
ANNALS OF ECONOMICS AND FINANCE 10-2, 391–418 (2009)

Endogenous Default Penalties in Nominal Incomplete Markets *

Nuno Gouveia

CERMSEM, Cermsem Cnrs-Umr 8095, Université Paris 1
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This paper endogeneizes the utility penalties, initiated by Dubey, Geanako-
plos and Shubik (2005), by introducing a benevolent central planner choosing
the value of marginal default utility penalties for each consumer. We also
prove equilibrium existence with endogenous default penalties for incomplete
markets with nominal assets.
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1. INTRODUCTION.

Classical models of General Equilibrium Theory, both with complete
markets and incomplete markets, assume that all borrowers fully keep their
promises. This assumption was heavily criticized as it does not reflect
actual financial markets practices. In the Nineties, general equilibrium
models have allowed for default. More precisely, borrowers may actually
default on future asset returns.

When default is allowed, one must impose some mechanisms that urge
agents to pay back a part of their debts. In the literature, there are at least
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two mechanisms that encourage agents to partially honor their promises
and, therefore, protect lenders against full default. The first mechanism
that urges the agents to honor a part of their promises is to require the
borrowers to constitute collateral in terms of durable goods protecting the
lenders. This collateral will be seized and given to the lenders in case of de-
fault (see, for instance, Dubey, Geanakoplos and Zame (1995) and Araujo,
Pascoa and Torres–Martinez (2002)). The second mechanism that protects
the lenders against full default is to assume that defaulters suffer util-
ity penalties. These default penalties can be interpreted as social or/and
economic sanctions or loose of reputation. For such a model, Dubey–
Geanakoplos–Shubik(2005) prove equilibrium existence for a finite–horizon
real incomplete market model with a stochastic structure characterized by
a finite number of states of nature and bounded short sales. Zame (1993)
proves that default improves risk sharing for a finite–horizon models with
utility penalties. Some models combine these two default punishments,
that is borrowers are required to constitute collateral in terms of durable
goods and suffer utility penalties in case of default (see for instance Zame
(1993), Dubey, Geanakolpos and Zame (1995) for a finite–horizon model
and Pascoa and Seghir (2009) for an infinite–horizon model).

The utility penalties used in Dubey–Geanakoplos–Shubik (2005) and
Pascoa and Seghir (2008) are exogenously given and represent a character-
ization of the consumers via their utility functions. More precisely, these
penalties, which are assumed to be proportional to the value of total default
committed, are assumed to be chosen exogenously ex-ante by a benevolent
central planer, or by society as an all. However, the choice of these penalties
was not modeled in Dubey–Geanakoplos–Shubik(2005).
Default penalties vary from one society to another , ranging from flexible
(a payment penalty frees for example) to harsh (imprisonment). The aim
of this paper is to make an explicit modeling of society’s choice of the
values for the default penalties. To do so, we introduce, in the context
of a standard two period incomplete market model with nominal assets, a
benevolent central planner choosing the value of marginal default utility
penalties for each consumer, for the default that he may commit on each
asset and in each state of nature. The objective of this central planner is
to maximize a social utility function, which is assumed to be utilitarian.

It is well known that when assets are nominal and default is not allowed,
one needs to assume that the return matrix has full rank. Indeed, when
default is not allowed, the rank of the (promised) returns may drop and
equilibrium fails to exist (see Geanakoloplos (1990) for an excellent discus-
sion of this problem). In this paper, we prove that this assumption is not
needed anymore when default is possible. In fact, default can make assets,
that are linearly dependent in terms of promised returns, independent in
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terms of effective returns. We prove equilibrium existence without making
any assumption on the rank of the returns matrix.

The contents of the paper are as follows. First, we present the model
and the concepts of equilibrium. Next, we present the assumptions that
guarantee equilibrium existence. To prove equilibrium existence, we first
define a compactified economy in which consumers’ decision variables are
bounded from above. Section 4 proves equilibrium existence in such com-
pactified economies. In Section 4, We also prove equilibrium existence for
the original economy using asymptotic results.

2. THE MODEL

Let an economy extend over two time periods t = 0, 1 with a finite set
S of possible states of nature s ∈ S in period 1. For convenience, we
assume that 0 6∈ S, and s = 0 denotes the state of the world (known with
certainty) at period 0. We denote S = {0} ∪ S. There is a finite number
G of commodities for consumption, indexed by g = 1, . . . , G, at date 0
and in each state at date 1. There is a finite number J of nominal assets,
indexed by j = 1, . . . , J, for trade at date 0. Each asset j ∈ J yields rj(s)
units of account in state s at date 1. For every state of nature s ∈ S, let
r(s) = (rj(s))j∈J and let R = (rj(s))(s,j)∈S×J denote the (S × J)-matrix
of returns.
There is a finite set I of consumers in the economy. At period 0, each agent
i ∈ I chooses a portfolio zi := (zi

j , j ∈ J), with zi = θi − ϕi where:

• θi := (θi
j , j ∈ J) ∈ RJ

+ are the quantities of assets bought by the agent
i at period 0,

• ϕi := (ϕi
j , j ∈ J) ∈ RJ

+ are the quantities of assets sold by the agent
i at period 0.

At each state of nature s ∈ S, each agent i ∈ I chooses a consumption
bundle xi(s) ∈ Xi(s) ⊂ RG

+.

Each consumer has a consumption set Xi :=
∏

s∈S

Xi(s) ⊂ RGS , an initial

endowment vector ωi ∈ RGS , and an utility function U i. The collection
E =

(
(Xi, U i, ωi)i∈I , R

)
describes our economy. Vectors of commodity and

asset prices will be denoted by p ∈ RGSand q ∈ RJ , respectively.
At each state of nature s ∈ S, the debt of an agent i ∈ I (induced by the

sale of ϕi
j units of the asset j ∈ J in period 0) is rj(s)ϕi

j . Since default is
allowed, an agent i ∈ I chooses to pay, at each state of nature s ∈ S, ∆i

j(s)
such that ∀s ∈ S, ∀j ∈ J, 0 6 ∆i

j(s) 6 rj(s)ϕi
j .
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On the other hand, since the markets are anonymous, each agent expects
to receive a part of his credits. Let K := (Kj(s), s ∈ S, j ∈ J) ∈ [0, 1]S×J

be the (S × J)-matrix of delivery rates on assets.
To stimulate the agents to pay back at least a part of their debts, we

assume that they feel a disutility, which is represented by utility penalties,
from defaulting. More precisely, given the marginal penalties λi

j(s), the
utilities associated with an individual choice variable plan (xi, θi, ϕi,∆i) of
an agent i ∈ I is:

U i
λi(xi, θi, ϕi,∆i) = V i

0 (xi
0) +

S∑
s=1

V i
s (xi

s)−
∑
j∈J

λi
j(s)[rj(s)ϕi

j −∆i
j(s)]

 .

Note that [rj(s)ϕi
j −∆i

j(s)] is exactly the default of the agent i ∈ I at
node s, on his promise from the sale of the asset j at period 0. We will
define two equilibria concepts. In the first definition, utility penalties are
exogenously given. In the second one these penalties will be endogenously
determined by a benevolent central planner (from now on referred as the
Lawmaker) in order to maximize society’s overall well being (measured by a
certain social utility function), and will reflect society’s degree of acceptance
towards default, inducing agents to default in a higher or lower scale.

The following definitions summarize the economy.

Definition 2.1. [Budget sets]
Given (p, q,K), the budget set Bi(p, q,K) of an agent i ∈ I is the set of
(xi, θi, ϕi,∆i) in Xi × RJ

+ × RJ
+ × RJS

+ which verify:

p(0) · xi(0) + q ·
(
θi − ϕi

)
6 p(0) · ωi(0), (1)

and

p(s) · xi(s) +
∑
j∈J

∆i
j(s) 6 p(s) · ωi(s) +

∑
j∈J

Kj(s)rj(s)θi
j , ∀s ∈ S. (2)

Our first equilibrium definition is the following:

Definition 2.2. [Equilibrium with exogenous default penalties]
An equilibrium of E with exogenous default penalties is a collection (p, q, K, (xi, θ

i
, ϕi,∆

i
)i∈I)

such that, for a given vector λ:

(i) For each agent i ∈ I, (xi, θ
i
, ϕi,∆

i
) ∈ argmax U i

λi(x, θ, ϕ,∆) over
Bi(p, q, K),
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(ii)
∑
i∈I

(xi − ωi) = 0,

(iii)
∑
i∈I

θ
i
=
∑
i∈I

ϕi,

(iv) ∀s ∈ S, ∀j ∈ J, K
j
(s)
∑
i∈I

rj(s)ϕi
j =

∑
i∈I

∆
i

j(s).

