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1. INTRODUCTION

There have been continuing expressions of interest from a variety of quar-
ters in the development of techniques for modelling national behavior in
a long-term context of continuing international rivalry — for short, “long
term competition”. The most characteristic feature of these models is that
they extend over time in a fairly regular or repetitive manner. The un-
derlying structure of possible actions and consequences remains the same,
though parameters may vary and balances shift, and the decisions and poli-
cies of the national decision-makers are by no means constrained to be con-
stant or smoothly-varying, or even “rational” in any precisely-identifiable
sense. The use of game theory or an extension thereof is obviously indi-
cated, and considerable theoretical progress has been made in this area.
But the ability of the theory to handle real applications is still far from
satisfactory. The trouble lies less with the descriptive modelling, — i.e.,
formulating the “rules of the game” in a dynamic setting, than with the
choice of a solution concept that will do dynamic justice to the interplay
of motivations of the actors. (Game theoreticians, like mathematical e-
conomists, have always been more comfortable with static than dynamic
models.). Since any predictions, recommendations, etc. that a mathemati-
cal analysis can produce will likely be very sensitive to the rationale of the
solution that is used, and since the big difficulties are conceptual rather
than technical, it seems both possible and worthwhile to discuss salient
features of the theory without recourse to heavy mathematical apparatus
or overly formal arguments, and thereby perhaps make the issues involved
accessible to at least some of the potential customers for the practical anal-
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yses that we wish we could carry out in a more satisfactory and convincing
manner.

Two general types of “solution concept” are distinguished in game the-
ory: cooperative notions, such as the core, bargaining set, von Neumann-
Morgenstern stable sets, and Shapley value; and noncooperative notions,
principally the Nash equilibrium point and its variants and elaborations,
but including also the max-min solution based on “safety level” or “worst
case” considerations. Cooperative notions are appropriate for situation
where contracts among players are customarily adhered to and can be made
legally binding; noncooperative notions where there is mistrust and no ex-
ternal enforcement mechanisms are available. The long term international
scene is most naturally classified as noncooperative, since there is no effec-
tive international jurisdiction in most cases, even in the short run. Adher-
ence to major international agreements is essentially a matter of national
self-interest, and to be effective in the long run such agreements must be
written to be self-enforcing, i.e., so that it is to the continuing advantage
of all sides to adhere to them.

Quite a bit is known about Nash noncooperative equilibria in “contin-
uingly competitive” situations, and we shall review some of this material
here. It turns out that individual self-interest in such situations can in fact
dictate a kind of cooperative behavior, in many cases, sustained by the fear
of “punishment” by the other players for failing to “cooperate” with the
general plan — this in spite of the fact that the players have no way of
legally binding themselves to carry out such punishment. The ability of
the noncooperative theory to describe such arrangements and to account
for their stability in a “selfish” world is an encouraging point in its favor.
The price that is paid, however, is the high degree of nonuniqueness in the
Nash solutions (as revealed in the two theorems described below), which
removes from this theory most of its predictive power.

2. REPEATED GAME MODELS

In this section we shall review some of the known theory of a special
kind of “continuingly competitive” game: that of repeated games. Given
a finite game G in strategic form1, we consider an infinite game G∗, each
play of which consists of an infinite repetition of plays of G. In each play of
G, or “round of G∗” the players are assumed to know the outcomes of all
previous rounds. The payoff for G∗ may be assumed to be of the limiting

1a.k.a. “normal form.”
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average form:2

lim
m→∞

1

m

m∑
t=1

ht. (1)

Here hj is the payoff for G in the j’th round of G∗. Many authors call G∗

the supergame of G.
An alternative form of the payoff for G∗ involves discounting of future

payoffs at a positive discount rate:

∞∑
t=1

(1− ρ)tht. (2)

For the time being we shall confine our discussion to the limiting average
form (1), which treats the future as no less important than the present.
Indeed, cumulatively, the future is all important in (1), since the contribu-
tion from any period of finite length will wash out in the long run. Nothing
you actually do makes any difference; only your policies for the indefinite
future have any significance. Despite this peculiarity, however, it should
be remarked that for many purposes, both technical and conceptual, the
limiting-average case behaves like the limit of the discounted-sum case, as
the discount rate p in (2) goes to zero. Thus, used with care, the limiting
average form can serve as an approximation to situations where a very low
discount rate is appropriate. Long term competition, almost by definition,
would appear to fall into this category.

The basic theorem3 about supergames states that a necessary and suffi-
cient condition for h = (h1, . . . , hn) to be the payoff vector of some Nash
equilibrium point of G∗ is that it be feasible and individually rational in
G.

