error of order 1/

√
T . In practice, one can resample the data, say 1,000

times, to get 1,000 values of J∗
2 as above. Then the largest τ percent of

the 1,000 values determine the p-value of the test, which is generally more
reliable than the asymptotic chi-squared p-value as it is of higher-order
accuracy.

The second approach is to use a simple idea of Zhou (1994). As noted ear-
lier, the covariance matrix of the asymptotic distribution of√

T
∑T

t=1 f∗(X∗
t , θ̂∗) is Ψ∗

T , which can be simplified as

Ψ∗
T = [I2N −D∗

T (D∗′
T W ∗

T D∗)−1D∗′
T W ∗

T ]S∗
T [I2N −D∗

T (D∗′
T W ∗

T D∗)−1D∗′
T W ∗

T ].
(32)

This matrix must have rank d = N under the null, where N is the number of
over-identification conditions. Let u1 ≥ . . . ≥ ud be its nonzero eigenvalues
of Ψ∗

T . Then there is a unique P such that:

Ψ∗
T = P ′ Diag(u1, . . . , ud, 0, . . . 0) P = P ′UP, (33)
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where PP ′ = P ′P = I2N . In fact, the i-th row of P is the standardized
eigenvector corresponding to the i-th largest eigenvalue ui. Therefore, the
covariance matrix of

√
TU−1/2

∑T
t=1 f∗(X∗

t , θ̂∗) has an asymptotic covari-
ance matrix U−1/2PΨ∗

T P ′U−1/2, which is simply Diag(1, . . . , 1, 0, . . . 0). As
a result,

J∗∗
2 = Tg(X∗, θ̂∗)′PU−1Pg(X∗, θ̂∗) (34)

is asymptotically χ2 distributed with degrees of freedom d. This can serve
as an alternative bootstrapped GMM statistic. However, a careful exam-
ination of J∗

2 and J∗∗
2 shows that they are in fact identical numerically.

Indeed, both J∗
2 and J∗∗

2 are quadratic forms of g(X∗, θ̂∗). The weighting
matrix of J∗∗

2 is P ′U−1P , the Moore-Penrose generalized inverse of the
matrix Ψ∗

T . The weighting matrix of J∗
2 is W

∗1/2
T V −1

T W
∗1/2
T . By defini-

tion, Ψ∗
T = W

∗−1/2
T V ∗

T W
∗−1/2
T . A direct inversion yields W

∗1/2
T V −1

T W
∗1/2
T .

Therefore, J∗
2 and J∗∗

2 are identical. Henceforth, we use only notation J∗
2 ,

and use only formula (34) for its computation. In practice, the latter is
much faster to implement for at least W

∗1/2
T is not needed.

In comparison of J∗
2 with the standard GMM test by using the bootstrap

sample, the only difference is that we have now the extra term, V −1
T , occur-

ring in (30) to form the test statistic. This extra term, Hall and Horowitz’s
(1996) adjustment, is computed from (29) with S̃∗

T determined from (26).
As mentioned earlier, a major reason for the adjustment is that the block
draw does not exactly replicate the data generating process, especially in
the general serial dependence case. But if it is known that the data is iid,
the adjustment of the GMM statistic will be unnecessary. The minimized
quadratic from the bootstrap sample will serve directly as the bootstrapped
GMM statistic. In addition, the block sampling can be reduced to m = 1,
implying that one can draw the bootstrap samples as in standard iid appli-
cations. As shown by Hall and Horowitz (1996), the payoff of the complex
adjustment is that the accuracy of the bootstrapped GMM tests is of order
1/T (actually through O(1/T )). In contrast, the accuracy of the standard
asymptotic chi-squared tests is of order 1/

√
T . One may think that the

bootstrapped GMM tests are difficult to compute. But as demonstrated
above, despite the appearance of complex algebra, the bootstrap statistic is
conceptually easy to understand and computationally easy to implement.

4. MEASURES OF INEFFICIENCY

In practice, it is unlikely to find a portfolio that is perfectly efficient. In
fact, even if a portfolio is ex ante exactly efficient, there will be deviations
of its observed Sharpe measures from the ex post efficient portfolio simply
because of sampling errors. The GRS test compares the observed Sharpe
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measure of a given portfolio with that of the ex post efficient portfolio.
The difference between the Sharpe measures indicates whether or not the
ex post efficient portfolio is preferred to the given portfolio for all risk
averse investors, but the degree of inefficiency, as measured by the difference
between the Sharpe measures, is not necessarily the inefficiency measure of
a given investor. In other words, while all investors prefer a portfolio that
has a higher Sharpe measure, the economic consequence of a 10-percent
higher Sharpe measure is unknown.