Condition (i) is the optimality of agents’ choices over their budget sets.
Conditions (ii) and (iii) require commodity and asset markets to clear.
Condition (iv) says that, at each node and for each asset, the total effective
delivery made by the sellers (borrowers) is equal to the total expected
delivery made by the buyers (lenders).

Remark 2.1. The Lawmaker may perfectly choose to set a very flexible
default penalty in some state of nature, that is λi

j(s) = 0, or close to 0,
for some agent i ∈ I, some asset j ∈ J, and some state of nature s ∈ S,
in order to allow agents to default for example in a state of nature with
low probability and where they have a very low endowment. However, at
equilibrium, one must have:

∀i ∈ I, ∀j ∈ J such that qj 6= 0, ∃s ∈ S : λ
i

j(s) 6= 0. (3)

That is, for each agent i and each asset j with nonzero price, there must
exist at least one state of nature for which the penalty is not equal to zero.
Indeed, otherwise, ∃i ∈ I, ∃j ∈ J : qj > 0 and ∀s ∈ S, λ

i

j(s) = 0. Let us
consider the following change on the short sales of this agent i with respect
the asset j :

ϕ̂i
j = ϕi

j + ε, ε > 0.

Moreover, by paying the same thing, that is ∆
i

j(s), at period 1, the agent

will not loose more utility (because ∀s ∈ S, λ
i

j(s) = 0). In addition, by
borrowing ϕ̂i

j he can improve his consumption at period 0, which contra-
dicts equilibrium optimality. In other words, zero penalties in all states of
nature is not consistent with equilibrium existence.

Let W (x, θ, ϕ,∆, p, q, K) =
∑
i∈I

βiU
i
λi

(
xi, θi, ϕi,∆i

)
, with

∑
i∈I

βi = 1, be

the social utility function that the Lawmaker will seek to maximize. Then,
our second equilibrium concept is the following:

Definition 2.3. [Equilibrium with endogenous default penalties]
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An equilibrium of E with endogenous default penalties is a collection
(p, q, K, λ, (xi, θ

i
, ϕi,∆

i
)i∈I , λ) such that:

(i) For each agent i ∈ I, (xi, θ
i
, ϕi,∆

i
) ∈ argmax U i

λi(x, θ, ϕ,∆) over
Bi(p, q, K),

(ii)
∑
i∈I

(xi − ωi) = 0,

(iii)
∑
i∈I

θ
i
=
∑
i∈I

ϕi,

(iv) ∀s ∈ S, ∀j ∈ J, K
j
(s)
∑
i∈I

rj(s)ϕi
j =

∑
i∈I

∆
i

j(s).

(v) The Lawmaker chooses utility penalties λ ∈ RIJS such that

W (x, θ, ϕ, ∆, p, q, K, λ) > W (x, θ, ϕ,∆, p, q, K, λ)

for each (x, θ, ϕ,∆, p, q, K) that constitutes an equilibrium with exogenous
default penalties for λ.

Condition (v) defines the mechanism of endogenous choice for the marginal
default penalties vector.

3. THE ASSUMPTIONS AND THE EXISTENCE RESULT

We make on E the following assumptions:

• Assumption [A1]. For each asset j ∈ J, for each state of nature
s ∈ S, rj(s) > 0.

• Assumption [A2]. For each agent i ∈ I, Xi = RGS
+ , and for each

state of nature s ∈ S, V i
s : Xi(s) −→ R+ is continuous, strictly monotone,

concave, differentiable at each point x ∈ RGS
++ and satisfies the following

Inada conditions: ‖∇V i
s (xi(s))‖ −→ ∞ as xi(g, s) −→ 0, for some g ∈

{1, . . . , G} and ∂V i
s (xi(s))

∂xi(g,s) −→ 0 as xi(s, g) −→∞, ∀g = 1, . . . , G.

• Assumption [A3]. For each agent i ∈ I, for every state of nature
s ∈ S, ωi(s) � 0.

Assumption [A1] states that all assets are supposed to have nonnegative
returns in all states of nature. Assumption [A2] is classical to guaran-
tee equilibrium existence. Assumption [A3] requires all agents to have a
positive initial endowment at each state of nature.

Our main existence result is:
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Theorem 1. Under the assumptions [A1]–[A3] stated above, the Econ-
omy E has an equilibrium (p, q, K, λ, (xi, θ

i
, ϕi,∆

i
)i∈I) with endogenous

default penalties.

4. THE TRUNCATED ECONOMIES

This section is devoted to prove the equilibrium existence in a com-
pactified economy. Indeed, following an idea due to Florenzano–Gourdel–
Marakulin (1998), we define the economy EM which has the same char-
acteristics than the economy E but we suppose that for EM the positive
and negative parts of the admissible portfolios for the agents are bounded
from above. Moreover, in the economy EM , we suppose that the marginal
penalties are also bounded from above. Formally, for each M > 0 and for
each agent i ∈ I, we define the following sets:

ΦiM := {ϕi ∈ RJ
+ : ϕi

j 6 M, ∀j ∈ J},

ΘiM := {θi ∈ RJ
+ : θi

j 6 M, ∀j ∈ J}.

Remark 4.1. Note that the definitions of the sets ΦiM and ΘiM im-
mediately imply that one has −M 6 θi

j − ϕi
j 6 M, ∀j ∈ J, ∀θi

j ∈ ΦiM ,

∀ϕi
j ∈ ΘiM .

Since 0 6 ∆i
j(s) 6 rj(s)ϕi

j , consumer i’s deliveries are immediately re-
stricted to be in the set

DiM := {∆i ∈ RJ×S
+ : ∆i

j(s) 6 rj(s)M, ∀(s, j) ∈ S × J}.

Notice that, without assumption [A3], DiM could be empty for every i ∈ I.
Moreover, for each M > 0, we define:

ΛM := {(λi
j(s), i ∈ I, j ∈ J, s ∈ S) ∈ RI×J×S

+ : λi
j(s) 6 M, ∀(i, s, j) ∈ I×S×J}.

Let Π :=
{

(p, q) ∈ RLS
+ × RJ

+ : ‖p(0)‖1 + ‖q‖1 = 1 ∧ ‖p(s)‖1 = 1, ∀s ∈ S
}

be the set of admissible prices.
Let us define the set of feasible allocations:

X̂ :=

{
x = (xi)i∈I ∈ RGSI

+ :
∑
i∈I

xi 6
∑
i∈I

ωi

}
.
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For each agent i ∈ I, let X̂i be the projection of X̂ on Xi. Notice that X̂i

is compact.
Let us denote by B0(0, r) the open ball in RGS with center 0 and radius

r. We can choose a real number r such that ∀i ∈ I, X̂i ⊂ B0(0, r). For
each agent i ∈ I, let us define X̃i = RGS

+ ∩B0(0, r), where B0(0, r) denotes
the closure of B0(0, r). Once the optimality in X̃i×ΦiM ×ΘiM ×DiM will
be shown, we can deduce the optimality in Xi ×ΦiM ×ΘiM ×DiM , given
exogenous utility penalties λ ∈ ΛM , by a classical argument which uses the
concavity of the utility functions.

Proposition 1. Under assumptions [A1]-[A3] stated above, each trun-
cated economy EM has an equilibrium with exogenous default penalties
(pM , qM ,K

M
, (xiM , θ

iM
, ϕiM ,∆

iM
)i∈I), for λ ∈ ΛM given.