Let us explain the key terms in this theorem. A “payoff vector” is simply
an n-tuple of real numbers, where n is the number of players. The term
“payoff vector” is used because the n coordinates signify the payoffs to the
n players. By “feasible” we here mean “feasible in correlated strategies”;
that is, a payoff vector is feasible if and only if it is in the convex hull of
the set of payoff vectors that can be obtained by having the players play
pure strategies. A payoff vector is called “individually rational” if each
player receives at least his min-max payoff, which is the level of payoff
below which he cannot be forced by the remaining players4. Finally, a
“Nash equilibrium point,” or “EP” is an n-tuple of strategies—one for each

2A technical difficulty is that this limit need not always exist; this technical difficulty
has a technical solution, which we do not wish to get involved with at present.

3This is a “folk-theorem”; it has never been published, but is well known to most
workers in the field.

4When there are just two players, min-max=max-min.
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player in the game—such that each player’s strategy is a best response to
the (n− 1)-tuple of the other players’ strategies. In other words, no player
can improve his own payoff by “defecting” to another strategy while the
other players are held fixed.

To clarify the meaning of this theorem, let us see what it says about
the well known “Prisoner’s Dilemma.” This is the two-player game whose
strategic form is of the type given in the following table:

Player II
Player I 4,4 0,5

5,0 1,1

The set of all feasible payoff vectors is indicated by the horizontally
hatched region in Fig. 1, which is the convex hull of the four payoffs in the
table. Since the minmax payoff to each player is 1, the set of all individually
rational payoff vectors is indicated by the vertically hatched region. By the
theorem, then, the set of payoff vectors arising from equilibrium points in
the supergame is given by the cross-hatched region. Note in particular that
the point (4,4)—the traditional “cooperative” outcome—appears as the
payoff to an equilibrium point in the supergame of the Prisoner’s Dilemma.

The proof of the theorem is not difficult, and as the idea of the proof
is important to a proper understanding of the situation we shall take a
little space to outline it here. The “necessity” part is easily established; it
is intuitively clear that equilibrium is not possible if any player is below
his guaranteed minimum. The more interesting and significant part of the
proof is the “sufficiency.”

Assume for simplicity that n = 2 (there are just two players). Suppose
h is a feasible, individually rational payoff vector. Here we may write

h =
k∑

m=1

amhm,

where the a are nonnegative weights that sum to 1 and the hm are payoff
vectors corresponding to pure strategy pairs in G. Suppose first that the
am are rational numbers and express them in the form am = pm/q, where
pm are positive integers and q is their sum. The payoff vector h can then
be achieved as a limiting average in G∗ by having the players play for p1
consecutive periods an n-tuple that achieves h1, then for p2 consecutive
periods an n-tuple that achieves h2, and so on; after q periods, we start
again from the beginning.

If the am are irrational, the same effect can be attained by approximating
to them by rational numbers, with increasing values of q, and playing once
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through each approximation in turn, to yield the desired limiting average.

FIG. 1. Feasible and individually rational payoffs in the Prisoner’s Dilemma

This procedure, however, does not yet describe a Nash equilibrium point
in G∗, and in fact does not even describe a pair of supergame strategies. It
only describes a particular, feasible course of play. A supergame strategy
must describe each player’s responses to all possible actions of the other
player, not only when he “plays along” with a prescribed course of play,
such as the one described above, but also when he “defects”. This is where
the requirement that h be individually rational comes in.

Since h is individually rational, we have for each player i

hi ≥ max
σ

min
τ

Hi(σ, τ),

where Hi is the payoff function to player i in the game G, σ ranges over
all mixed strategies of player i, and τ ranges over all mixed strategies of
the other player, j. By von Neumann’s minimax theorem, there is a mixed
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strategy τ of j such that for all mixed strategies σ′ of i,

minmaxHi(σ, τ) ≥ Hi(σ′, τ);

hence in particular

hi ≥ Hi(σ′, τ)

for all mixed strategies σ′ of i. That means that by playing τ , j can hold
i down to his max-min value, and a fortiori to hi.

We may now describe an EP in G∗ as follows: The players start by
playing to obtain an average payoff of h, as outlned above. If at any stage
a player i “defects”—i.e., does not play the prescribed choice in G for that
round—then starting from the next round, the other player j plays the
mixed strategy τ forever after. This will hold i’s limiting average payoff
down to at most hi, so that he will have gained nothing by his defection.
Thus, h is indeed his payoff to an EP.

3. PERFECT EQUILIBIUM POINTS

The above line of proof has been subjected to the following criticism:
Though there is no question that the strategy pair as described constitutes
an equilibrium point, it is not clear under what circumstances it would ever
be used. In particular, it is possible that the strategy τ∗, while holding
player i down to his minmax payoff, may also be very5 disadvantageous
to the player using it (or to one of the set of players participating in it, if
n > 2). The equilibrium point dictates that τ will continue to be played
“forever,” even if i defects only once. As we pointed out at the end of
the previous section τ is supposed to play the role of a deterrent. But an
infinite unremitting repetition of τ seems like an unreasonable response to
a single act of defection, except for the fact that—in view of (1)—any finite
period of “punishment” is no punishment at all. But by the same token,
a single defection is also insignificant in the limit. Thus, the threatened
response may still seem unreasonable, especially when, as is often the case,
it is disadvantageous or costly to the user, and hence such an unremitting
repetition may not be believable as a deterrent. To have a word for these
EPs, let us call them “grim”.