An investor’s preference is fully characterized by his or her utility func-
tion. Without specifying the utility function, it is generally impossible to
determine the importance of the difference between two portfolios. To as-
sess the economic consequence, a specific form of the individual’s utility
function must be assumed. For purpose of illustration, we assume a simple
quadratic utility,

u(W ) = W − c

2
W 2, (35)

where the utility is defined over the end-of-period wealth W , and c is a
constant parameter measuring the individual’s risk aversion. For simplicity,
we can assume that the initial wealth is one by re-scaling the unit of wealth,
so that the argument of the utility is the gross return of investment.

Consider the scenario where the individual is interested in how to invest
his wealth in light of current efficiency test of a given portfolio. Assume the
riskfree rate is rf . Then, in a standard one-period expected utility maxi-
mization framework, the investor’s problem is to choose portfolio weights
w to maximize his expected utility. If he accepts the hypothesis that the
given portfolio rp is efficient, he will allocate his wealth between rp and the
riskfree asset. Then, his maximized expected utility is

up = 1 + wpµp + rf −
c

2
[
(1 + wpµp + rf )2 + w2

pσ2
p

]
, (36)

where wp = µp[(1 − c(1 + rf )]/(c(µ2
p + σ2

p)) is the optimal weight on rp,
µp is the expected return of rp in excess of the riskfree rate, and σ2

p is the
associated variance. If he does not accept the efficiency hypothesis, he will
invest some of his money into the riskfree asset (or borrowing some money
at the riskfree rate), and the rest into a portfolio of R1, . . . , RN and rp.
The maximized expected utility is

uR = 1 + w′
Rµ + rf −

c

2
[
(1 + w′

Rµ + rf )2 + w′
RΞwR

]
, (37)

where wR = [(1 − c(1 + rf )](µµ′ + Ξ)−1µ/c is the optimal weights on the
risky assets, µ is a vector of the expected returns on R1, . . . , RN , rp in
excess of rf , and Ξ the covariance matrix. The economic importance of
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the portfolio efficiency can only be answered if one can compute up and
uR. Now the parameters, µp, σp, µ and Ξ are unknown, and have to be
estimated from the data. At a given estimate, up and uR can be computed
easily. However, the parameters have estimation errors, and hence the
computed utility values are likely to be biased estimates. To overcome
uncertainty of the parameter estimates, the correct values of up and uR

should be computed as the expectations taken over the distribution of the
parameter estimates.4 But even in the normality case, it is not an easy
matter to compute such expectations.

As mentioned earlier, the bootstrap method can be used to compute the
distribution of almost any statistic. In particular, it offers an effective and
feasible way to compute up and uR. The difference between up and uR

measures the economic importance of the decision making with respect to
portfolio efficiency. Furthermore, a certainty equivalence amount of money
can be easily computed to examine how much one needs to pay for the
quadratic utility individual to accept efficiency.

5. EMPIRICAL RESULTS

In this section, we provide two empirical applications of the bootstrap
method. First, we investigate the mean-variance efficiency of the CRSP
(Center for the Research of Stock Prices) value-weighted index. This is
examined by using the ten standard CRSP size decile portfolios on the
New York Stock Exchange. The data is monthly from January 1926 to
December 1995. All returns are calculated in excess of the average one-
month T-bill rate, available from Ibbotson Associates and from the Fama
bond file of the CRSP data base.

In the second application, we test the well-known Fama and French
(1993) three-factor model which enjoys popularity with practitioners.5 In
this model, there are three common risk factors that are used to explain the
average returns on 25 stock portfolios formed on size and book-to-market
(B/M). The factors are an overall market factor, RMRFt, as represented
by the excess return on the weighted market portfolio; a size factor, SMBt,
as represented by the return on small stocks minus those on large stocks
and a book-to-market factor, HMLt, as represented by the return on high
B/M stocks minus those on low B/M stocks. The data are monthly from

4In a Bayesian framework, such as McCulloch and Rossi (1990), the uncertainty is
incorporated into the posterior naturally. However, the disadvantage is that the residual
distribution has to be restricted to a few tractable ones.

