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We propose a portfolio selection model based on a generalized hyperbolic
predictive distribution. This distribution incorporates uncertainties in mean
and volatility of market returns. We then select an optimal portfolio with
expected utility calculated under the predictive distribution. We demonstrate
the performance of the new approach by applying it to simulated and real
market data.
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1. INTRODUCTION

Classical investment decision models assume that the decision maker
is given the complete probabilistic model of future returns including true
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parameter values. It is a common practice to estimate these values from
exogenous sources such as historical data and to replace true parameter
values by them. Thus it is natural that the performance of the decision is
affected by the amount of estimation error. It has been known in statistical
literature that, when the objective function in the decision is linear or
symmetric, loss due to estimation error tends to be small if the estimates
are unbiased. However, common utility functions in investment decision
are highly non-linear and asymmetric, and moderate estimation error may
lead to considerably suboptimal consequences.

The issue of parameter uncertainty in portfolio selection was first in-
vestigated by Bawa, Brown and Klein (1979). They discussed the effect
of estimation risk on portfolio choice. Using Bayesian framework, Kandel
and Stambaugh (1996) pointed out the importance of recognizing the un-
certainty. Barberis (2000) examined how the predictability in asset returns
affects optimal portfolio choice using the Bayesian framework to model the
uncertainty in parameters and to calculate optimal allocation by a simula-
tion method. Jorion (1986), Xia (2001), Kan and Zhou (2004), Garlappi,
Uppal and Wang (2005) used the Bayesian predictive approach to account
for estimation risk.

We propose another Bayesian predictive approach. We model both mean
and volatility of market returns simultaneously, and synthesize a general-
ized hyperbolic predictive distribution. We then select an optimal portfo-
lio with expected utility calculated under the predictive distribution. We
demonstrate the new approach by applying it to simulated and real mar-
ket data, and assess its performance in the conventional criterion of the
expected utility.

2. PREDICTIVE UTILITY

We assume that we have an initial wealth of 1 and the market consists in
two investment opportunities; a riskfree investment with rate r and a risky
investment with return that depends on a normal random variable X with
mean µ and variance σ2 > 0. Let W = W (X) be the terminal wealth of a
portfolio with w in risky investment and (1− w) in riskfree investment.

Our risk preference is characterized by a utility function u(W ) on the
terminal wealth W . If µ and σ2 are given, then one would maximize the
expected utility

U(w) = Eu[W (X)] =
∫

u(W (x)) · dN (x;µ, σ2) dx (1)

where dN (x;µ, σ2) denotes normal density with mean µ and variance σ2.
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Suppose instead that a predictive distribution of X is given in a general-
ized hyperbolic distribution GH(λ, η, β, δ, γ). See Appendix for its deriva-
tion and density function dGH . The parameter λ influences kurtosis and η
is a location parameter. Linear dependency of excess return on volatility,
a common feature in financial markets, is represented by β, which is ex-
pressed in the predictive distribution as skewness. δ is a scale parameter
and γ determines the shape.

This particular distribution is chosen for its flexibility and ease of update.
The class of generalized hyperbolic distributions includes hyperbolic and
normal inverse gaussian distributions as special cases. Normal distribution,
t-distribution, variance-gamma distributions and many others are obtained
as limiting cases. When auxiliary information such as some historical data
is given, it is a simple matter of updating parameter values in generalized
hyperbolic distribution.

Instead of optimizing (1) with some estimates plugged in, we find a
maximum of the predictive utility

Ũ(w) =
∫

u(W (x)) · dGH(x;λ, η, β, δ, γ) dx. (2)

Numerical solutions of (2) can be obtained by a search method since gen-
eralized hyperbolic distributions have finite moments of all orders.

3. NUMERICAL STUDIES

When true parameter values are unknown, we cannot hope to have a
portfolio selection rule that is universally optimal for all parameter values.
Thus we restrict our attention only to a practical range of parameter values.
We consider a hypothetical market where

W (X) = (1− w)er + wer+X , X ∼ N(µ, σ2). (3)

We choose r = 0.00061, µ = 0.00018 and σ = 0.02345. These values are
taken from analyzing weekly Dow-Jones index from 2001 to 2005; annual
riskfree rate is about 3% and the mean excess return is about 1%. We
adopt the power utility u(W ) = W 1−A/(1 − A) for A > 1 and log(W )
for A = 1. We take A = 1, 2 for lightly risk-averse investor, A = 5 for
moderately risk-averse one, and A = 10 for extremely conservative one.

