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Much is written about the use of factors estimated by the method of prin-
cipal components from large panels in linear regression models. In this paper,
we provide an analysis for non-linear estimation and establish the conditions
under which the estimated factors can be treated as though they were ob-
servable. The results can be used to estimate probabilities as in probit type
analysis as well as classification of observations into types conditional on co-
variates. Comparison with traditional generated regressors is also made.
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1. INTRODUCTION

The textbook treatment of generated regressors holds that although the
coefficient estimates are consistent, the standard errors must adjust for the
fact that the regressors are being estimated in a preliminary step. It turns
out that whether this correction for standard error is necessary depends on
how the preliminary step is performed. When the generated regressors are
factors estimated from a panel of data with a large number of cross-section

* We also acknowledge financial support from the NSF (grants SES-0137084, SES-
0136923, SES-0549978)

201
1529-7373/2008

All rights of reproduction in any form reserved.



202 JUSHAN BAI AND SERENA NG

units (N) and a large number of time series observations T ), we showed in
Bai and Ng (2006a) that the estimated factors can be treated as though
they are the true factors in linear regression models. The results provide
the basis for the inferential theory of linear factor augmented regressors.

The linear model has broad uses, including diffusion forecasting based
upon the single equation equation yt+1 = W̃ ′

tδ + εt, and vector autoregres-
sions in (yt, W̃

′
t ), referred to as a FAVAR by Bernanke and Boivin (2003),

where W̃t consists of observable and estimated latent variables. However,
many problems cannot be analyzed in a linear framework. To predict
whether the economy is in a recession, and to quantify default risk, for
example, we need to provide a binary classification based on the observed
variables. When the number of observed covariates is small, a dynamic
probit can be considered. As far as we are aware of, there does not exist
a suitable framework when the number of informative covariates is large.
Markov switching regressions of the type considered in Hamilton (1989) is
also widely used in empirical applications. Many have extended the model
to allow the transition probabilities to be state dependent, while using a
small number of observed variables to proxy for the latent state. The re-
striction to a small number of observed variables is a consequence of a
lack of a statistical framework to analyze non-linear models with latent
variables.

One might also be interested in conditional moment restrictions that are
non-linear in parameters. When the moment condition involves a latent
variable, it would be tempting to ‘construct’ a regressor from a finite num-
ber of observed variables to serve as proxy for the latent variable. But such
a proxy variable is the latent variable contaminated with an error that will
not vanish. While estimation by instrumental variables will yield consistent
estimates if the regression model is linear, the estimates can be inconsis-
tent when the first step regression model is non-linear. Indeed, treatment
of measurement error in non-linear models is a non-trivial problem even in
an i.i.d. setting and remains an area of active research.

In this paper, we adopt a different approach. We posit that there is a
large panel of data from which the space spanned by the latent variable
can be consistently estimated. We provide an analysis of extremum esti-
mators when one or more of the regressors are factors estimated from a
large dimensional panel by the method of principal components. We show
that when the generated regressors are the estimated factors, sequential
estimation is not a problem, provided T 5/8

N → 0 as N,T → ∞. The re-
sult is general and holds for M estimators including maximum likelihood
estimation (MLE), non-linear least squares (NLS), and quantile regressors.
Probit analysis is thus included as a special case. The result also applies
to GMM estimators based upon a set of orthogonality conditions, as well
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as minimum-distance estimators (MDS) in which restricted estimates are
formed from the unrestricted ones.

The driving force behind our result is that the first step estimation error
vanishes at a faster rate than in conventional generated regressor problems,
so that not only can we get consistent estimates of the parameters in the
second step regression, there is not even a need to correct for standard errors
under the assumptions of our analysis. In effect, the latent factors can be
treated as though it is observed provided that N and T are both large. For
linear models, we showed in Bai and Ng (2006a) that the factor estimates
can be treated as though they are known if

√
T/N → 0. The requirement

that T 5/8/N → 0 in the case of M estimation studied here implies that a
larger N will be necessary for the sampling error in the factor estimates not
to affect the second step estimation of the parameter of interest. Therefore,
as in instrumental variable estimation, consistent estimation of models with
latent variables that are non-linear in parameters may not be possible even
when consistent estimation is possible in linear models. We note that T 5/8

may be replaced by T
1
2+δ, where δ > 0 can be arbitrarily small provided

that the data possess moments of high enough orders.

2. PRELIMINARIES

Suppose we observe zt = (yt, xt, Ft); t = 1, . . . T . The data are generated
according to a model with a set of finite dimensional unknown parameters
θ. We assume that there is a function Q0(θ) that is uniquely maximized
at θ0 for some θ0 ∈ Θ, where Θ is the parameter space and is compact.
Consider estimating θ as

θ̂ = argmax
θ

QT (θ).

Following the literature, we refer to θ̂ as an extremum estimator. We
will separately consider two types of extremum estimators: M and GMM
estimators. If

QT (θ) =
1
T

T∑
t=1

mt(zt, θ),

the extremum estimator θ̂ is an M estimator. Suppose zt is iid with density
f(zt|θ). Let mt(θ) = log f(zt|θ). Then the maximum likelihood estimator
(MLE) estimator of θ is an M estimator. Suppose the regression model is
yt = h(xt, Ft, θ) + εt = h(Wt, θ) + εt, where Wt = (x′t, F

′
t )
′. Letting

mt(zt, θ) = −
[
yt − h(xt, Ft, θ)

]2
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yields the non-linear least squares estimator, which is an M estimator. If
h(Wt, θ) = W ′

tθ, the linear regression model obtains. LAD (least abso-
lute deviation) and quantile regressions can also be cast in terms of M
estimators.