5See, e.g., page 41 of Cost of Capital, 1998 yearbook published by Ibbotson Associates.
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January 1964 to December 1993, a total of thirty years data, 372 observa-
tions.6

We test the efficiency under two separate assumptions on the stochastic
behavior of the market model residuals over time. First, we assume the
residuals are iid. In this case, there are three tests available, the GRS
test, the asymptotic Wald χ2 test and the proposed bootstrap test. Since
the monthly returns span seventy years, the market model structure is
unlikely to stay constant over the entire period. Therefore, concerning
about parameter stability, we, following most studies, apply the tests to
ten-year subperiods. This implies T = 120 in our application. Although
the efficiency is tested directly only in the ten-year subperiods, an indirect
test of the model over the entire seventy years can be provided. Based
on Shanken (1985), an overall p-value of the efficiency hypothesis can be
computed which aggregates the p-values over subperiods. The novelty of
this aggregation test is that it allows one to make inferences over the whole
sampling period without assuming the stationarity of the parameters dur-
ing that period. However, it is still necessary to assume stationarity within
each of the subperiods as well as the independence of the model residuals
across subperiods.

The second assumption on the model residuals is weaker than the first
one. It allows for serial dependence and a general non-parametric density
for the data. In this case, there are four tests available, the GMM tests,
J1 and J2, and their bootstrapped analogues, J∗

1 and J∗
2 . For comparison

with the iid case, we also apply these tests to the ten-year subperiods.
The empirical results are reported in Panel A of Table 1. Under the iid

assumption, the GRS test rejects the efficiency of the CRSP index in one
of the seven subperiods at the 5 percent significance level. In contrast, the
asymptotic Wald test, W , has lower p-values than the GRS test for all the
subperiods, and it rejects the efficiency in three of the subperiods. This is
expected because Gibbons, Ross and Shanken (1989), among others, have
pointed out that the asymptotic Wald test tends to reject more often than
the GRS test (under normality). If normality holds, the over-rejection will
be incorrect. However, due perhaps to non-normality, whether or not the
asymptotic Wald test is reliable needs further examination.

As shown in the table, the bootstrapped Wald test, W ∗, does not reject
the efficiency at all.7 Whether the data follow a multivariate normal or
a non-normal distribution, given the good performance of the bootstrap
test under various distributions to be shown in the next section, it appears
plausible to rely more on the bootstrap test than on the GRS test in reach-
ing a conclusion about efficiency. As the bootstrap test does not reject

6See Fama and French (1993) for a detailed description of the data. The authors are
grateful to C. Harvey and R. Kan for permission and forward of their data.

7The bootstrap p-values of this section are based on 10,000 bootstrap draws.
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TABLE 1.

Efficiency Tests

iid case non-iid case

Period GRS Wald W ∗ J1 J∗1 J2 J∗2

Panel A: CRSP index

1926/1-1935/12 0.0406 0.0173 0.0792 0.0084 0.0587 0.0370 0.2229

1936/1-1945/12 0.8875 0.8629 0.8765 0.8255 0.8539 0.8788 0.9217

1946/1-1955/12 0.0715 0.0362 0.0886 0.1046 0.2093 0.3493 0.4817

1956/1-1965/12 0.0786 0.0410 0.0873 0.0271 0.0779 0.1832 0.2594

1966/1-1975/12 0.4903 0.4150 0.5495 0.4085 0.5506 0.4973 0.6215

1976/1-1985/12 0.1951 0.1310 0.2107 0.1029 0.1920 0.1747 0.2304

1986/1-1995/12 0.2843 0.2104 0.3800 0.3917 0.5706 0.8116 0.8824

1926/1-1995/12 0.0330 0.0057 0.0680 0.0077 0.1057 0.2286 0.6075

Panel B: Fama-French Factors

1964/1-1993/12 0.0001 < 0.0001 0.0003 < 0.0001 0.0055 0.0015 0.0065

We examine first the efficiency of the CRSP value-weighted index in the standard market model:

Rt = α + βrpt + εt, t = 1, · · · , T,

where Rt is a vector of returns on 10 CRSP size decile portfolios in excess of the 30-day T-bill
rate. The asset pricing restrictions,

H0 : α = 0,

are tested by using Gibbons, Ross, and Shanken’s (1989) test (GRS), the asymptotic Wald χ2

test (Wald), the bootstrapped Wald test (W ∗), the GMM tests (J1 and J2) and the bootstrapped
ones (J∗1 and J∗2 ). Panel A of the table provides the p-values. The bootstrap p-values are based
on 100,000 resampling of the data. The p-values for the whole period are computed by using
Shanken’s (1985) normal density aggregation technique. We also examine the joint efficiency of
the Fama and French’s (1993) factors in