Proof of Proposition 1.
The proof of existence of equilibrium in each compactfied economy, EM , is
based on the classical argument of the lower semicontinuity of the budget
correspondences (assured by the non-vacuity of their interiors). The inte-
riority of the initial endowments of each agent at each node and for each
commodity, assumed in Hypothesis [A3], guarantees this non-emptiness.
Formally, let us define for each asset j ∈ J and for each state of nature
s ∈ S:

Kj(s)((ϕ)i∈I , (∆)i∈I) =

 min

(
1,

P
i∈I

∆i
j(s)

rj(s)
P
i∈I

ϕi
j

)
if rj(s)

∑
i∈I

ϕi
j 6= 0

[0, 1] if not
. (4)

For each agent i ∈ I, let us define the budget correspondence B̃iM :
Π × [0, 1]S×J −→ X̃i × ΘiM × ΦiM × DiM as follows: ∀(p, q,K) ∈ Π ×
[0, 1]S×J

, B̃iM (p, q,K) := {(xi, θi, ϕi,∆i) ∈ X̃i ×ΘiM × ΦiM ×DiM

satisfying the budget constraints of Definition 1}. For each agent i ∈ I, we
define also the correspondence B̃′iM : Π× [0, 1]S×J −→ X̃i×ΘiM ×ΦiM ×
DiM as follows: ∀(p, q,K) ∈ Π×[0, 1]S×J

, B̃′iM (p, q,K) := {(xi, θi, ϕi,∆i) ∈
X̃i ×ΘiM × ΦiM ×DiM satisfying strictly the budget constraints }

To simplify the notation, we will denote v = (p, q,K) and w = (x, θ, ϕ,∆).

We define also the best response correspondence for agent i :

ΨiM
λ (v, w) =

{
wi ∈ B̃iM (v) : U i

λ(wi) > U i
λ(w′i),∀w′i ∈ B̃iM (v)

}
.
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Notice that B̃iM (v) is compact for each v ∈ (v, w) ∈ Π × [0, 1]S×J
, and

that ΨiM
λ (v, w) 6= ∅ for each (v, w) ∈ Π×[0, 1]S×J×X̃i×ΘiM×ΦiM×DiM ,

and each i ∈ I.

Claim 4.1. For each agent i ∈ I, B̃iM is a closed correspondence (then
upper semicontinuous).

Proof. First, notice that for each given v ∈ Π × [0, 1]S×J
, BiM is closed-

valued, thus it has closed graph. Moreover, since it is a correspondence with
convex values and it takes values on the compact set X̂i×ΘiM×ΦiM×DiM ,
one gets that it is upper semicontinuous. �

Claim 4.2. ∀i ∈ I, ∀(p, q,K) ∈ Π× [0, 1]S×J
, B̃′iM (p, q,K) 6= ∅.

Proof. Let i ∈ I and (p, q,K) ∈ Π × [0, 1]S×J
. For each s ∈ S, in view

of assumption [A3] and since p(s) 6= 0, one can choose xi(s) such that
p(s) · (xi(s)− ωi(s)) < 0 and let us choose ∆i(s) = 0.
Now, if p(0) 6= 0, in view of assumption [A3], one can choose xi(0) such
that p(0) · (xi(0)− ωi(0)) < 0 and let us set θi = ϕi = 0. If p(0) = 0, then
there exists j0 ∈ J such that qj0 6= 0. In this case, we choose θi = 0 and
ϕi

j0
> 0. �

Claim 4.3. ∀i ∈ I, B̃iM is lower semicontinuous.

Proof. It follows from the convexity and the non-emptiness of B̃′iM (p, q,K)

for each (p, q,K) ∈ Π × [0, 1]S×J that B̃iM (p, q,K) = B̃′iM (p, q,K). The
Claim follows from the fact that B̃′iM has an open graph. �

As in Gale–Mas-Colell (1975, 1979), we define the following reaction cor-
respondence for a fictitious agent who fixes prices:

Ψ0M (v, w) =

{
(p′, q′) ∈ Π :

∑
s∈S

[
(p′(s)− p(s)) ·

∑
i∈I

(xi(s)− ωi(s))
]

+

+(q′ − q) ·
∑
i∈I

(
θi − ϕi

)
> 0
}

.

We also define the next correspondence for another hypothetical, who
will set the repayment rates Kj(s) :
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ΨKM (v, w) =

K ∈ [0, 1]SJ : Kj(s)(v, w) =

 min

(
1,

P
i∈I

∆i
j(s)

rj(s)
P
i∈I

ϕi
j

)
if rj(s)

∑
i∈I

ϕi
j 6= 0

[0, 1] if not


Claim 4.4. Ψ0M is lower semicontinuous.

Proof. Ψ0M has open graph, thus is lower semicontinuous. �

Claim 4.5. ΨKM is upper semicontinuous.

Proof. Consider a convergent sequence (vn, wn) = (xn, θn, ϕn,∆n, pn, qn,Kn) ,
whose limit is (v, w) =

(
x, θ, ϕ, ∆, p, q, K

)
. If

∑
i∈I

ϕi
j = 0 for some j ∈ J,

then lim Kj(s)(vn, wn) ∈ [0, 1] since Kj(s)(vn, wn) ∈ [0, 1] for each n.
For j ∈ J such that

∑
i∈I

ϕi
j 6= 0, then Kj(s) = lim Kj(s)(vn, wn) by conti-

nuity of min
(

1,
∑
i∈I

∆i
j(s)/rj(s)

∑
i∈I

ϕi
j

)
. �

Claim 4.6. For each i ∈ I, ΨiM
λ is upper semicontinuous and convexed

valued.

Proof. The first part results immediately from the continuity of the B̃iM

correspondences and Berge’s (1963) Maximum Theorem. The second part
then results from the concavity of U i

λ. �

Now we apply the following theorem:

Theorem. [Gourdel Fixed Point Theorem]
Let X =

∏m+n
i=1 Xi, where, for each i, Xi is a non-empty, convex and

compact subset of a normal finite dimensional vector space Ei. Let Fi (i =
1, ...,m) be m lower semicontinuous correspondences from X to Xi with
convex and eventually empty values, and let Fi (i = m + 1, ...,m + n) be
n upper semicontinuous correspondences from X to Xi with convex and
eventually empty values. Then there is x∗ = (x∗i ) in X such that, for each
i, either x∗i ∈ Fi(x∗i ) or Fi(x∗i ) is empty.
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Since the correspondences Ψ0M , ΨKM and ΨiM
λ , i ∈ I, satisfy the con-

ditions of the above theorem, there exists

(vM , wM ) =
(

pM , qM ,K
M

,
(
xiM , θ

iM
, ϕiM ,∆

iM
)

i∈I

)
such that:

a) Ψ0M (vM , wM ) = ∅, that is,

∑
s∈S

[
(p(s)− pM (s)) ·

∑
i∈I

(xiM (s)− ωi(s))

]

+ (q − qM ) ·
∑
i∈I

(
θ

iM − ϕiM
)

6 0, ∀(p, q) ∈ Π (5)

b) K
M ∈ ΨKM (wM , vM ), that is, K

M

j (s)

=

 min

(
1,

P
i∈I

∆
iM
j (s)

rj(s)
P
i∈I

ϕiM
j

)
if rj(s)

∑
i∈I

ϕiM
j 6= 0

[0, 1] if not

c) For each i ∈ I, wiM =
(
xiM , θ

iM
, ϕiM ,∆

iM
)
∈ ΨiM

λ (wiM , viM ), that

is, wiM ∈ arg max
wi∈ eBiM (v)

U i
λ(wi).

To show that this fixed point constitutes an equilibrium for the truncated
economy, we must show that it satisfies conditions (i)-(iv) on the definition
of equilibrium.

Claim 4.7. (wM , vM ) constitutes an equilibrium with exogenous default
penalties for the truncated economy EM .

Proof. Conditions (i) and (iv) in definition 2 are immediately satisfied due
to the definition of the correspondences ΨiM

λ and ΨKM .

To prove conditions (ii) and (iii), setting in (5), p(s) = pM (s), ∀s ∈ S,
one gets: ∀(p(0), q) ∈ RGJ

+ : ‖p(0)‖1 + ‖q‖1 = 1,

p(0) ·
∑
i∈I

[xiM (0)− ωi(0)] + q ·
∑
i∈I

(
θ

iM − ϕiM
)

6 pM (0) ·
∑
i∈I

[xiM (0)− ωi(0)] + qM ·
∑
i∈I

(
θ

iM − ϕiM
)

= 0.
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where the last equality results from the fact that at (wiM , viM ) the agents’
budget constrains must be saturated due to preferences monotonicity.