Suppose Eg(zi, θ) = 0 if and only if θ = θ0 and

QT (θ) = −
[ 1
T

T∑
t=1

g(zt, θ)
]′

WT

[ 1
T

T∑
t=1

g(zt, θ)
]
,

the extremum estimator θ̂ is a GMM estimator, where WT is a weighting
matrix. In consumption based asset pricing example of Hansen and Sin-
gleton (1982) xt is an asset’s return, yt is consumption ratio yt = ct/ct−1,
and Ft a vector of instruments; β a rate of time preference, and γ a risk
version parameter. Let θ = (β, γ) and zt = (yt, xt, Ft). Then

g(zt) = Ft(βxty
γ
t − 1).

Included in the GMM class is the minimum distance estimator (MDE)
where given an initial estimator π̂ for π = ρ(θ0),

QT (θ) = −[π̂ − ρ(θ)]′WT (π̂ − ρ(θ)]

We assume the regularity conditions stated in Newey and Mcfadden (1994)
hold, so that QT (θ) converges uniformly to Q0(θ) on Θ. These assumptions
immediately imply consistency of θ̂ for θ0. Since the objective function
QT (θ) is smooth with respect to θ by assumption, the maximizer θ̂ solves
for the first order condition (FOC)

∇θQT (θ̂) = 0.

For future reference, we will represent this first order condition alternatively
as

1
T

T∑
t=1

h(zt, θ̂) = 0.

2.1. The Generated Regressor Problem
This paper considers the problem that a component of zt is not observ-

able. This component is denoted by Ft. Instead, an estimated Ft is used in
the estimation of θ. We study the effect of estimation of Ft on the inference
of θ.

Suppose Ft is not observed, but Ft = `(Ut, γ), where ` is a known func-
tion, Ut is observed, and γ is unknown parameter. Then h(yt, xt, Ft, θ) =
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h(yt, xt, `(Ut, γ), θ) = h(zt, θ, γ) with zt = (yt, xt, Ut). By redefining zt, we
can account for the fact that Ft is not observed. Denote F̂t = `(Ut, γ̂), the
first order condition becomes

1
T

T∑
t=1

h(ẑt, θ) = 0

where h(ẑt, θ) = h(yt, xt, F̂t, θ).
As an example, suppose Ft is the core rate of inflation which is not

observed. One might specify inflation as a function of a small set of deter-
minants, Ut. Then F̂t = U ′

t γ̂ is an estimate of core inflation. In the second
step, F̂t enters a non-linear regression. In this conventional sequential es-
timation, one finds θ̂ by solving

1
T

T∑
t=1

h(zt, θ, γ̂) = 0 (1)

where γ̂ is a first step estimator by solving, say

1
T

T∑
t=1

g(zt, γ) = 0

The estimator of (θ̂, γ̂) can be viewed as a joint GMM estimator with
stacked moments (see Newey and McFadden, 1994 for discussion). It can
also be seen as a sequential estimator since γ̂ is obtained in a first step,
and is substituted in for the γ in the second step. Newey (1983) formulates
such a sequential estimation problem in a GMM framework and derived
the asymptotic variance of the second step estimator . His results assumes
that the first step estimation yields a

√
T consistent estimates of γ. In

general the first step estimation of γ will affect the limiting distribution of
θ̂.

Our point of departure is that Ft is completely unknown, rather than
unknown up to a finite number of parameters. Let r be the dimension
of Ft. We assume there is a panel data set (of N variables each with T
observations) that is linked with Ft. We replace Ft, in the first step by the
principal component estimates from the panel data. This departure has two
implications for the second step estimation. First, our first step estimates
F̃ , which is a T × r matrix, has the number of parameters increasing with
T . Second, even though we estimate an increasing number of parameters in
the first step, F̃t is

√
N consistent provided N,T →∞. Our main objective

is to show that this allows us to treat F̃t as though it is observed in the
second step.
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3. ESTIMATION OF THE FACTORS

We assume that we have at our disposal for the first step a large panel
of the data, xit, that obeys a ‘approximate’ factor structure. That is, for
i = 1, . . . N, t = 1, . . . T ,

xit = λ′iFt + eit

where Ft is a r × 1 vector of factors with λi as the corresponding factor
loadings, and neither Ft nor λi is observed. Following the factor analysis
literature, we call λ′iFt is the common component and eit is the idiosyncratic
error. In matrix notation, the factor model is X = FΛ′ + e, where X is
a T × N matrix of stationary data, F = (F1, ..., FT )′ is T × r, r is the
number of common factors, Λ = (λ1, ..., λN )′ is N × r, and e is a T × N
error matrix.

Our problem more precisely stated is to find (F̃ , θ̃) such that

(F̃ , Λ̃) = min
F,Λ

T∑
t=1

N∑
i=1

(xit − λ′iFt)′(xit − λ′iFt)

1
T

T∑
t=1

h(z̃t, θ̃) = 0

where z̃t = (yt, x
′
t, F̃

′
t )
′. The solution to the problem in the first step

is the principal component estimator. Let F̃ = (F̃1, ..., F̃T ) be the ma-
trix consisting of r eigenvectors (multiplied by

√
T ) associated with the

r largest eigenvalues of the matrix XX ′/(TN) in decreasing order. Then
Λ̃ = (λ̃1, . . . , λ̃N )′) = X ′F̃ /T , and ẽ = X − F̃ Λ̃′. Also let Ṽ be the r × r
diagonal matrix consisting of the r largest eigenvalues of XX ′/(TN), and
H = Ṽ −1(F̃ ′F/T )(Λ′Λ/N).