Rit − rft = αi + βiRMRFt + siSMBt + hiHMLt + εit,

where Rit’s are monthly returns on 25 stock portfolios formed on size and book-to-market (B/M),
RMRFt is the excess return on a market index, SMBt is the return on small stocks minus those
on large stocks, HMLt is the return on high B/M stocks minus those on low B/M stocks, and
rft is the 30-day T-bill rate. The same asset pricing restrictions are tested and the p-values are
provided in Panel B of the table.
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efficiency in any of the subperiods, and the aggregated p-value is 0.0680,
we may conclude that the tests do not reject the mean-variance efficiency
of the CRSP value-weighted index in the case where the asset returns are
assumed to follow iid distributions.

If we relax the iid assumption and allow the data to have serial depen-
dence, then the mean-variance efficiency can be examined by using the
GMM tests, J1 and J2, and the bootstrapped GMM tests, J∗

1 and J∗
2 . No-

tice that J1 is just the non-normality and dependence adjusted asymptotic
Wald test, but J2 is the GMM over-identification test. It is interesting that,
after adjusting for non-normality and serial dependence, the new Wald test,
J1, rejects the efficiency only in two of the three subperiods rejected earlier
based on W . However, the bootstrapped test, J∗

1 , cannot reject in any of
the subperiods, suggesting that there is some tendency for J1 to over-reject
the null. The over-identification test J2 and its bootstrap analogue J∗

2 seem
to echo the conclusions reached by J1 and J∗

1 . For example, J1 has the low-
est p-value, 0.0084, in the first subperiod, and J2 also has its lowest p-value,
0.0587, in the same subperiod. However, J2 in general has higher p-values
than J1. Like J∗

1 , the bootstrapped test J∗
2 has greater p-values than its

analogue J2. Overall, the bootstrap tests do not reject the efficiency. How-
ever, their p-values appear to depend heavily on the assumptions we made
on the model residuals. Imposing the non-iid assumption generally makes
the tests to have higher p-values than before. For example, in the last
subperiod, W ∗ has a p-value of 38.00 percent, whereas J∗

1 and J∗
2 have

p-values 57.06 and 88.24 percent, respectively. This may suggest that one
should be cautious in interpreting studies that impose either normality or
iid assumption on the data.

Now we apply the same procedure to the Fama and French (1993) model.
The results are reported in Panel B of Table 1. It is seen that the p-value
from the GRS test is 0.0001, suggesting a rather strong rejection. This
is also echoed by W and W ∗. Relaxing the iid assumption does not help
because the J tests suggest rejection as well. However, it is interesting
to notice that the bootstrap tests always have greater p-values than the
non-bootstrap ones. For example, J1 has a p-value less than 0.0001, but
J∗

1 gets 0.0055, more than 50 times greater. One may ask why the three-
factor model is rejected whereas the earlier one-factor model is not. This
is because different asset returns are used in the two models. Intuitively,
Fama and French’s (1993) asset returns are sorted to have greater cross-
sectional differences in expected returns, and, as a result, a greater number
of factors are needed to model or explain the returns.

The above statistical tests assess how the model fits the data given effi-
ciency. It may not convey the concept of utility loss resulted from invest-
ment decisions based on whether or not the benchmark portfolio is efficient.
Hence, it is of interest to examine the economic measures of inefficiency
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which may shed some light on why the efficiency is not rejected. Follow-
ing the framework of Section 4, we examine the values of the maximized
expected utility under two scenarios. The first is to accept efficiency. The
maximized expected utility, up, depends on our specification of the risk-
aversion parameter c as well as the riskfree rate rf . For simplicity, we
take rf as the average riskfree rate over the relevant time period, then it
is straightforward to apply the bootstrap procedure to compute the maxi-
mized utility for any given value of c. As reported in Panel A of Table 2,
given the efficiency of the CRSP index, up equals 0.8064, 0.7535, 0.7019,
0.6509 and 0.6004 for c = 0.4, 0.5, 0.6, 0.7 and 0.8 in the first subperiod.
It is seen that up decreases as risk aversion increases. This is true not
only for the first subperiod, but also for all the subperiods and the entire
sample period. The second scenario is to reject efficiency. In this case, the
maximized expected utility in the first subperiod, uR, is 0.9060, 0.8088,
0.7314, 0.6652 and 0.6059 for the previous c values. Like up, uR is also a
decreasing function of c. Moreover, at a given value of c, uR is greater than
up. This is expected as the opportunity set for maximizing uR is greater
than that for maximizing up.