Now, setting p(0) = 0 in the last equality, one gets:

q ·
∑
i∈I

(
θ

iM − ϕiM
)

6 0, ∀q ∈ RJ
+ : ‖q‖1 = 1,

implying that
∑
i∈I

(
θ

iM − ϕiM
)

6 0. Similarly, by setting q = 0 we obtain

p(0) ·
∑
i∈I

[xiM (0)− ωi(0)] 6 0,∀p(0) ∈ RG
+ : ‖p(0)‖1 = 1,

implying
∑
i∈I

[xiM (0)− ωi(0)] 6 0.

Now, suppose that pg(0) = 0 for some g ∈ G. By strict monotonicity
of the consumers utility functions, each one of them would like to buy r
units of good g, implying an aggregate demand equal to rI >

∑
i∈I

ωi(0)1,

contradicting
∑
i∈I

[xiM (0)−ωi(0)] 6 0. Thus p(0) ∈ RG
++, and so if for some

g ∈ G we had
∑
i∈I

[xiM
g (0) − ωi

g(0)] < 0 the price auctioneer could improve

his payoff by changing to some other price vector in Π such that pg(0) = 0.
Similarly, if for some asset j ∈ J we had simultaneously qj > 0 and∑

i∈I

(
θ

iM

j − ϕiM
j

)
< 0, the auctioneer would not be maximizing his objec-

tive function. Thus we can only have
∑
i∈I

(
θ

iM

j − ϕiM
j

)
< 0 if qj = 0. A

consumer i will only be willing to sell asset j at zero price if λi
j(s)rj(s) = 0

for all s ∈ S. This in turn would imply
∑

i∈I ∆
iM

j (s) = 0, hence K
M

j (s) = 0
for all s ∈ S. Thus we can take in this case, without loss of generality,
θi

j = ϕi
j = 0 for all i ∈ I, and hence condition (iii) is satisfied.

Setting in (5), p(0) = pM (0) and q = qM , one gets:
∀p(s) ∈ RG

+ : ‖p(s)‖1 = 1,

∑
s∈S

[
(p(s)− pM (s)) ·

∑
i∈I

(xiM (s)− ωi(s))

]
6 0.

1Remember that X̂i is the projection of X̂ on Xi =(
x = (xi)i∈I ∈ RGSI

+ :
P
i∈I

xi 6
P
i∈I

ωi

)
, and r is chosen such that ∀i ∈ I, X̂i ⊂

B0(0, r). Thus r > max
s∈S


max
g∈G


max
i∈I

˘
wi

g

¯ffff
.
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�
By saturation of state s budget we have

∑
s∈S

pM (s) ·
∑
i∈I

(xiM (s)− ωi(s)) +
∑
j∈J

∑
i∈I

∆
iM

j (s) =
∑
j∈J

∑
i∈I

K
M

j (s)θ
iM

j ,

and since equilibrium condition (ii) and (iv) are satisfied, it follows that∑
j∈J

∑
i∈I ∆

iM

j (s) =
∑

j∈J

∑
i∈I K

M

j (s)θ
iM

j .
Then∑

s∈S

p(s) ·
∑
i∈I

(xiM (s)− ωi(s)) 6 0, ∀p(s) ∈ RG
+ : ‖p(s)‖1 = 1.

Now, suppose that pg(s) = 0 for some g ∈ G. By strict monotonicity
of the consumers utility functions, each one of them would like to buy r
units of good g, implying an aggregate demand equal to rI >

∑
i∈I

ωi(s)2,

contradicting
∑
i∈I

[xiM (s)−ωi(s)] 6 0. Thus p(s) ∈ RG
++, and so if for some

g ∈ G we had
∑
i∈I

[xiM
g (s) − ωi

g(s)] < 0 the price auctioneer could improve

his payoff by changing to some other price vector in Π such that pg(s) = 0.
So condition (ii) is satisfied. �

This concludes the proof of proposition 1. �

Proposition 2. Under assumptions [A1]–[A3] stated above, each trun-
cated economy EM has an equilibrium with endogenous default penalties
(pM , qM ,K

M
, (xiM , θ

iM
, ϕiM ,∆

iM
)i∈I , λ).

Proof of Proposition 2. We start by showing that the set of vectors which
are candidates to be an equilibrium with endogenous default penalties for
an economy EM closed, where M = N ∪ {∞}.

Claim 4.8. For each λ ∈ ΛM , let T (EM , λ) ⊂ X̃i×ΘiM ×ΦiM ×DiM ×
Π × [0, 1]S×J be the set of equilibriums for the truncated economy EM

associated with λ. Then the set

TM =
{(

p, q,K,
(
xi, θi, ϕi,∆i

)
i∈I

, λ
)

:
(
p, q,K,

(
xi, θi, ϕi,∆i

)
i∈I

)
∈ T (EM , λ)

}
2see note 1 above.
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is closed.

Proof. Consider a sequence of equilibrium vectors(
pn, qn,Kn, (xi

n, θi
n, ϕi

n,∆i
n)i∈I , λ

)
such that

(
pn, qn,Kn, (xi

n, θi
n, ϕi

n,∆i
n)i∈I , λ

)
∈

T (EM , λ) for each n ∈ N. Since this is a sequence over a compact set, it con-
verges, maybe passing to a subsequence, to a point (v, w, λ). Suppose there
exists (xi, θi, ϕi,∆i) in B̃iM (pM , qM ,K

M
) such that U i

λ
(xi, θi, ϕi,∆i) >

U i
λ
(xi, θ

i
, ϕi,∆

i
). Then, (x̃i, θ̃i, ϕ̃i, ∆̃i) := τ(xi, θi, ϕi,∆i)+(1−τ)(xi, θ

i
, ϕi,∆

i
)

is budgetary feasible for agent i at prices (pM , qM ,K
M

), for τ small enough.
By quasiconcavity of U i

λ
, one gets U i

λ
(x̃i, θ̃i, ϕ̃i, ∆̃i) > U i

λ
(xi, θ

i
, ϕi,∆

i
).

Now, there exists N0 ∈ N such that:

| U i
λ
(xi, θ

i
, ϕi,∆

i
)− U i

λ
(xi

n, θi
n, ϕi

n,∆i
n) |

<
1
2

(
U i

λ
(x̃i, θ̃i, ϕ̃i, ∆̃i)− U i

λ
(xi, θ

i
, ϕi,∆

i
)
)
, for n > N0.

There also exists N1 ∈ N such that:

| U i
λ
(xi

n, | θi
n, ϕi

n,∆i
n)− U i

λn
(xi

n, θi
n, ϕi

n,∆i
n) |

<
1
2

(
U i

λ
(x̃i, θ̃i, ϕ̃i, ∆̃i)− U i

λ
(xi, θ

i
, ϕi,∆

i
)
)
, for n > N1.

Hence, U i
λ
(x̃i, θ̃i, ϕ̃i, ∆̃i) > U i

λn
(xi

n, θi
n, ϕi

n,∆i
n), for n > max{N0, N1}.

There is also N2 ∈ N such that | (U i
λn

(x̃i, θ̃i, ϕ̃i, ∆̃i)− (U i
λ
(x̃i, θ̃i, ϕ̃i, ∆̃i) |<

(U i
λ
(x̃i, θ̃i, ϕ̃i, ∆̃i)−U i

λn
(xi

n, θi
n, ϕi

n,∆i
n), for n > N2. Thus, (U i

λn
(x̃i, θ̃i, ϕ̃i, ∆̃i) >

U i
λn

(xi
n, | θi

n, ϕi
n,∆i

n), for n > max{N0, N1, N2}. Finally, there exists N3

such that (x̃i, θ̃i, ϕ̃i, ∆̃i) ∈ B̃iM (pn, qn,Kn), for n > N3. But this contra-
dicts the fact that

(
pn, qn,Kn, (xi

n, θi
n, ϕi

n,∆i
n)i∈I , λn

)
∈ T (EM , λn), for

n > max{N0, N1, N2, N3}. �

Proposition 3. Under assumptions [A1]–[A3] stated above, each trun-
cated economy EM has an equilibrium with endogenous default penalties
(pM , qM ,K

M
, (xiM , θ

iM
, ϕiM ,∆

iM
)i∈I , λ

M
).