For the factor estimation, we make the following assumptions.

Assumption A

A1: E‖Ft‖8 ≤ M and 1
T

∑T
t=1 FtF

′
t

p−→ΣF > 0, an r × r non-random
matrix.

A2: The loading λi is either deterministic such that ‖λi‖ ≤ M , or it is
stochastic such that E‖λi‖8 ≤ M . In either case, N−1Λ′Λ

p−→ΣΛ > 0, an
r × r non-random matrix, as N →∞.

A3: eit is weakly correlated, both over time and in the cross-section
dimension.

A4: {λi}, {Ft}, and {eit} are three mutually independent groups. De-
pendence within each group is allowed.

A5: E‖N−1/2
∑N

i=1 λieit‖8 ≤ M for all t.
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Assumption A concerns the factor model. A.1 and A.2 together imply r

common factors. Assumption A.3 is formally given in Bai and Ng (2006a).
It allows for heteroskedasticity and weak time series and cross section de-
pendence in the idiosyncratic component, leading to the approximate factor
structure of Chamberlain and Rothschild (1983). These assumptions are
more general than a strict factor model. Assumption A.4 is standard in
factor analysis.

Numerous authors have analyzed the properties of factor estimation. See,
for example, Stock and Watson (2002). The results most relevant for the
present analysis are summarized in the following lemma, proved in Bai and
Ng (2002) and Bai (2003).

Lemma 1. Let H = Ṽ −1(F̃ ′F/T )(Λ′Λ/N) and C2
NT = min[N,T ]. Un-

der Assumption (A),

(i) 1
T

∑T
t=1 ‖F̃t −HFt‖2 = Op(C−2

NT )
(ii)If ξt is uncorrelated with eit for all i and t and E|ξt|2 ≤ M for all t,

then

1
T

T∑
t=1

(F̃t −HFt)ξt = Op(C−2
NT )

Lemma 1 provides the basis of valid estimation and inference in linear
regression models augmented with the estimated factors F̃t. It has been
used in Bai and Ng (2006c), Bai and Ng (2006b), Bai and Ng (2006a) in
differently motivated linear regression problems. However, for investigating
the properties of non-linear estimators which is the objective of the present
paper, we need a additional result.

Lemma 2. Under the assumption that max1≤t≤T ‖Ft‖ = Op(αT ), and
T/N2 → 0,

max
1≤t≤T

‖F̃t−HFt‖ = Op(αT T−1)+Op(N−1/2)+Op(1) max
1≤t≤T

1
N
‖

N∑
i=1

λieit‖

The proof of the above lemma is provided in the appendix. To establish
consistency of extremum estimators, we need the sample objective func-
tion QT (θ) to converge uniformly to Q0(θ) whose maximizer is θ0. In our
context, this requires uniform convergence of F̃t to the space spanned by
Ft. Lemma 2 shows that this convergence rate depends on αT . If Ft are iid
normal, then αT = log T . If E‖Ft‖k ≤ M for all t then, max1≤t≤T ‖Ft‖ =
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Op(T 1/k) so that αT = T 1/k. Since we assumed k = 8, αT can be taken as
T 1/8. Together with assumption that E‖N−1/2

∑N
i=1 λieit‖8 ≤ M for all

t, max1≤t≤T ‖N−1/2
∑N

i=1 λieit‖ ≤ Op(T 1/8). Thus under our maintained
assumptions, Lemma 2 can be restated as

max
1≤t≤T

‖F̃t −HFt‖ = Op(αT T−1) + Op(T 1/8)N−1/2 = op(1) (2)

where the op(1) requires T 1/4/N → 0. It is not difficult to show that if the
data are generated such that F ′F/T = Ir (or E[FtF

′
t ] = Ir) and N−1Λ′Λ

is a diagonal matrix with distinct elements arranged in decreasing order,
then H = Ir + Op(C−2

NT ). The preceding lemmas holds with H replaced by
the identity matrix. In the following analysis, H = I is assumed. In many
cases, whether H is an identity matrix is unimportant. For example, in
prediction problems, Ft and HFt as predictors will give the same prediction.
When used as instruments, Ft and HFt contain the same information.

4. M ESTIMATORS

The objective function of M estimators are of the form

QT (θ) =
1
T

T∑
t=1

m(zt, θ).

An application of it is the probit model. in which yt is binary with yt = 0, 1
and P (yt = 1|Wt) = Φ(W ′

tθ), where Wt = (xt, Ft) is a vector of predictors,
and Φ(v) is the cumulative distribution function (cdf) for a standard normal
random variable. The density is given by

f(zi|θ) = Φ(W ′
tθ)

yt [1− Φ(W ′
tθ)]

(1−yt)

Let

h(zt, θ) =
∂m(zt, θ)

∂θ

and

K(zt, θ) =
∂2m(zt, θ)

∂θ∂θ′
.

Obviously, if θ̂ maximizes QT , it must be that the first order condition
holds. That is, h̄(θ̂) = 1

T

∑T
t=1 h(zt, θ̂) = 0 Under regularity conditions
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such as stated in Amemiya (1985), the estimator is consistent. If

1√
T

T∑
t=1

h(zt, θ0)
d−→N(0,Σ)

where Σ is positive definite and K0 = E[K(zt, θ0)] is non-singular, then

√
T (θ̂ − θ0)

d−→N(0,K−1
0 ΣK

′−1
0 ) (3)

Replacing zt by z̃t = (yt, xt, F̃t) gives the feasible objective function

Q̃T (θ) =
1
T

T∑
t=1

m(z̃t, θ).