The economic importance of the efficiency of the given portfolio is clearly
indicated by the percentage gain in utility, (uR − up)/up. For example, in
the first subperiod, the gain in utility is 10.9279 percent for individuals
with risk aversion c = 0.4. However, the gain reduces substantially to
only 0.2220 percent for those with risk aversion c = 0.9. To provide some
understanding on the degree of risk aversion, the third column of Table
2 reports the optimal portfolio weight, wp, on the given benchmark risky
portfolio which is obtained by allocating investments between the risky
asset and a riskless one. For c = 0.4, wp = 1.2112, which suggests an
aggressive investment strategy that borrows money to invest in the risky
asset, an unlikely event for most of the investors in the real world. On
the other hand, a risk aversion of c = 0.8 implies an allocation of only
20.69 percent of wealth into the risky asset, another unlikely event for the
average investor (many brokerages’ recommendations for stock investments
are close to 50 percent or exceed it by a small amount). Hence, in the first
subperiod, the plausible value for c is 0.6 at which the gain in utility is
only 4.0198 percent. This echoes the previous p-value analysis that the
GRS test rejects the efficiency only slightly, whereas the bootstrap tests
suggest no rejections at all. Also consistent with the p-value analysis, the
utility gains are the greatest in the first subperiod where the p-values are
the lowest. However, at later subperiods, the plausible c values are higher
than 0.6. As c increases, the utility gain becomes smaller. Intuitively,
the more risk-averse an investor, the less impact the risky asset allocation.
As a result, he cares less about efficiency, implying less utility gain if he
rejects efficiency. Finally, it is observed that wp has negative values in the
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TABLE 2.

Utility of Accepting/Rejecting Efficiency

Period c wP uP uR
uR−uP

uP
× 100%

Panel A: CRSP value-weighted index

26/01-35/12 0.4 1.2112 0.8064 0.9060 10.9279

0.5 0.8036 0.7535 0.8088 6.8024

0.6 0.5278 0.7019 0.7314 4.0198

0.7 0.3377 0.6509 0.6652 2.1412

0.8 0.1966 0.6004 0.6059 0.9159

36/01-45/12 0.4 3.7724 0.8142 0.8641 5.7540

0.5 2.5124 0.7579 0.7858 3.5373

0.6 1.6702 0.7042 0.7190 2.0455

0.7 1.0630 0.6520 0.6591 1.0761

0.8 0.6153 0.6008 0.6036 0.4610

46/01-55/12 0.4 10.7208 0.8380 0.9213 8.9813

0.5 7.1143 0.7713 0.8178 5.6607

0.6 4.7789 0.7117 0.7362 3.3216

0.7 3.0708 0.6558 0.6676 1.7672

0.8 1.7787 0.6024 0.6070 0.7525

56/01-65/12 0.4 8.2469 0.8213 0.9091 9.6042

0.5 5.5001 0.7624 0.8110 5.9731

0.6 3.6531 0.7070 0.7330 3.5338

0.7 2.3642 0.6538 0.6662 1.8612

0.8 1.3496 0.6017 0.6065 0.7842

66/01-75/12 0.4 -0.8892 0.8069 0.8769 7.9104

0.5 -0.5885 0.7547 0.7933 4.8390

0.6 -0.3740 0.7031 0.7235 2.8133

0.7 -0.2418 0.6520 0.6618 1.4695

0.8 -0.1455 0.6012 0.6049 0.6156
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(Table 2 continued)