Proof of Proposition 3. The problem of the Lawmaker is equivalent to:

max
λ∈ΛM

W (x, θ, ϕ,∆)

s.t. (x, θ, ϕ,∆, λ) ∈ TM (EM )
(6)
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A vector
(
pM , qM ,KM , (xiM , θ

iM
, ϕiM ,∆

iM
)
)

is an equilibrium with en-

dogenous default penalties for EM if and only if it solves (6). Since TM (EM )
is contained in the compact set X̃iM × Θ̃iM × Φ̃iM × D̃iM ×Π× [0, 1]S×J ,
over which W (x, θ, ϕ,∆, λ) is continuous, W (x, θ, ϕ,∆, λ) is bounded over
TM (EM ). Since TM (EM ) is closed, Problem (6) has a solution.

5. ASYMPTOTIC RESULTS.

In this section, we show, by letting M → +∞, that the original economy
E has an equilibrium. Indeed, we prove that (i) there is a subsequence of
(pM , qM ,K

M
, (xiM , θ

iM
, ϕiM ,∆

iM
)i∈I , λ

M
) which converges, and (ii) the

cluster point is an equilibrium of the original economy E .
In this part, we will adopt the following convention: 0 ×∞ = 0 which

is also adopted, for example, in Aliprantis and Border (1999), (chapter
1, page 7). This will be important to define the value of a consumer’s
expected utility when he defaults infinitely in an asset and in a state where
his marginal default penalty is zero, or if he gives zero subjective probability
to that state.

It follows from our adopted normalization and the definition of the ex-
pected delivery rates that the sequence (pM , qM ,K

M
) is bounded, and

therefore we can find a convergent subsequence, denoted by (pkM , qkM ,K
kM ).

Let (p, q, K) denote its limit. On the other hand, by the physical market
clearing, the sequence xM is bounded, and so we can find a convergent
subsequence, denoted by (xkM ). Let x denote its limit.

Now, we cannot have pgkM
→ 0, for any commodity g and state s, be-

cause otherwise we would have, for kM high enough, the aggregate demand
of good g in state s equal to kM × I, while its aggregate supply would be
equal to zero, contracting the fact that the kM -th truncated economy is in
equilibrium.

Remark 5.1.
We can perfectly have, for some asset j, K

jkM (s) = 0 or converging to
zero for all states of nature.

In this paragraph, we state the following lemma which will be useful to
guarantee that ziM is bounded for each agent i ∈ I. For each asset j ∈ J,
let us define the subset S+

j ⊂ S as follows: S+
j := {s ∈ S : rj(s) > 0}.

Lemma 1.

(a)If lim
M→+∞

qjM = 0 for some j ∈ J then lim
M→+∞

KjM = 0 for all

s ∈ S+
j .
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(b)If lim
M→+∞

KjM = 0 but lim
M→+∞

qjM 6= 0, then lim
M→+∞

∑
i∈I

θ
iM

j =

lim
M→+∞

∑
i∈I

ϕiM
j = 0. Moreover, lim

M→+∞
[qjM

∑
i∈I

θ
iM

j ] = lim
M→+∞

[qjM

∑
i∈I

ϕiM
j ] =

0.

(c)If If lim
M→+∞

KjM = 0 for all s ∈ S+
j but lim

M→+∞

∑
i∈I

θ
iM

j 6= 0, then

lim
M→+∞

qjM = 0.

Proof. See Appendix A.
Now, to guarantee that ziM does not diverge, we must rule out arbi-

trage opportunities in equilibrium. To this end, we start by proving some
auxiliary lemmas:

Lemma 2. If ϕiM
j → +∞ for some i ∈ I and some j ∈ J, then for

each state of nature s ∈ S, one has: either (i) ∆
iM
j (s)

rj(s) ϕiM
j

→ 1, or (ii)

∆
iM
j (s)

rj(s) ϕiM
j

→ 0.

Also, if (ii) occurs, it must be true that λ
iM

j (s) → 0, for some state s.

Proof. See Appendix A.
Note that the sequence ziM takes values on RJ

, which is compact. There-
fore, it must have a convergent subsequence in RJ

. The next lemma says
that its limits belongs to RJ

.

Lemma 3. If consumers attribute subjective positive probability to every
state of nature, then no arbitrage opportunity can exist in equilibrium for
the truncated economies for M sufficiently high, and lim

M→+∞
ziM will be

finite, for every consumer i ∈ I.

Proof. See Appendix A.
Obviously, the arguments in the proof of Lemma 3 are also valid for the
truncated economies, for M high enough, since we would have in these
truncated economies not an infinite excess demand and supply of different
assets, but yet a very large one, implying that qM cannot be optimal for
the auctioneer, and we would also have very high levels of default, implying
that λM cannot be optimal for the Lawmaker.

Lemma 4. If lim
M→+∞

qjM = 0, then lim
M→+∞

[qjM

∑
i∈I

θ
iM

j ] =

lim
M→+∞

[qjM

∑
i∈I

ϕiM
j ] < +∞.

Proof. See Appendix A.
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Lemma 5. For each agent i ∈ I and for each state s ∈ S,

lim
M→+∞

∑
j∈J

[
KjMrj(s)θ

iM

j −∆
iM

j (s)
]

is finite.

Proof. See Appendix A.
Finally, we state one last lemma relating the agents:

Lemma 6. θ
i

j and ϕM
j are bounded from above for each pair (i, j) ∈ I×J.

Proof. See Appendix A.

Lemma 7. The sequence λ
i

j(s) can be, without loss of generality, bounded
for each triple (i, j, s) ∈ I × J × S.

Proof. See Appendix A.

Claim 5.1. [Optimality of the cluster point]

Proof of Claim 5.1. By contraposition, let us assume that one of the fol-
lowing cases holds:

(i) There exists i ∈ I, there exists (x̃i, θ̃i, ϕ̃i, ∆̃i) ∈ IntBi(p, q, K) such
that:

U i
λ
(x̃i, θ̃i, ϕ̃i, ∆̃i) > U i

λ
(xi, θ

i
, ϕi,∆

i
).

(ii) There exists λ̂ such that:∑
i∈I

βiU i
λ̂
(xi(λ̂i), θ

i
(λ̂i), ϕi(λ̂i),∆

i
(λ̂i)) >

∑
i∈I

βiU i
λ
(xi(λ

i
), θ

i
(λ

i
), ϕi(λ

i
),∆

i
(λ

i
)).

If (i) occurs, then (x̃i, θ̃i, ϕ̃i, ∆̃i) is budgetary feasible for agent i at prices
(p, q, K), so is τ (x̃i, θ̃i, ϕ̃i, ∆̃i) + (1− τ) (xi, θ

i
, ϕi,∆

i
), for τ ∈ [0, 1] small

enough. By convexity of preferences, we have τ (x̃i, θ̃i, ϕ̃i, ∆̃i) + (1 −
τ) (xi, θ

i
, ϕi,∆

i
)�i(xi, θ

i
, ϕi,∆

i
). By continuity of preferences,

τ (x̃i
kM

, θ̃i
kM

, ϕ̃i
kM

, ∆̃i
kM

) + (1 − τ) (xi, θ
i
, ϕi,∆

i
) would have been chosen

instead of (xi
kM

, θ
i

kM
, ϕi

kM
,∆

i

kM
), a contradiction.