Let us try to pinpoint the dissatisfaction with grim EPs in a slightly more
general framework. The “knowledge” that j (or, more generallyN\{i}) will
respond to a defection on the part of i by an unrelenting stream of τ is
what keeps i from defecting; but if i does in fact defect, it may no longer
be profitable for j (or N\{i}) to respond with τ . This is what makes τ
unbelievable.

5Compare Aumann [1959].
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This kind of reasoning motivated a specialization of the notion of equilib-
rium point, first considered by R. Selten [1965] and called by him a perfect
equilibrium point.6 To define this notion, we must recall more precisely
the definition of a “strategy” for the player i in the supergame G∗. This is
a function that tells i which pure G-strategy to choose on each round, as
a function of what all the players, including i himself, did on all previous
rounds. For each positive integer k, define G∗

k to be the “subgame” start-
ing from the k’th period, i. e. , after k − 1 rounds have been played, and
continuing indefinitely from that point. Thus, G∗ = G∗

1. Each n-tuple of
strategies in G∗, together with a series of actual actions on the part of all
players in the first k−1 rounds, induces an n-tuple of strategies in G∗

k. An
n-tuple σ = (σ1, . . . , σn) of strategies in G∗ is called a perfect equilibrium
point (or PEP) if for each k and for each series of actions of the players in
the first k − 1 periods of G∗, the induced n-tuple is an EP of G∗

k.
If we set k = 1 we see that a PEP is in particular an EP.
It’s easy to see that a grim EP is in general not perfect, since if player i

defects on round k − 1 it will in general not be a best response in G∗
k for

the other players to “punish” him; it may even be individually irrational.
It thus appears that the notion of perfect equilibrium point might hold an
answer to the problem of the believability of deterrents. In the next three
sections we shall explore this matter somewhat further. To some extent
our hopes turn out to be in vain: we shall find in the next section that
the payoffs associated with PEPs in G∗ are the same as those for grim
EPs though the grim EPs thems elves are excluded. the methods may be
different, so to speak, and possibly more “believable” but the upshot is the
same: there is no narrowing of the class of out comes that can be sustained
in equilibrium.

However, when we modify the payoff in G∗ by introducing a positive dis-
count rate (2), which we do in Sec.5, we find that requiring “perfection” can
significantly reduce the set of equilibrium outcomes. Moreover, the concept
of believability does appear to play a significant role in the description of
the perfect equilibria. Thus, the notion of perfection of equilibria, through
not a panacea, does appear to give us a somewhat better handle on some
of the problems that we wish to model.

4. CHARACTERIZATION OF PEPS

This section is devoted to the following theorem:

Theorem 1. The set of payoffs to perfect EPs in G∗ coincides with the
set of payoffs to ordinary EPs—i.e., it is the set of all feasible, individually
rational payoffs in G.

6See also Selten [1975].
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Again, to gain a good understanding of this theorem it is essential to
outline the proof. As before, it is “sufficiency” that is the interesting part
of the proof; the “necessity” follows from the previous theorem. We shall
find the argument considerably more intricate than before.

To simplify the presentation we again assume that there are only two
players. Moreover, in order to make the use of mixed strategies unnecessary,
we shall assume that G is not in strategic form, with simultaneous choices
by the two players, but is a game of perfect information with a single move
for each player and no chance moves. Player I moves first, II is informed of
I’s move, and then II moves.7 None of these assumptions are really required
for the truth of the theorem, but they do simplify the proof.

Suppose h is a feasible, individually rational payoff vector of G. We
shall describe a PEP with payoff h. As in Section 2, the description will be
couched in terms of a tentative “agreement” on prescribed course of play.
The agreement starts out as before with a sequence of choices which, when
adhered to by both players, will lead to the desired limiting average payoff
h. Let us call this “the cooperative sequence.” Next, we shall specify how
the players react to a defection—i.e., a departure from the cooperative
sequence by one of the players. In the previous proof, the reaction was
unrelenting punishment. Here, instead, the PEP strategies will specify
that a defection on the part of either player be punished by a sequence
of choices by the other that forces the defector’s average payoff down to
within ε of his max-min value, where ε is a small number that may depend
on the “date” of the defection. After the defector has thus been “beaten to
within an inch of his life,” the punisher relents and proscribed play returns
to the cooperative sequence at the point of defection.