We specify prior for (µ, σ2) as given in Figure 1. It is a moderately diffuse
prior; 95% interval for σ2 ranging from about half of to twice of true σ2.
We experimented with other priors and obtained similar results.

We first generate 12 independent excess returns from N(µ, σ2) distribu-
tion, and determine posterior distribution as outlined in Appendix. Cor-
responding generalized hyperbolic predictive distribution is used in evalu-
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FIG. 1. Normal-GIG prior with (η, β, k) = (0.00018, 0, 10) and (λ, δ, γ) =
(−0.5,
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50, 75, and 97.5 percentiles.

ating (2). An optimal weight wB is then found by a numerical search. An
optimal plug-in choice wP is also obtained numerically, treating the sample
mean and variance as true values. We restrict both wB and wP within 0
and 1.

We then generate an independent normal random variable, representing
a future return. Terminal wealth is calculated by (3), and utility u(W ) is
obtained. We repeat the whole procedure 100,000 times, take averages of
empirical utilities, and summarized the result in Table 1.

In the table, U∗ is the optimal utility obtained with true parameter
values known. It is listed for comparison. Columns under UB and UP show
the average utilities of predictive choice and plug-in choice, respectively.
The last column is the utility restoration ratio

URR =
UB − UP

U∗ − UP
,
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TABLE 1.

Mean ± standard error of simulated utilities.

A U∗ UB UP URR

1 4.0874× 10−4 2.8270× 10−4 2.8143× 10−4 1%

±9.5603× 10−5 ±9.4243× 10−5 ±9.0678× 10−5

2 −0.99943 −0.99991 −1.0001 28%

±3.8008× 10−5 ±7.9115× 10−5 ±8.8737× 10−5

5 −0.24940 −0.24969 −0.25099 82%

±1.3319× 10−5 ±3.7378× 10−5 ±8.4126× 10−5

10 −0.11051 −0.11061 −0.11300 96%

±6.3647× 10−6 ±1.5924× 10−5 ±7.9528× 10−5

measuring the proportion of utility recovered by the predictive method.

TABLE 2.

Basic statistics of weekly excess returns

mean volatility ratio

Dow-Jones index −3.5986× 10−4 2.3467× 10−2 −0.015

Microsoft 9.3328× 10−4 4.1011× 10−2 0.022

Bank of America 2.5763× 10−3 3.2022× 10−2 0.080

WalMart −5.8887× 10−4 3.2089× 10−2 −0.017

We can easily see the superiority of the predictive choice to the plug-in
choice, especially when risk-aversion is high. The parameter uncertainty is
one of risk factors in investment decision. When the degree of risk-aversion
is low, improvement by considering extra risk is marginal. But, when risk-
aversion is high, the improvement becomes significant. In an extreme case
of A = 10, the predictive choice recovers about 96% of utility lost by the
simple plug-in selection.

We now apply these selection methods to real market data and evaluate
their empirical performances. We take weekly returns of Dow-Jones in-
dex, MicroSoft, Bank of America and WalMart stocks from July 5, 2001 to
December 30, 2005. The 3-years Treasury bills is used for risk-free invest-
ment, which shows average weekly return of 6.1363 × 10−4 with volatility
1.7688× 10−4. We obtain optimal allocations and utility values using the
same procedure as described earlier. For each week, we take data from
the most recent 12 weeks as historical data. However, we cannot calculate
URR because we don’t have the true parameter values.

The results as summarized in Table 3 show a remarkable similarity to
the ones from the hypothetical data. Because of relatively small sample
size, we do not list sample standard errors. Again, the table suggests the
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TABLE 3.

Empirical utilities from real market data

A UB UP

1 5.6934× 10−4 2.6649× 10−4

Dow-Jones Index 2 −9.9996× 10−1 −9.9998× 10−1

5 −2.4948× 10−1 −2.5000× 10−1

10 −1.1055× 10−1 −1.1112× 10−1

1 −9.5633× 10−4 −6.5526× 10−4

MicroSoft 2 −1.0010× 100 −1.0008× 100

5 −2.5027× 10−1 −2.5174× 10−1

10 −1.1094× 10−1 −1.1309× 10−1

1 9.0640× 10−4 1.9894× 10−4

Bank of America 2 −9.9948× 10−1 −1.0000× 100

5 −2.4948× 10−1 −2.5028× 10−1

10 −1.1055× 10−1 −1.1154× 10−1

1 −7.5457× 10−4 −7.7668× 10−4

WalMart 2 −1.0006× 100 −1.0007× 100

5 −2.4996× 10−1 −2.5086× 10−1

10 −1.1079× 10−1 −1.1225× 10−1

superiority of the predictive approach to the plug-in method, except one
or two cases when risk-aversion is low.