If (ii) occurs, by the maximum theorem, the mapping
λ 7→ U i

λ(xi
kM

(λi), θ
i

kM
(λi), ϕi

kM
(λi),∆

i

kM
(λi)) is continuous, so the map-

ping λ 7→
∑
i∈I

βiU i
λ(xi

kM
(λi), θ

i

kM
(λi), ϕi

kM
(λi),∆

i

kM
(λi)) is also continuous,

for each kM and converges pointwise to the mapping
λ 7→

∑
i∈I

βiU i
λ(xi(λi), θ

i
(λi), ϕi(λi),∆

i
(λi)) is continuous. By the discussion

on convergence above, the Lawmaker is allowed to choose for each (i, j, s)
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a value λi
j(s) sufficiently high such that agent i will repay fully in state s

the returns he owes from the sale of asset j, and note that for kM suffi-
ciently large this choice is available for the Lawmaker in the truncated econ-
omy EkM . If there is λ̂ such that

∑
i∈I

βiU i
λ̂
(xi(λ̂i), θ

i
(λ̂i), ϕi(λ̂i),∆

i
(λ̂i)) >∑

i∈I

βiU i
λ̂
(xi(λ

i
), θ

i
(λ

i
), ϕi(λ

i
),∆

i
(λ

i
)), it must be within these bounds, and

since
∑
i∈I

βiU i
λ(xi

kM
(λi), θ

i

kM
(λi), ϕi

kM
(λi),∆

i

kM
(λi)) converges∑

i∈I

βiU i
λ(xi(λi), θ

i
(λi), ϕi(λi),∆

i
(λi)) and λkM

converges to λ we would

have:

∑
i∈I

βiU i
λ(xi

kM
(λ̂i), θ

i

kM
(λ̂i), ϕi

kM
(λ̂i),∆

i

kM
(λ̂i))

>
∑
i∈I

βiU i
λ(xi

kM
(λ

i
), θ

i

kM
(λ

i
), ϕi

kM
(λ

i
),∆

i

kM
(λ

i
)),

a contradiction.

APPENDIX A
Proofs of lemmas 1 to 7.
Proof of Lemma 1.

- Proof of Item (a). We cannot have qjkM
→ 0 unless KjkM

→ 0 and

λ
i

jkM
→ 0 for all s ∈ S+

j and for all i ∈ I, because otherwise, for kM

high enough, we would have every agent wanting to buy kM units of this
asset, and no agent would want to sell it, since even if he does not repay he
suffers a certain default penalty in return of virtually null price he receives
in period 0.

- Proof of Item (b).If lim
M→+∞

KjkM
= 0, then lim

M→+∞
KjkM

rj(s) = 0 for

all s ∈ S+
j . So, since lim

M→+∞
qjkM

6= 0, there will be an order beyond which

no agent will buy the asset, that is beyond some order lim
M→+∞

∑
i∈I

θ
iM

j =

0. Because beyond some order each truncated economy is in equilibrium,∑
i∈I

ϕiM
j = 0.

- Proof of Item (c). By contraposition, let us assume that lim
M→+∞

KjM =

0 for all s ∈ S+
j , lim

M→+∞

∑
i∈I

θ
iM

j 6= 0 and lim
M→+∞

qjM 6= 0. It follows imme-

diately from item (b) that lim
M→+∞

∑
i∈I

θ
iM

j = 0, a contradiction. �
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Proof of Lemma 2. Let i ∈ I and j ∈ J such that ϕiM
j → +∞. First, let

us assume by contraposition, that there is a state of nature s ∈ S+
j such that

∆
iM
j

rj(s)ϕiM
j

→ 0 and λ
iM

j does not converge to zero. Then, rj(s)ϕiM
j −∆

iM
j

rj(s)ϕiM
j

→ 1,

which implies that [rj(s)ϕiM
j ] → +∞. Therefore, λ

iM

j [rj(s)ϕiM
j ] → +∞.

Therefore, the expected utility of agent i is going to −∞ and he must not
be maximizing his utility.
Now, since for each i ∈ I, xiM converges, then the marginal utility of
income µiM

1 (s) also converges, and let us denote by µi
1(s) its limit. Let us

distinguish the following cases:

• For assets such that lim
M→+∞

λ
iM

j > µi
1(s), we will have that beyond

some order, equation (C.3) (see Appendix C) is verified with equality
and with µiM

∆ (s) > 0, implying that ∆
iM

j (s) = rj(s) ϕiM
j , and therefore

∆
iM
j (s)

rj(s) ϕiM
j

= 1, beyond some order.

• For assets such that lim
M→+∞

λ
iM

j < µi
1(s), we will have that beyond

some order, equation (C.3) (see Appendix C) is verified with strict in-

equality implying that µiM
∆ (s) = 0, and therefore ∆

iM
j (s)

rj(s) ϕiM
j

= 0, beyond
some order.
• Finally, for assets such that lim

M→+∞
λ

iM

j = µi
1(s), agent i will have

in the limit ∆i
j(s) chosen such that the budget constraint in consumption

space given the vector (∆i
j(s), j ∈ J) passes exactly through the point

xi(s). Now, if lim
M→+∞

∆
iM
j (s)

rj(s) ϕiM
j

< 1, this would imply that lim
M→+∞

rj(s) ϕiM
j −∆

iM

j
(s)

rj(s) ϕiM
j

>

0, and so lim
M→+∞

[rj(s) ϕiM
j −∆

iM

j
(s)] = +∞. But, since lim

M→+∞
λ

iM

j > 0,

agent i’s expected utility would be converging to −∞. Then, we must have

lim
M→+∞

rj(s) ϕiM
j −∆

iM

j
(s)

rj(s) ϕiM
j

= 0, implying that lim
M→+∞

∆
iM
j (s)

rj(s) ϕiM
j

= 1.

�
Proof of Lemma 3. Suppose by contraposition that | ziM |→ +∞, then
it must be true that for some asset j ∈ J, ϕiM → +∞. Then, by Lemma
2, we know that the payment rate for agent i on this asset will be at the
limit either equal to 0 or equal to 1 and it will be only equal to zero when
the utility penalty for agent i with respect to asset j is going to zero. If
an asset‘portfolio z = θ − ϕ offers an arbitrage opportuniuy for agent i, in
a truncated economy EM , then he will wanv to exchange the ma—imum
amount of this portfolio allowed in this truncated economy. If there is no
order beyond which this arbitrage opportunity disappears, then we will
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have all assets j for which ϕj > 0, being traded infinitely in the truncated
economy. So, the returns an agent i has to pay on this portfolio z will tend
to Qi ⊗R, where:

Q(λi
j(s) :=

{
1 if λi

j(s) > 0,
0 if λi

j(s) = 0,
and Qi :=

(
Q(λi

j(s))
)

(s,j)∈S×J
.

One arbitrage possibility would be the existence of a portfolio z′ = θ′ − ϕ′

such that θ′ 6= ϕ′, qz′ ≤ 0 and K⊗Rθ′ > (Qi⊗R)θ′ for at least some agent
i.1 Then, the consumers for which this condition is verified would want to
buy an infinite multiple amount of portfolio z′ (or the maximum they can
buy, in a truncated economy), leading to an excess demand of some assets
and an excess supply in other assets, implying that (q, K, λ) cannot be an
equilibrium triple of asset price vector, expected deliveries rate matrix and
default penalties.
Other possibility wold be to have a portfolio ẑ = θ̂− ϕ̂, two disjoint sets of
consumers, I1 and I2, and a partition (S1, S2) of S such that agents in I1

give subjective 0 probability to states in S2, agents in I2 give subjective 0
probability to states in S1,

(
K⊗R(θ̂+ϕ̂)

)
(s) >

(
Qi⊗R(θ̂+ϕ̂)

)
(s) ≥ 0, s ∈

S1, i ∈ I1 and
(
K⊗R(θ̂+ϕ̂)

)
(s) >

(
Qi⊗R(θ̂+ϕ̂)

)
(s) ≥ 0, s ∈ S2, i ∈ I2.

Then, agents in both I1 and I2 would like to buy and sell simultaneously an
unlimited amount of portfolio ẑ.2 The amounts sold by agents in I1 would
be purchased, at the current price vector q, by agents in I2, and vice versa.
We prevent this phenomenon from happening by restricting consumers’
subjective expectations to give positive probability to every state of nature
s ∈ S.
Yet another possibility would be to have an asset portfolio ẑ = (θ̂ − ϕ̂),
two disjoint sets of consumers, I1 and I2, such that K ⊗R(θ̃ + ϕ̃)− (Qi ⊗
R)(θ̃+ ϕ̃) > 0, i ∈ I1 and K⊗R(θ̃+ ϕ̃)−(Qi⊗R)(θ̃+ ϕ̃) > 0, i ∈ I2. Then
again, agents in both I1 and I2 would like to buy and sell simultaneously,
from each other, an unlimited amount of portfolio z̃, at the current price
vector q, and this would not necessarily cause excess demand or excess
supply of assets. But we can nonetheless rule out this possibility by noting
that every agent in I1

⋃
I2 would become infinitely wealthy in some state

of nature, and by monotonicity of his preferences his demand would be

1Note that if such an arbitrage opportunity exists, the agent will become infinitely
healthy in each state of nature of period 1, implying that his marginal utility of income
will be virtually equal to 0, and he will chooses to repay fully his debts as long as the
default penalty is different from 0. Check equation (C.3) in Appendix C.