Consider the estimator defined as

θ̃ = argmax Q̃T (θ)

The linear factor augmented regressions considered in Bai and Ng (2006a)
is a special case where h(z̃t; θ) is linear in θ. We now consider the general
case when h(z̃t, θ) is non-linear in θ. The following assumptions will be
made:

Assumption M1:

i) (a) Let θ0 be an interior point of a compact set Θ. The function
QT (θ) converges uniformly in probability to Q(θ) on Θ, and Q(θ) achieves
its maximum at θ0.

ii: QT (θ) is twice continuously differentiable at a neighborhood N of θ0,
and

sup
θ∈N

| 1
T

T∑
t=1

K(zt, θ)−K(θ)| = op(1)

for some function K(θ). Let K0 = K(θ0) and K0 is nonsingular.
iii: 1√

T

∑T
t=1 h(zt, θ0)

d−→N(0,Σ), for some Σ > 0.

Assumption M1.(i) ensures that the extreme estimator is consistent for
θ0 and the remaining assumptions are for asymptotic normality of the es-
timator. Note that all these assumptions are imposed when the functions
are evaluated at true Ft. For consistency of θ̃ with estimated Ft, we also
need the following.
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Assumption M2:

sup
θ∈Θ

1
T

T∑
t=1

‖h(yt, xt, F
∗
t , θ)‖2 = Op(1) (4)

uniformly in F ∗
t that is in a neighborhood of Ft such that max1≤t≤T ‖F ∗

t −
Ft‖ ≤ bNT with bNT → 0.

For example, we can take bNT to be the righthand side of (2). Assump-
tion M2 is easily verified for probit model. Here for simplicity, assume there
is no xt, and the only regressors are Ft. Then

h(yt, F
∗
t , θ) = yt

φ(θ′F ∗
t )

Φ(θ′F ∗
t )

F ∗
t − (1− yt)

φ(θ′F ∗
t )

1− Φ(θ′F ∗
t )

F ∗
t (5)

From φ(v)/Φ(v) ≤ C(1 + |v|) for some bounded C, |yt| ≤ 1 and ‖θ‖ ≤ M

for some M since Θ is compact, the first term on the right hand is bounded
by

C(1 + ‖θ′F ∗
t ‖)‖F ∗

t ‖ ≤ C‖F ∗
t ‖+ M‖F ∗

t ‖2

≤ C‖F ∗
t − Ft‖+ C‖Ft‖+ 2‖F ∗

t − Ft‖2M + 2‖Ft‖2M
≤ CbNT + C‖Ft‖+ 2Mb2

NT + 2M‖‖Ft‖2.

Using 1− Φ(v) = Φ(−v) and φ(v) = φ(−v), the second term on the right
hand side of (5) has the same upper bound. It follows that if E‖Ft‖2 is
finite, and Assumption M2 holds.

Lemma 3. Under assumptions A, M1, and M2,

θ̃
p−→θ0

Proof. We show that Q̃T (θ) is uniformly close to QT (θ). By the mean
value expansion,

Q̃T (θ) = QT (θ) +
1
T

T∑
t=1

h(yt, xt, F
†
t , θ)′(F̃t − Ft)
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where F †
t is between Ft and F̃t. By Assumption M2

‖ 1
T

T∑
t=1

h(yt, xt, F
†
t , θ)′(F̃t − Ft)‖

≤
( 1

T

T∑
t=1

‖h(yt, xt, F
†
t , θ)‖2

)1/2( 1
T

T∑
t=1

‖F̃t − Ft‖2
)1/2

= Op(C−1
NT )

uniformly in θ since the first expression on the right hand side is uni-
formly bounded in θ and the second expression does not depend on θ and
is Op(C−1

NT ). Consistency follows from the argument as in Amemiya (1985).
Note that the extremum estimator satisfies the first order condition:

1
T

T∑
t=1

h(z̃t, θ̃) = 0

To derive the limiting distribution, additional assumptions are needed.

Assumption M3:

(i) ξt = (∂/∂Ft)h(zt, θ0) is uncorrelated with eit and E‖ξt‖2 ≤ M for all
t.

(ii) For j = 1, 2, ..., p = dim(θ),

1
T

T∑
t=1

‖∂2hj(yt, xt, F
∗
t , θ∗)

∂Ft∂F ′
t

‖2 = Op(1)

1
T

T∑
t=1

‖∂2hj(yt, xt, F
∗
t , θ∗)

∂Ft∂θ′
‖2 = Op(1)

1
T

T∑
t=1

‖∂2hj(yt, xt, F
∗
t , θ∗)

∂θ∂θ′
‖2 = Op(1)

where hj is the jth component of h, Op(1) is uniform over F ∗
t and θ∗ such

that max1≤t≤T ‖F ∗
t − Ft‖ ≤ bNT and ‖θ∗ − θ‖ ≤ bNT with bNT → 0.

A sufficient condition for M3(i) is that the zt are independent of eit.
Because any function of zt is also independent of eit it follows that ξt will
be independent of eit. Conditions in M3(ii) are also easily verified for the
probit model. Consider the second order derivative of hj with respect to
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Ft and focus the first term on the right hand side of (5), since the second
term is similar. Denote this term by hj1 (assume yt = 1). Evaluating the
derivative at F ∗

t and θ∗, we have

∂hj1

∂Ft
=

[
− θ∗′F ∗

t

φ

Φ
−

( φ

Φ

)2]
θ∗F ∗

jt −
φ

Φ
ιj

where ιj is q × 1 having zero elements except jth component being 1.