Period c wP uP uR
uR−uP

uP
× 100%

76/01-85/12 0.4 5.2558 0.8173 0.8972 8.8495

0.5 3.4387 0.7605 0.8049 5.5010

0.6 2.3022 0.7065 0.7299 3.2087

0.7 1.4756 0.6538 0.6650 1.6883

0.8 0.8428 0.6020 0.6062 0.7031

86/01-95/12 0.4 6.4329 0.8207 0.8937 8.1065

0.5 4.2986 0.7623 0.8027 5.0153

0.6 2.8262 0.7071 0.7286 2.9380

0.7 1.8221 0.6539 0.6642 1.5471

0.8 1.0510 0.6019 0.6059 0.6504

26/01-95/12 0.4 2.3488 0.8068 0.8176 1.3176

0.5 1.5480 0.7545 0.7605 0.7833

0.6 1.0370 0.7031 0.7063 0.4502

0.7 0.6602 0.6520 0.6535 0.2304

0.8 0.3834 0.6012 0.6018 0.0967

Panel B: Fama-French Factors

64/01-93/12 0.4 4.32577 0.8083 0.9175 11.8674

0.5 2.89317 0.7555 0.8157 7.3661

0.6 1.92737 0.7036 0.7356 4.3357

0.7 1.22616 0.6523 0.6675 2.2819

0.8 0.70778 0.6013 0.6072 0.9618

Assume a simple quadratic utility for investors,

u(W ) = W −
c

2
W 2,

where the utility is defined over the end-of-period wealth W and c is
a constant parameter measuring the individual’s risk aversion. If an
investor accepts the hypothesis that the CRSP value-weighted index
is efficient, he obtains his maximized expected utility, up, by optimally
allocating his wealth (one unit) between the riskfree asset and the index,
with wp being the weight on the index. If he rejects the efficiency,
his maximized expected utility, uR, is obtained by optimally allocating
his wealth between the riskfree asset and a mix of the index and size
portfolios. The table reports wp, up, uR and (uR −up)/up (in percent)
for a wide range of risk aversion parameter values. Panel A of the table
reports the results. Panel B of the table provides similar results for the
joint efficiency of the Fama and French’s (1993) factors.
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subperiod of January 1966 to December 1975. This is because the stock
market in this decade has basically zig-zag movements. As a result, the
excess return is −0.1206 percent per month. Hence, in an ex post optimal
portfolio choice, investors would short the market portfolio proxy rp and
hence have the negative weight. Clearly, in this decade, rp is inefficient
and is dominated by the riskfree asset. However, this is not reflected by
the previous p-value analysis. The reason is that the p-values essentially
compare the squared Sharpe measure of the given portfolio, rp, with that
of the ex post efficient portfolio, and hence they are invariant to the signs
of the excess returns on rp.8

For the Fama and French’s (1993) model, the efficiency implies the joint
efficiency of the factors, i.e., a portfolio of the factors lies on the efficient
frontier. The utility measures can be computed as easily as before when
they applied to the joint efficient portfolio. As reported in Panel B of Table
2, the percentage gain in utility is only 0.9618 for c = 0.8, and 2.2819 for
c = 0.7. The magnitude of wp seems to suggest that c = 0.8 is a plausible
value for the Fama-French model. Then, interestingly, there do not seem
any gains in terms of investor’s utility despite of earlier statistical rejection
of the efficiency.

6. SIZE OF THE BOOTSTRAP TESTS

In this section, we examine first the size of the GRS test, W ∗, J1, J∗
1 ,

J2 and J∗
2 under three iid distributions: the standard multivariate normal,

multivariate t and multivariate mixture normal. Then, we study the size of
the tests under alternative distributions with conditional heteroscedasticity
and serial dependence.

6.1. iid case
To compare the size of the tests, we need to generate the model residuals

and artificial returns from a given distribution. Choose arbitrarily the
parameter estimates of β and Σ over the subperiod from January 1976
to December 1985 as the true parameters. With the given parameters,
it is straightforward to generate the data from the multivariate normal
distribution. For the multivariate t distribution, we choose 5 and 10 as the
degrees of freedom to reflect a varying degree of kurtosis.

The mixture normal distribution is of the following form:

εt ∼ wN (0,Σ) + (1− w)N (η, γΣ), (38)

8As pointed out by Gibbons, Ross, and Shanken (1989), the zero-intercept hypothesis
only allows one to test the necessary condition that the underlying portfolio is mean-
variance efficient.
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where w (0 ≤ w ≤ 1) is a mixing-probability parameter, γ is a scale
parameter, and η is a non-zero vector. The distribution is skewed and has
non-zero mean. To generate data from the mixture distribution, we need to
specify w, γ and η. We set w = 0.7 and γ = 5. This implies that a weight
of 70 percent is given to data from the standard normal distribution, and
30 percent to data from a non-zero mean normal distribution with 5 times
the covariance matrix. To reflect the skewness of the observed return data,
η is set as a vector of the standard deviations multiplied by minus one.
Since the residuals have zero means, the residuals drawn from the mixture
normal distribution will be de-meaned before used in the market model to
generate returns data.

The design of the Monte Carlo experiment can be summarized as follows.

1. Let β̂ and Σ̂ be a parameter estimate of β and Σ, say from the true
data over January 1976 to December 1985. Generate the model residuals
from one of the alternative distributions. Then, artificial returns can be
computed from

R∗
t = β̂rpt + ε∗t , t = 1, . . . , T.