2That is, to buy +∞ · (θ̂ − ϕ̂) and to sell +∞ · (θ̂ − ϕ̂), at net price of zero.
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infinite, whereas goods supply is fixed at a finite level, in all truncated
economies, contradicting the fact that we are in equilibrium.3 �
Proof of Lemma 4. lim

M→+∞
qjM = 0 implies, by Item (a) of Lemma

1, that lim
M→+∞

KjM (s) = 0, for all s ∈ S+. This can happen in three

conceivable ways:

(i) lim
M→+∞

∑
i∈I

∆
i

jM (s) = 0, for all s ∈ S+. Because the truncated economies

are in equilibrium for M high enough, we must have, beyond some order,
lim

M→+∞
KjM (s)

∑
i∈I

rj(s)θ
i

jM = lim
M→+∞

∑
i∈I

∆
i

jM (s) = 0. That is, asset j

buyers aggregate expected returns tend to zero in every state of nature,
so their aggregate expenditure in this asset purchase must be tending also
to zero. Since the truncated economy is in equilibrium, the total revenue
from asset j sales must also approach zero, that is: lim

M→+∞
qjM

∑
i∈I

θ
i

jM =

lim
M→+∞

qjM

∑
i∈I

ϕi
jM = 0.

(ii) 0 < lim
M→+∞

∑
i∈I

∆
i

jM (s) < +∞, for all s ∈ S+. Again, we must have,

beyond some order, lim
M→+∞

KjM (s)
∑
i∈I

rj(s)θ
i

jM = lim
M→+∞

∑
i∈I

∆
i

jM (s) <

+∞. That is, asset j buyers’ aggregate expected returns do not tend to +∞
in no state of nature, so their aggregate expenditure in this asset purchase
should not be tending also to +∞, because otherwise they would not be
maximizing their utility. Since the truncated economy is in equilibrium,

lim
M→+∞

qjM

∑
i∈I

θ
i

jM = lim
M→+∞

qjM

∑
i∈I

ϕi
jM < +∞.

(iii) lim
M→+∞

∑
i∈I

∆
i

jM (s) = +∞, for all s ∈ S+ and lim
M→+∞

rj(s)
∑
i∈I

ϕi
jM (s) =

+∞. But, this contradicts Lemma 2.

�
Proof of Lemma 5. The budget constraints of an agent i ∈ I at the
second period can be written at equilibrium as follows: for each state s ∈ S,

pM · (xiM (s)− ωi(s)) =
∑
j∈J

[
KjMrj(s)θ

iM

j −∆
iM

j (s)].

Then, in view of our normalization, one gets easily:∑
j∈J

[
KjMrj(s)θ

iM

j −∆
iM

j (s)] ≤ max
g∈G

ωi(s, g).

3If the reader finds another type of arbitrage opportunity, we are very certain that it
cab be ruled out by the same kind of arguments. The intuition is that there can be no
free lunches.
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Moreover, ∑
j∈J

[
KjMrj(s)θ

iM

j −∆
iM

j (s)] ≥ − max
g∈G

ωi(s, g).

Proof of Lemma 6.
For each agent i ∈ I, for each state of nature s ∈ S and for each asset
j ∈ J, let us define agent i’s repayment rate as follows:

Ki
j(s) :=

{
1 ∆i

j(s)

rj(s)ϕi
j

if rj(s)ϕi
j > 0,

0 if rj(s)ϕi
j = 0,

K
iM

j (s) takes values on the interval [0, 1] for each triple (i, j, s), and it thus

has a convergent subsequence, K
i

j(s). By Lemma 3, the vector ziM has
also a convergent subsequence; let ai denote its limit. So, if consumer i
chooses in the limit to buy θi

j (finite or infinite) units of asset j, he will sell
in the limit ϕi

j = θi
j − ai

j units of asset j. Note that the price for his asset
portfolio remains fixed at qai. So, depending on his choice of the vector θi,
his net effective return across all states will approach:

K ⊗ Rθi −K
i ⊗ (θi − ai) = (K −K

i
) ⊗ Rθi + K

i ⊗Rai,

where K
i
= (K

i

j(s))(s,j)∈S×J
. The term K

i ⊗Rai is fixed, but since (K −

K
i
) ⊗ Rθi depends on θi, the consumer could change his net effective

returns in all states while keeping zi and K
i
fixed. If he increases θi

j also ϕi
j

(in order to keep zi
j unchanged), and the default penalty he suffers in state

s, λ
i

j(s)
(
1−K

i

j(s)
)
rj(s)ϕi

j , will increase unless either λ
i

j(s) = 0 or K
i

j(s) =

1. Therefore, unless λ
i

j(s)
(
1 −K

i

j(s)
)

= 0, by increasing unboundedly θi
j

and ϕi
j while keeping zi and K

i
fixed, the agent would suffer an infinite

default penalty in state of nature s, and thus, his expected utility would
be equal to −∞.

For the case where λ
i

j(s)
(
1 −K

i

j(s)
)

= 0, we begin by noting that every

vector θi with one or more infinite coordinates must lay in some ray from
the origin of RJ

+; that is, each vector θi with one or more infinite coordinates
is an infinite multiple of all the finite vectors in that ray. We show that each
finite vector of RJ

+ either cannot be feasibly multiplied infinitely (as in case
(i) below), or strictly dominates his infinite multiple in terms of utility
maximization (as in cases (ii) and (iii) below), or dominates weakly his
infinite multiple in terms of utility maximization (as in cases (iv) below).
Every vector θ ∈ RJ

+ belongs to one of the four possible disjoint cases:
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(i) Consider an arbitrary vector θ ∈ RJ
+ such that

(
K(s) − K

i
(s)) ⊗

R(s)θ ≥ 0, for all s ∈ S, with strict inequality for at least one s. Then, the
consumer could increase unboundedly his expected net effective returns in
at least one state, without decreasing it in any other, by multiplying θ by
+∞. But by doing that he would violate the upper bounds of Lemma 5.

(ii) Consider an arbitrary vector θ ∈ RJ
+ such that

(
K(s) − K

i
(s)) ⊗

R(s)θ ≤ 0, for all s ∈ S, with strict inequality for at least one s. Then, by
multiplying θ by some γ > 1, the agent would be simply decreasing his net
effective return in at least one state of nature, without increasing it in any
other state, thus decreasing his attainable level of expected utility.

(iii) Consider an arbitrary vector θ ∈ RJ
+ such that

(
K(s) − K

i
(s)) ⊗

R(s)θ > 0 for at least one state s and
(
K(s′) − K

i
(s′)) ⊗ R(s′)θ > 0 for

another state s′. By multiplying θ by some γ > 1, the agent would increase
his net effective returns in state s and decrease it in state s′. For γ high
enough his marginal utility of income in state s would be approaching 0,
while his marginal utility of income at state s′ would be approaching +∞,
implying that he would not be maximizing his expected utility.

(iv) Consider an arbitrary non–null vector θ ∈ RJ
+ such that

(
K(s) −

K
i
(s))⊗R(s)θ = 0, for all s ∈ S. Then the consumer would be indifferent

between his vector and the vector γ θ, for any θ ∈ R+. Thus, he could
choose, without loss of generality, the lowest γ such that γ θj − ai ≥ 0 for
all j ∈ J.

Proof of Lemma 7.
Suppose that λ

i

jM (s) diverges. Since xi
M (s) is converging, so is the con-

sumer’s marginal utility of income µ1M (s), and thus the difference λ
i

jM (s)−
µ1M (s) will be at some point positive, and by inspecting equations (C.3)
and (C.4) in appendix C, we see that when λ

i

jM (s)−µ1M (s) becomes pos-

itive µr
∆jM (s) must also be positive, implying rj(s)ϕi

jM − ∆
i

jM (s) = 0.