∂2hj1

∂Ft∂F ′
t

= −
( φ

Φ

)
θ∗θ∗′F ∗

jt

−
(
(θ∗′F ∗

t )
φ

Φ
+

φ2

Φ2

)(
(θ∗′F ∗

t )θ∗θ∗′F ∗
jt + θ∗ι′j + ιjθ

∗′ − 2
φ

Φ
θ∗θ∗′F ∗

j

)
From φ/Φ ≤ C(1 + ‖θ∗‖‖F ∗

t ‖), we have

‖ ∂2hj1

∂Ft∂F ′
t

‖ ≤
4∑

j=0

Cj‖F ∗
t ‖j

for some bounded Cj . Here we simply assume ‖θ∗‖ to be bounded be-
cause the parameter space is compact by assumption (in fact, this is not
necessary). Now

‖F ∗
t ‖4 ≤ 4‖F ∗

t − Ft‖4 + 4‖Ft‖4 ≤ 4b4
NT + 4‖Ft‖4.

Because the second order derivative of hj involves the the fourth moment
of ‖Ft‖, the squared value of these derives involve the eighth moment of
‖Ft‖. If follows that if E‖Ft‖8 ≤ M , then Assumption M3 holds.

Theorem 1. Under assumptions A, M1-M3, and if T 5/8/N → 0, then

√
T (θ̃ − θ0)

d−→N(0,K−1
0 ΣK−1

0 ).

The limiting distribution is the same as if Ft is observed. The proof is
given in the appendix. The main task is to establish that

1√
T

T∑
t=1

h(z̃t, θ0) =
1√
T

T∑
t=1

h(zt, θ0) + op(1).
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5. GMM ESTIMATION

Let WT be a positive definite a weighting matrix that is consistent for
some invertible W and θ̃

p−→θ0. Let

gT (θ) =
1
T

T∑
t=1

g(zt, θ).

Define the GMM estimator as

θ̂ = argmax
θ

−gT (θ)′WT gT (θ)

Conditions for asymptotic normality of GMM estimator are given in Hansen
(1982) and Newey and McFadden (1994).

Assumptions GMM1: (i) θ0 is the interior point of Θ, where Θ is com-
pact; (ii) gT (θ) is bounded over Θ and gT (θ) is continuously differential in
a neighborhood N of θ0; (iii)

√
TgT (θ0)

d−→N(0,Ω); (iv) There is a G0(θ)
that is continuous differential at θ0 and supθ∈N ‖∇θgT (θ)−G(θ)‖ p−→0; (v)
For G0 = G(θ0), G′

0WG0 is non-singular; (vi), WT
p−→W > 0.

Under GMM1,
√

T (θ̂ − θ0)
d−→N(0, (G′

0WG0)−1G′
0WΩWG0(G′

0WG0)−1)

If WT is chosen such that WT
p−→Ω−1, the optimal GMM is obtained and

asymptotic covariance matrix reduces to (G′
0Ω

−1G0)−1.
When zt is not observed, we use z̃t in place of zt. Let

g̃T (θ) =
1
T

T∑
t=1

g(z̃t, θ).

Define the feasible GMM by

θ̃ = argmax
θ

−g̃T (θ)′WT g̃T (θ)

We need to impose additional assumptions to establish the large sample
properties of the GMM estimator.

Assumptions GMM2:

sup
θ∈Θ

1
T

T∑
t=1

‖ ∂

∂Ft
g(yt, xt, F

∗
t , θ)‖2 = Op(1) (6)
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where Op(1) is uniform over F ∗
t such that max1≤t≤T ‖F ∗

t −Ft‖ ≤ bNT with
bNT → 0.

Assumption GMM2 is similar to M2 imposed on the M-estimator. The
assumptions is necessary for the sample objective function defined on z̃t,
denoted by Q̃T (θ), to be uniformly close to QT (θ), the sample objective
function if zt was observed. For the Hansen-Singleton example, conditions
for consistency and asymptotic normality for observable Ft are given in
Newey and Mcfadden (1994). To verify GMM2, ∂g/∂Ft = βxty

γ
t − 1, and

it is bounded by |β| · |xt| · |yt|γ +1. Because γ is positive and Θ is compact,
there exist γ1 and γ2 such that γ ∈ [γ1, γ2]. It follows that

‖∂g/∂Ft‖ ≤ C|xt|[|yt|γ1 + |yt|γ2 ] + 1

If E|xt|2 and E|yt|2γ2 are bounded, then Assumption GMM2 holds.

Lemma 4. Under Assumptions A, GMM1 and GMM2,

θ̃
p−→θ0

Proof. We show Q̃T (θ) = QT (θ) + op(1), where op(1) is uniform in θ.
By mean-value expansion

g̃T (θ) = gT (θ) +
1
T

T∑
t=1

∂

∂Ft
g(yt, xt, F

†
t , θ)(F̃t − Ft)

The second term on the right hand side is op(1) uniformly in θ by the
Cauchy-Schwarz inequality, Assumption GMM2, and Lemma 1(i). Thus
g̃T (θ) = gT (θ) + op(1), and

Q̃T (θ) = −[gT (θ) + op(1)]′WT [gT (θ) + op(1)]

= QT (θ) + [gT (θ) + op(1)]WT op(1) + op(1).

Since gT (θ) is bounded on Θ, [gT (θ) + op(1)]′Wtop(1) = op(1). It follows
that Q̃T (θ) = QT (θ)+op(1). Consistency then follows from the usual argu-

ment.