2. Calculate the p-value of the tests based on data {R∗
t , rpt}.

As for each of the artificial data set, we need to bootstrap the distribu-
tion. If there were 10,000 data sets and 10,000 bootstrap draws, there will
be 10, 000 × 10, 000 OLS estimations involved in the bootstrap, which is
a very time consuming process.9 As a result, we use only 250 bootstrap
samples to conduct the size study. The number of Monte Carlo draws of
the data is set to be 1,000.10

9Calculation of the bootstrap rejection rates of the GMM tests in Table 3 is very time
demanding. Each of the distributional scenarios takes more than twenty-four hours on
a SUN SPARCstation 20.

10The rejection rates even with 100 bootstrap draws tend to be reliable because the
data is also generated randomly. Many studies, such as Horowitz (1995), use only 100
bootstrap samples and 1,000 data sets.



TABLE 3.

Size of Tests under Various Distributions

distribution GRS W ∗ J1 J∗1 J2 J∗2
1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

Panel A: iid case

Normal .010 .051 .105 .008 .047 .102 .032 .126 .207 .008 .047 .102 .007 .045 .091 .010 .055 .103

t(10) .004 .052 .095 .009 .037 .086 .025 .105 .176 .008 .038 .083 .001 .034 .084 .003 .041 .088

t(5) .012 .051 .098 .014 .039 .085 .026 .100 .179 .013 .041 .086 .006 .045 .090 .008 .043 .091

Mixture Normal .026 .093 .148 .012 .050 .102 .069 .159 .249 .011 .053 .095 .025 .081 .143 .014 .049 .097

Panel B: non-iid case

MVT10 .016 .057 .113 .005 .037 .081 .038 .111 .180 .004 .033 .080 .006 .047 .088 .006 .035 .070

MVT5 .006 .046 .107 .001 .021 .081 .027 .099 .190 .000 .022 .078 .003 .044 .102 .006 .039 .082

VAR(1) .048 .118 .170 .023 .083 .148 .095 .186 .243 .024 .081 .139 .033 .071 .104 .015 .048 .080

Consider the market model:
Rt = α + βrpt + εt; t = 1, · · · , T ;

where Rt is a vector of excess returns and rpt the return on the CRSP index. The following asset pricing restrictions,

H0 : α = 0;

are tested by using Gibbons, Ross, and Shanken’s (1989) test, GRS, the bootstrapped Wald W ∗ test, the GMM tests, J1 and J2, and the bootstrapped GMM tests J∗1 and
J∗2 . There are 1,000 data sets for each replication of the bootstrap draw. The bootstrap rejection rates are calculated based on 250 bootstrap draws. For iid model residuals,
four distributions are considered: Normal, t distribution with 10 and 5 degrees of freedom, and mixture of normals. For the non-iid case, multivariate distributions with 10
and 5 degrees of freedom and a VAR(1) process are used.
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Panel A of Table 3 reports the rejection rates of the GRS test, W ∗, J1,
J∗

1 , J2 and J∗
2 , at the 1, 5, and 10 percent significance levels, respectively.

It is observed that both the GRS and W ∗ have sizes that are close to their
nominal levels under the normal distribution and t distribution with degrees
of freedom 10. For example, at the usual 5 percent level, the rejection rate
of the GRS test is 5.1 percent, virtually identical to 4.7 percent of the
W ∗ test. However, for the t distribution with degrees of freedom 5 (high
kurtosis), both GRS and W ∗ have close rejection rates, but tend to under-
reject at the 10 percent level. In contrast, for the skewed mixture normal
distribution, the rejection rates of the GRS test are higher and farther away
from the nominal levels. In comparison, W ∗ has rejection rates very close
to the nominal levels. Overall, the bootstrap test W ∗ is reliable for all
the alternative distributions, while the GRS appears sensitive to skewness.
The Wald test, W , is not reported in the table as it is well-known that it
over-rejects the null. For the GMM test J1, the rejection rates are about
twice the nominal levels under normality, and substantially higher under
the mixture normal distribution. In comparison, the bootstrapped test,
J∗

1 , has very reliable rejection rates for all the alternative distributions,
indicating it pays off to bootstrap the GMM test. The blocks for the GMM
bootstrap have 3 percent length. A 10 percent length yields similar results.
In contrast with J1, the alternative GMM test, J2, performs much better
for all the distributions. However, J2 still over-rejects under the mixture
normal distribution. As predicted by the theoretical analysis, J∗

2 provides
reliable rejection rates in all scenarios. In summary, the bootstrap tests
do offer reliable refinements over existing tests which might otherwise be
unreliable.