That is, when λ
i

jM (s) goes to infinity rj(s)ϕi
jM −∆

i

jM (s) does not simply
go asymptotically to 0; there is a λ̂i

jM (s) beyond which it becomes exactly

0, for every M such that λ
i

jM (s) > λ̂i
jM (s). So, we can, with no loss of

generality, restrict the Lawmaker to choose λi
j(s) between 0 and λ̂i

jM (s).

APPENDIX B
Why we do not need to assume that rank R=J.

The reader has perhaps noticed that, in any step of the proof of Theorem
1, we assume that rankR = J, as is commonly done in general equilibrium
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economies with incomplete markets (GEI). It turns out that when default is
allowed this assumption becomes meaningless, because the dimension of the
space of possible income transfers between states of nature is endogenous,
and independent of the rank of R. In this appendix we explain in detail
why.
For each agent, the effective returns matrix he faces on his long position
(that is, on θi) is given by K ⊗R. The Kronecker product does not verify
the property that rank K⊗ = J if and only if rank K = rank R = J. By
the contrary, it is trivial to see to see that we may have rank K ⊗ R = J
even if rank K < J, and on the other hand rank K = rank R = J does not
imply rank K ⊗R = J.
For the first case, suppose that:



K1(1) 0 · · · · · · 0

0
. . .

...
... Kj(j)

. . . 0
0 0 · · · 0 KJ(J)
0 0 · · · · · · 0

0
. . .

...
... 0

...
0 · · · · · · · · · 0


such that

K ⊗R =



K1(1)r1(1) 0 · · · · · · 0

0
. . .

...
... Kj(j)rj(j)

. . . 0
0 0 · · · 0 KJ(J)rJ(J)
0 0 · · · · · · 0

0
. . .

...
... 0

...
0 · · · · · · · · · 0


.

whose rank is equal to J , no matter what is the rank of R, as long as
Kj(s)rj(s) 6= 0, for all j = s.
For the second case, suppose there are three states of nature and two assets,
with return matrix:



ENDOGENOUS DEFAULT PENALTIES 415

R =

 1 1
2 1
3 1

 .

and suppose that

K =

 1 1
1/2 1
1/3 1

 .

such that

rank (K ⊗R) = rank

 1 1
1 1
1 1

 = 1

Another pathological case would be to have rankR = J , and, for some
j ∈ J, Kj(s) = 0, ∀s ∈ S. Then K has one column of zeros and the rank
of K ⊗R will be, at most, equal to J − 1.
By other words, even if the J assets available in the economy are not lin-
early independent, in terms of promised returns, they can become linearly
independent in terms of effective payments, which is an integral part of the
equilibrium. On the other hand, it is also possible that default makes some
assets that are linearly independent in terms of promised returns redundant
in terms of effective returns. The set of positive (received) returns available
for all agents in equilibrium is equal to P := {(K⊗R)θ : θ ∈ Rj

+}, which is
a convex cone in the positive orthant of RJ

+, of dimension no greater than
J.
On the short sales side, the effective returns that agent i will optimally
choose to pay in equilibrium are given by the matrix K

i ⊗ R. Again, this
matrix may have rank equal or smaller than J independently of the ranks
of both K

i
and R. The set of negative (payed) returns available for agent

i is equal to N i := {(Ki ⊗ ϕ) : ϕ ∈ RJ
+, Ki ∈ [0, 1]}S

.
If we fix j, and set Ki

j(1) = 1 and Ki
j(s) = 0 for s 6= 1, we see that

agent i is able to “transform” asset j in one in which he has to repay only
in state 1. By the same reasoning, agent i could choose to repay some-
thing to asset j’s buyer only in state 2, or only in state 3, and so on. But
this implies that N i = RS

+, ∀i ∈ I, even if rank R = 1. Then, the set ,
T := {α − β : α ∈ P, β ∈ RS

+},of all possible net return profiles available
for all agents coincides with RS , even if dim P = 1, if for all s ∈ S, there
exists j ∈ J such that Kj(s)rj(s) > 0.
Thus the sticking reality is that when default is allowed for, an agent can
conceivably choose any vector of income transfer across the S states of
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nature, even if he has only one linearly independent asset available. The
greater or smaller easiness an agent will have to choose his most preferred
point in N i will obviously depend on his marginal utility default penalties.
But in our setting these are chosen in order to maximize social welfare,
and to achieve that goal, the Lawmaker must try to make each individual
as best off as possible, without hurting too much all others. Nonetheless,
the most linearly independent assets are presented to an agent, the greater
is the set of possible income transfers available to him without resorting
to default, and the more likely it is that his most preferred point in N i

can be achieved without needing to default. In particular, if rank R = J,
then any point in RS

− can be achieved by every agent without default, and
if Kj(s) = 1, for all (s, j), then we are assured that rank K ⊗ R =rank
R = S, so any point in RS can be attained.

APPENDIX C
Agents’ optimization problem.

Agent i’s problem can be written as follows:

max
x,θ,ϕ,∆

{
V i(xi)−

∑
s∈S

∑
j∈J

λi
j(s)

[
rj(s)ϕi

j −∆i
j(s)

]}
s.t. p(0) · xi(0) + q · zi ≤ p(0) · ωi(0),

p(s) · xi(s) +
∑
j∈j

∆i
j(s)(s) ≤ p(s) · ωi(s) +

∑
j∈J

Kj(s)rj(s)θi
j ,

0 ≤ ∆i
j(s) ≤ rj(s)ϕi

j , ∀s, ∀j,
zi
j = θi

j − ϕi
j , ∀j,

θi
j ≥ 0, ∀j,

ϕi
j ≥ 0, ∀j,

The associated Lagrangian is therefore:

L = V i(xi)−
∑
s∈S

∑
j∈J

λi
j(s)

[
rj(s)ϕi

j −∆i
j(s)

]
+ µ0[p(0) · ωi(0)− p(0) · xi(0)− q · (θi − ϕi)]

+
S∑

s=1

µ1(s)
[
p(s) · ωi(s) +

∑
j∈J

Kj(s)rj(s)θi
j − p(s) · xi(s)−

∑
j∈J

∆i
j(s)

]

+
S∑

s=1

µr
∆j

(s)[rj(s)ϕi
j −∆i

j(s)].

The necessary Kuhn–Tucker conditions are:
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∂L
∂xi

g(0)
=

∂V i

∂xi
g(0)

− µ0pg(0) ≤ 0, xi
g(0) ≥ 0, xi

g(0)
∂L

∂xi
g(0)

= 0, ∀g.

∂L
∂xi

g(s)
=

∂V i

∂xi
g(0)

− µ1(s)pg(s) ≤ 0, xi
g(s) ≥ 0, xi

g(s)
∂L

∂xi
g(s)

= 0, ∀g, ∀s.

∂L
∂θi

j

= −µ0qj +
S∑

s=1

µ1(s)Kj(s)rj(s) ≤ 0, θi
j ≥ 0, θi

j

∂L
∂θi

j

= 0, ∀j (C.1)

∂L
∂ϕi

j

=
∑

λi
j(s)r

j(s)

+µ0qj +
S∑

s=1

µr
Deltaj

(s)rj(s) ≤ 0, ϕi
j ≥ 0, ϕi

j

∂L
∂ϕi

j

= 0, ∀j

(C.2)

∂L
∂∆i

j(s)
= λi

j(s)−µ1(s)−µr
∆j

(s) ≤ 0, ∆i
j(s) ≥ 0, ∆i

j(s)[λ
i
j(s)−µ1(s)−µr

∆j
(s)] = 0, ∀j, ∀s.

(C.3)

∂L
∂µ0

= p(0) · ωi(0)− p(0) · xi(0)− q · (θi − ϕi) ≥ 0, µ0 ≥ 0, µ0
∂L
∂µ0

= 0.

∂L
∂µ1(s)

= p(s)·ωi(s)−p(s)·xi(s)+
∑
j∈J

[Kj(s)rj(s)θi
j−∆i

j(s)], µ1(s) ≥ 0, µ1(s)
∂L

∂µ1(s)
= 0, ∀s.

∂L
∂µr

∆j
(s)

= rj(s)ϕi
j −∆i

j(s) ≥ 0, µr
∆j

(s) ≥ 0, µr
∆j

(s)
∂L

∂µr
∆j

(s)
= 0, ∀s.

(C.4)
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