The following assumption is used for the limiting distribution of θ̃.

Assumptions GMM3:



EXTREMUM ESTIMATION 215

(i) ηt = (∂/∂Ft)g(zt, θ0) is uncorrelated with eit; E‖ηt‖2 ≤ M for all t.
(ii) For j = 1, 2, ..., p = dim(gT ),

1
T

T∑
t=1

‖∂2gj(yt, xt, F
∗
t , θ∗))

∂Ft∂F ′
t

‖2 = Op(1)

1
T

T∑
t=1

‖∂2gj(yt, xt, F
∗
t , θ∗))

∂Ft∂θ′
‖2 = Op(1)

where Op(1) is uniform over F ∗
t and θ∗ such that max1≤t≤T ‖F ∗

t − Ft‖ ≤
bNT and ‖θ∗ − θ‖ ≤ bNT with bNT → 0.

These conditions are easy to verify for the Hansen-Singleton example:
g(zt, θ) = Ft(βxty

γ
t − 1). For (i), a sufficient condition is that zt is inde-

pendent of eit. For (ii), since g is linear in Ft, the second order derivative
is zero, so the first equation in GMM2(ii) is trivially true. For the second
equation,

∂2gj

∂Ft∂β
= xty

γ∗

t

and it is bounded by |xt|(|yt|γ0/2+|yt|2γ0) because γ∗ is in the neighborhood
of γ0 such that γ0/2 ≤ γ∗ ≤ 2γ0. Furthermore,

∂2gj

∂Ft∂γ
= β∗xt log(yt)y

γ∗

t

it is bounded by 2|β0| · |xt| · | log(yt)|(|yt|γ0/2 + |yt|2γ0). Moreover, for
κ > 0, there exists a small δ > 0 and a large M such that | log(yt)yκ

t | ≤
M(|yt|κ−δ + |yt|κ+δ). It follows that if high enough moments of |yt| and
|xt| exist, the second equation of GMM2(ii) also holds.

Theorem 2. Under Assumptions A, GMM1-GMM3, if T 5/8/N → 0,
√

T (θ̃ − θ0)
d−→N(0, (G′

0WG0)−1G′
0WΩWG0(G′

0WG0)−1)

Theorem 2 establishes that θ̃ has the same asymptotic distribution as if
Ft was observed. Thus, the usual results obtained for the GMM estimator
applies. In particular, if zt are iid, then Ω = E[g(zt, θ0)g(zt, θ0)′]. Define

WT =
[ 1
T

T∑
t=1

g(z̃t, θ̆)g(z̃t, θ̆)
]−1
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where θ̆ is an initial consistent estimator of θ0 (with identity weighting
matrix, say). It is easy to show WT

p−→Ω−1. Then an efficient estimator
can be obtained, and

√
T (θ̃ − θ0)

d−→N(0, (G′
0Ω

−1G0)−1)

When g(zt, θ0) is serially correlated, Ω = lim var(
√

TgT (θ0)). A HAC type
estimator for Ω is required.

6. CONCLUDING REMARKS

Theorems 1 and 2 imply that inference with generated regressors esti-
mated from large dimensional panel will differ from conventional estimation
with generated regressors. Suppose instead of F̃t, we use F̂t, the generated
regressor estimated from a small set of covariates. Then

1√
T

T∑
t=1

h(ẑt, θ0) =
1√
T

T∑
t=1

h(zt, θ0)+
1√
T

T∑
t=1

∇Fth(zt, θ0)(F̂t−Ft)+op(1)

Suppose F̂t = U ′
t γ̂, then F̂t−Ft = Ut(γ̂− γ). Unless Ut has zero mean and

is uncorrelated with ∇Ft
h(zt, θ0), the second term on the right hand side

is equal to (
1
T

T∑
t=1

∇Ft
h(zt, θ0)Ut

)√
T (γ̂ − γ) = Op(1),

which is non-negligible. Hence, the asymptotic variance of T−1/2
∑T

t=1 h(zt, θ0)
is not the same as the asymptotic variance of T−1/2

∑T
t=1 h(ẑt, θ0). Thus,

as in linear models and the problem studied by Pagan (1984), sampling vari-
ability of the first step estimation affects the overall variance of θ̂ and must
be taken into account when the first step estimator is

√
T consistent. In

contrast, if z̃t = (yt, xt, F̃t), 1√
T

∑T
t=1 h(z̃t, θ0) = 1√

T

∑T
t=1 h(zt, θ0)+op(1),

and Ft can be treated as known.
It is also important to remark that there is an implicitly assumption

underlying the conventional way of estimating Ft, namely, that although we
do not observe Ft, we observe a finite number of variables that completely
determine it. Notably, if one or more of these determinants are missing from
the first step regression, the F̂t that results is not a consistent estimate of
Ft, and F̂t−Ft = Op(1). This will in turn yield inconsistent estimates of θ in
the second step. It is also not uncommon for practitioners to pick a handful
of variables to proxy for the latent state variables. Inconsistent second
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step estimates will also result when the selected predictors are imperfect
indicators of the latent variables, even when the omitted predictors are
orthogonal to the included ones.

In regression analysis, it is often the case that researchers have many
times more predictors on hand than they actually use. Only in few excep-
tional cases can one be really sure that the discarded variables are com-
pletely uninformative. The fact that F̃t can be used in linear and non-linear
regressions as though they are asymptotically the same as Ft enables re-
searchers to use information in xit in a parsimonious way.