6.2. Non-iid case
The GMM tests hold theoretically without making an assumption on a

particular distribution of the residuals as long as their distribution satis-
fies certain regularity conditions. However, to generate the residuals, we
must specify a particular form of conditional heteroscedasticity and serial
dependence. There are many possible and complex specifications, but we
use only a few simple ones here. First, we assume Rt and rpt, (rpt, R

′
t)
′,

are jointly (iid) multivariate t distributed with the degrees of freedom ν,
mean (µ1, µ2) and a non-singular covariance matrix V . Partition V as

V =
(

V11 V12

V21 V22

)
.

In this case, we obtain a particular form of conditional heteroscedasticity as
it is easy to see that the covariance matrix of the asset returns conditional
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on the benchmark portfolio is

Var(Rt|rpt) = c
[
1 + (rpt − µ1)′V −1

11 (rpt − µ1)/(ν − 2)
]
V22. (39)

where c = (ν − 2)/(ν − 1). Notice that the matrix plays the role of the
covariance matrix of the residuals in the market model (1). Now, the co-
variance matrix of the residuals is no longer constant, but heteroscedastic
or time-varying in the particular fashion of (39). As ν increases, the multi-
variate t distribution approaches the multivariate normal distribution and
Var(Rt|rpt) converges to the constant matrix V22 = Σ, making the het-
eroscedasticity less important. In the extreme case of ν = +∞, it collapses
to the iid normality case.

Like the iid case, we use data over January 1976 to December 1985 to
estimate (µ1, µ2) and V . Given the estimated parameters, Monte Carlo
samples are easily generated. However, we have to simulate the returns
under the null hypothesis to study the size. To impose the null hypothesis,
µ2 used in the simulations is computed from µ2 = V21V

−1
11 µ1. Then, we can

compute the two GMM tests, J1 and J2. For interest of comparison, we also
compute the GRS test and W ∗, although they are not valid theoretically.

Panel B of Table 3 provides the results. It is surprising that both the W ∗

and the GRS test have rejection rates fairly close to their nominal levels,
indicating, at least for the specifications here, that they are fairly robust
to the conditional heteroscedasticity introduced by the t distribution. To
analyze further the performance, we introduce serial correlations in the
model residuals. For simplicity, we use a VAR(1) process estimated from
the actual market model. Under the VAR(1) specification, both the GRS
test and W ∗ over-reject the model substantially. Furthermore, although
theoretically valid, the GMM test J1 performs fairly poorly, even worse
than the GRS test and W ∗ test. This appears to be a problem with the
sample size. As sample size increases, J1 must converge theoretically to
its exact distribution, and the rejection rates have to approach to their
nominal levels. In contrast, J∗

1 , performs much better. It is somewhat
surprising that J2 also performs very well. As a result, J∗

2 does not offer
too much improvement. Overall, it is clear that it pays off to use the
bootstrap method whenever possible.

7. CONCLUSION

This paper proposes bootstrap asset pricing tests in the context of test-
ing portfolio efficiency. In contrast to the well-known Gibbons, Ross, and
Shanken’s (1989) test (GRS), the bootstrap test does not rely on any spe-
cific distributional assumption on asset returns. In addition, the bootstrap
method provides useful assessment of economic measures of portfolio in-



248 PIN-HUANG CHOU AND GUOFU ZHOU

efficiency. Using monthly returns grouped by size from January 1926 to
December 1995, the bootstrap analogues of Wald test and GMM tests do
not reject the efficiency of the CRSP value-weighted stock index with re-
spect to the standard ten size portfolios. We also apply the methods to test
the well-known Fama and French (1993) three-factor model and find that
existing tests tend to over-reject. In either of the applications, rejecting
efficiency produces little gain in expected utility maximization if the utility
function is quadratic.

There are potentially a great number of applications of the bootstrap
method in finance. The method is useful when asset returns have unknown
distributions, and useful when the sample size is small. Especially when the
sample size is limited, asymptotic distributions of an asset pricing test may
not provide good approximations of the true distribution, and may not be
available at all. But, as shown by Hall (1992) and Hall and Horowitz (1996),
the bootstrap method can often provide approximations with higher-order
accuracy than existing asymptotic tests. The bootstrap procedures may
also be appealingly applied to multi-factor models, such as the APT model,
and to multivariate event studies. In addition, the bootstrapped GMM test,
like the GMM test itself, can be widely used for testing stochastic discount
factor models and term structure models.
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