4. CONCLUSION

Models for financial decision often involve unknown parameters which
must be obtained from somewhere else with estimation error. Selecting a
portfolio under this additional risk is thus subject to some loss of utility.

As an alternative to conventional plug-in method of choosing the most
probable predictive distribution, we proposed a Bayesian predictive dis-
tribution which is an average of plausible distributions. It is a natural
framework of taking into account of the additional uncertainty caused by
estimation. We demonstrated the performance of the predictive approach
using some synthesized and real data. The improvement was especially
significant when the degree of risk-aversion is high.

However, as mentioned earlier, there is no portfolio selection rule that
is uniformly optimal for all cases when there is uncertainty in parameter
values. When we make an investment decision, we have to analyze the
market thoroughly and assess our own risk preferences carefully before
choosing a portfolio selection rule. If we feel that we are risk-averse and
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the predictability of future return is in doubt, we recommend to consider
the proposed approach in decision making.

APPENDIX: GENERALIZED HYPERBOLIC PREDICTIVE
DISTRIBUTIONS

Let X be a normal random variable with mean µ and variance σ2. As-
sume that we have a prior distribution for (µ, σ2) specified by

µ|σ2 ∼ N(η0 + β0σ
2, σ2/k0),

σ2 ∼ GIG(λ0, δ0, γ0),

for some η0, β0, k0 > 0, λ0, δ0 > 0, and γ0 > 0. Here, GIG(λ, δ, γ) stands
for a generalized inverse gaussian distribution with density

dGIG(z;λ, δ, γ) =
γλ

2δλKλ(δγ)
zλ−1e−

1
2 (δ2z−1+γ2z), z > 0,

for −∞ < λ < ∞, δ > 0, γ > 0, where Kλ is the modified Bessel function
of the third kind with index λ. The GIG class is highly flexible and has
been suggested as a plausible volatility model by several authors including
Barndorff-Nielsen and Shephard (2001). Especially, when λ = −1/2, it
becomes an inverse Gaussian distribution with mean δ/γ and variance δ/γ3.
Hence, if our prior knowledge is such that (µ, σ2) seems to be centered
around (µ̂, σ̂2), but with high degrees of uncertainty, we may choose k0, δ0,
γ0 small with δ0/γ0 = σ̂2 so that the prior distribution is almost flat.

Prior distribution (??) can be easily updated with additional informa-
tion. Let x = (x1, x2, . . . , xn) be an observed data from a normal distri-
bution with mean µ and variance σ2. Then a tedious but straightforward
calculation gives the posterior distribution

µ|σ2 ∼ N(η + βσ2, σ2/k),

σ2 ∼ GIG(λ, δ, γ),

where k = k0 + n, η = (k0η0 + nx)/k, β = k0β0/k, λ = λ0 − n/2,

δ =
{

δ2
0 +

n∑

i=1

(xi − x)2 +
k0

k
n(x− η0)2

}1/2

, and γ =
{

γ2
0 +

k0

k
nβ2

0

}1/2

.

With this posterior distribution, the predictive distribution of X is easily
obtained since it is a well-known mean-variance mixture of normal distri-
bution, called a generalized hyperbolic (GH) distribution with parameters
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λ, η, β, δ̃ = δ
√

(k + 1)/k, and γ̃ = γ
√

k/(k + 1). See Eberlein and Ham-
merstein(2004) and Barndorff-Nielsen and Stelzer(2004) for more detailed
discussions on this distribution. Its density is given by

dGH(x;λ, η, β, δ̃, γ̃) =
γ̃λ

√
2παλ− 1

2 Kλ(δ̃γ̃)
d(x)λ− 1

2 eβ(x−η)Kλ− 1
2
(αd(x)),

where α =
√

γ̃2 + β2 and d(x) =
√

δ̃2 + (x− η)2.
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