APPENDIX: PROOFS

Proof of Lemma 2: We use the following expression, see Bai and Ng
(2002)

F̃t −HFt =
1
T

T∑
s=1

F̃sγN (s, t) +
1
T

T∑
s=1

F̃sζst +
1
T

T∑
s=1

F̃sηst +
1
T

T∑
s=1

F̃sξst

= I + II + III + IV

where

ζst =
1
N

N∑
i=1

[eiseit − E(eiseit)], ηst = F ′
sΛ

′et/N, ξst = F ′
tΛ

′es/N

Consider I, which can be rewritten as

T−1
T∑

s=1

(F̃s − Fs)γN (s, t) + T−1
T∑

s=1

FsγN (s, t).

The first term is bounded by

T−1/2(T−1
T∑

s=1

‖F̃s − Fs‖2)1/2(
T∑

s=1

|γN (s, t))1/2 = T−1/2Op(C
−1/2
NT )

because of T−
∑T

s=1 ‖F̃s−Fs‖2 = Op(C−2
NT ) and

∑T
s=1 γ(s, t) being bounded

uniformly in t by assumption. The second term is bounded by

T−1 max
1≤t≤T

‖Fs‖
T∑

s=1

|γN (s, t)| = T−1Op(αT ).
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Consider II, which can be rewritten as

T−1
T∑

s=1

(F̃s − Fs)ζst + T−1
T∑

s=1

Fsζst.

The first term is bounded by

(T−1
T∑

s=1

‖F̃s − Fs‖2)1/2(T−1
T∑

s=1

ζ2
st)

1/2 = Op(C−1
NT )(T−1

T∑
s=1

ζ2
st)

1/2.

And

T−1
T∑

s=1

ζ2
st =

1
N

{ 1
T

T∑
s=1

( 1√
N

N∑
i=1

[eiseit − E(eiseit)]
)2}

=
1
N

φt

where φt is defined as the term in the braces. By assumption, E‖φt‖2 ≤ M

for all t, thus maximum of φt is bounded by Op(T 1/2). This implies that
the maximum of T−1

∑T
s=1 ζ2

st is bounded by T 1/2N−1Op(1). Taking the
squared root, the maximum of the first term is by Op(C−1

NT )T 1/4N−1/2.
The second term can be written as (NT )−1/2ρt, where

ρt = (NT )−1/2
T∑

s=1

N∑
i=1

Fs[eiseit − E(eiseit)].

By assumption, E‖ρt‖2 ≤ M for all t, thus the maximum of ρt is Op(T 1/2).
This implies the maximum of the second term is N−1/2Op(1)..

Consider III, which can be rewritten as

T−1
T∑

s=1

(F̃s − Fs)ηst + T−1
T∑

s=1

Fsηst.

The first term is

1
T

[
T∑

s=1

(F̃s − Fs)F ′
s]Λ

′et/N = Op(C−2
NT )Λ′et/N

because

T−1
T∑

s=1

(F̃s − Fs)F ′
s = Op(C−2

NT ),
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see Lemma B2 of Bai (2003). Furthermore, the maximum of Λ′et/N over t

is bounded by (T/N)−1/2Op(1). Thus the first term is Op(C−2
NT )(T/N)−1/2.

The second term is (
1
T

T∑
s=1

FsF
′
s)

1
N

N∑
i=1

λieit = Op(1)
1
N

N∑
i=1

λieit. Under

the assumption that

E|N−1/2
N∑

i=1

‖λieit‖8 ≤ M

for all M , the maximum of 1
N

∑N
i=1 λieit is Op(T 1/8)/N1/2.

Consider IV, which can be rewritten as

T−1
T∑

s=1

(F̃s − Fs)ξst + T−1
T∑

s=1

Fsξst.

The first term is bounded by (
1
T

T∑
s=1

‖F̃s − Fs‖2)1/2(
1
T

T∑
s=1

ξ2
st)

1/2. Now

1
T

T∑
s=1

ξ2
st ≤ N−1 1

T

T∑
s=1

‖N−1/2
N∑

i=1

λieis‖2 max
1≤t≤T

‖Ft‖2 = N−1α2
T Op(1).

Thus the first term is equal to Op(C−1
NT )N−1/2αT . The second term is

equal to

(NT )−1/2 1√
NT

T∑
s=1

N∑
i=1

∑
Fsλ

′
ieisFt,

which is bounded by (NT )−1/2Op(1)max1≤t≤T ‖Ft‖ = (NT )−1/2αT Op(1).
Thus the second term is dominated by the first.

Under the assumption that T/N2 → 0 and αT ≤ T 1/2, with the exception
of 1

N

∑N
i=1 λieit appearing in III, all terms are dominated by Op(αT /T ) +

Op(N−1/2). This proves the lemma.
Proof of Theorem 1: Without loss of generality, assume h(zt, θ) is a

scalar; otherwise, consider each component of h. By Taylor expansion

0 =
1
T

T∑
t=1

h(z̃t, θ̃) =
1
T

T∑
t=1

h(zt, θ0)+
1
T

T∑
t=1

ξ′t(F̃t−Ft)+
1
T

T∑
t=1

H(zt, θ0)(θ̃−θ0)

+
1
T

T∑
t=1

[
F̃t − Ft

θ̃ − θ0

]′  ∂2h(z†t ,θ†)
∂Ft∂F ′

t

∂2h(z†t ,θ†)
∂Ft∂θ′

∂2h(z†t ,θ†)
∂θ∂F ′

t

∂2h(z†t ,θ†)
∂θ∂θ′

[
F̃t − Ft

θ̃ − θ0

]
(A.1)
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where F †
t is in between Ft and F̃t, and θ† is in between θ and θ̃, and

ξt = ∂h(zt,θ0)
∂Ft

. By assumption, ξt is uncorrelated with eit for all i and t, by
Lemma 1(ii)

1
T

T∑
t=1

ξ′t(F̃t − Ft) = Op(C−2
NT )

Consider the expression involving the matrix. The first block is

1
T

T∑
t=1

(F̃t − Ft)′
∂2h(z†t , θ†)

∂Ft∂F ′
t

(F̃t − Ft)

≤ max
1≤t≤T

(‖F̃t − Ft‖)
1
T

T∑
t=1

‖(F̃t − Ft)‖‖
∂2h(z†t , θ†)

∂Ft∂F ′
t

)‖

≤ max
1≤t≤T

(‖F̃t − Ft‖)
( 1

T

T∑
t=1

‖F̃t − Ft‖2
)1/2( 1

T

T∑
t=1

‖∂2h(z†t , θ†)
∂Ft∂F ′

t

)‖
)1/2

= Op(T 1/8)N−1/2Op(C−1
NT )

The last equality is due to (2). The above is op(T−1/2) if T 5/8/N → 0.
The last block and cross product terms are each op(1)(θ̃ − θ0). Thus we

can rewrite equation (A.1) as

0 =
1
T

T∑
t=1

h(zt, θ0) +
[
KT (θ0) + op(1)

]
(θ̃ − θ0) + Op(C−2

NT ) + op(T−1/2)

where KT (θ0) = 1
T

∑T
t=1 K(zt, θ0)

p−→K0 = EK(zt, θ0). Multiplying
√

T ,
we obtain

√
T (θ̃ − θ0) = [KT (θ0) + op(1)]−1 1√

T

T∑
t=1

h(zt, θ0) + op(1)

where
√

TOp(C−2
NT ) = op(1) under T 5/8/N → 0. It follows that

√
T (θ̃ − θ0)

d−→N(0,K−1
0 ΣK−1

0 ).

Remark: For a linear model it is sufficient to have
√

T/N → 0 instead
of T 5/8/N → 0. To see this, consider m(zt, θ) = −(yt−F ′

tθ)
2 and h(zt, θ) =

2(yt − F ′
tθ)Ft. Thus hj(zt, θ) = 2(yt − F ′

tθ)Fjt, and

∂2hj(zt, θ)
∂Ft∂F ′

t

= −2θι′j − 2ιjθ
′
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which is a constant matrix (does not depend on t). It follows that

‖ 1
T

T∑
t=1

(F̃t − Ft)′
∂2hj(z

†
t , θ

†)
∂Ft∂F ′

t

(F̃t − Ft)‖ ≤ M
1
T

T∑
t=1

‖F̃t − Ft‖2 = Op(C−2
NT )

But
√

TOp(C−2
NT )

p−→0 provided that
√

T/N → 0.
Proof of Theorem 2. Under Assumption GMM1, the estimator θ̃

solves for the first order condition

G̃T (θ̃)′WT g̃T (θ̃) = 0

where G̃T (θ) = ∇θ g̃T (θ) = 1
T

∑T
t=1∇θg(z̃t, θ). Expanding g̃T (θ̃) at θ0

g̃T (θ̃) = g̃T (θ0) + G̃T (θ̄)(θ̃ − θ0),

where θ̄ is between θ0 and θ̃. Solving for θ̃ − θ0 gives

√
T (θ̃ − θ0) = [G̃T (θ̃)′WT G̃T (θ̄)]−1G̃T (θ̃)′WT

√
T g̃T (θ0)

It is sufficient to show

G̃T (θ̃) = GT (θ̃) + op(1) (A.2)

G̃T (θ̄) = GT (θ̄) + op(1)

and
√

T g̃T (θ0) =
√

TgT (θ0) + op(1) (A.3)

Result (A.2) implies G̃T (θ̃)
p−→G(θ0) = G because GT (θ̃)

p−→G(θ0) as al-
ready argued in Newey and McFadden. Similarly, G̃T (θ̄)

p−→G. Result
(A.3) implies asymptotic normality for

√
T g̃T (θ0) since

√
TgT (θ0) is asymp-

totic normal by assumption. To prove (A.2), consider the jth column of
G̃T , denoted by G̃jT

G̃jT (θ̃) = GjT (θ̃) +
1
T

T∑
t=1

∂2gj(yt, xt, F
†
t , θ̃)

∂θ∂F ′
t

(F̃t − Ft),

where F †
t is in between Ft and F̃t. By the Cauchy-Schwarz inequality,

Assumption GMM2, and 1
T

∑T
t=1 ‖F̃t − Ft‖2 = Op(C−2

NT ), the second term
above is Op(C−1

NT ) = op(1). This proves (A.2). The equation below (A.2)
can be proved in the same way.
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Next consider (A.3). Its jth component, upon expansion, is equal to

g̃jT (θ0) = gjT (θ0)+
1
T

T∑
t=1

η′jt(F̃t − Ft)

+
1
T

T∑
t=1

(F̃t − Ft)′
∂2gj(yt, xt, F

∗
t , θ0)

∂Ft∂F ′
t

(F̃t − Ft)

where ηjt = (∂/∂Ft)gj(zt, θ0). The rest argument is the same as in the
proof of Theorem 1. This implies that g̃jT (θ0) = gjT (θ0) + op(T−1/2) if
T 5/8/N → 0. This is equivalent to (A.3).
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