It should be noted, however, that not only are defections from the coop-
erative sequence punished, but also defections from any punishing sequence
(In the subgame resulting from an earlier defection) are punished. A player
who “should” punish and does not do so will himself be punished. This
is what provides the motivation for the punisher actually to carry out the
punishment, and so keeps the EP perfect.

The situation is a little complex; in order to convince ourselves that we
have actually described a PEP we shall now give a more formal treatment.
Without loss of generality we may assume that the number of choices avail-
able to I on each move is the same as the number of choices available to II;
call the number m. Thus, M = {1, . . . ,m} is the set of possible choices of
the players at each move. When it’s player I’s turn in the n-th round of G∗

he has before him the full history of previous moves; this takes the form of

7Note that the apparent asymmetry of the players disappears in the supergame: in
G* the players move alternately, each with perfect information.
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a sequence (x1, . . . , x2n−2), where xi ∈ M represents the choice made on
the i’th move in G∗ (it is I’s or II’s choice according as i is odd or even).
Similarly when II must move, he has before him a sequence (x1, . . . , x2n−1),
where again each xi ∈ M . Let us call any finit sequence of members of
M a history. A strategy for Player I [Player II] may be defined as a func-
tion from histories of even [odd] length to M . Thus, a pair of strategies is
simply a function f from the set of all histories to M .

Now let h = (hI , hII) be the given feasible individually rational payoff
vector. Let (c1, c2, c3, . . .) be a fixed cooperative sequence, i.e., a sequence
of moves leading to the payoff h in G∗. Let p be a G-strategy for I (i.e.,
a member of M) that holds II to his max-min payoff in G, and let q(·)
be a G-strategy for II (i.e., a function from M to M) that holds I to his
max-min payoff in G.

We wish to define a strategy-pair f for G∗ which is a PEP and whose
associated payoff is h. The definition of f will be inductive, based on
the length k of the history on which it is being defined. On a history
of length 0 we define f to be c1; this simply means that the PEP will
prescribe the choice of c1 for the first move of Player I. Suppose now that
f has been defined on all histories up to length k − 1; we wish to define
it on all histories of length k. Let (x1, . . . , xk) be such a history. We
shall say that the l’th move of that history (1 ≤ l ≤ k) is a defection
if xl ̸= f(x1, . . . , xl−1). If (x1, . . . , xn) contains no defection, we defind
f(x1, . . . , xn) = ck+1. Otherwise, suppose the most recent defection in
(x1, . . . , xk) occurred at move l. If l and K + 1 have the same parity—
i.e., the player who is about to move is the same as the one who most
recently defected—then we defind f(x1, . . . , xk) = ck+1 If l and k+ 1 have
opposite parity, consider first the case in which l is even, i.e., Player II was
the last to defect. In that case k is also even, so exactly k

2 rounds of G∗

have now been completed and it is Plyer I’s turn to move. Consider the
average payoff of Player II as measured at the end of each of the rounds
l
2 + 1, . . . , k

2 , and let εl = 1/l. If any one of these averages is ≤ εl+ II’s
max-min value in G, then we define f(x1, . . . , xk) = ck+1; otherwise, we
define f(x1, . . . , xn) = p. That means that player I brings the offending
player II to within εl of his max-min payoff and then returns to cooperative
play.8

Finally, consider the case in which l and k + 1 have opposite parity
and l is odd, i.e., player I was the last to defect. In that case k is odd,(
k−1
2

)
rounds of G have been completed, player I has already made his

move in the k+1
2 ’th round, and it is now II’s turn to move. Proceeding as

before, we consider I’s average payoff as measured at the end of each of

8Note that he never has occasion to look back beyond the most recent defection; the
εj level of punishment suffices for all past transgressions.
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the periods l+1
2 , . . . , k−1

2 . If any of these averages was ≤ εl+ the max-min
value to I in G, then we define f(x1, . . . , xk) = ck+1; otherwise, we define
f(x1, . . . , xk) = q(xk). As before, that means that II brings the offending
player I to within εl of his max-min value, then returns to cooperative play.
(The difference is only that, because of the asymmetry in G, II’s punishing
move must depend on I’s move in the same “round”.)

This completes the formal description of the PEP that we described infor-
mally before; the reader should be able to convince himself that it is in equi-
librium, is perfect, and yields the cooperative sequence (c1, c2, . . . , ck, . . .)
with limiting average payoff k.

5. DISCOUNTED PAYOFFS IN REPEATED GAMES:
DISCUSSION OF AN EXAMPLE

Thus far, we have been considering only the limiting-average form of
payoff for repeated games, corresponding intuitively to a future discount
rate of zero. We shall now try to give an idea of how positive discount rates
can affect the behavior of EPs and PEPs by studying an apparently simple
but surprisingly revealing example.

Consider the following payoff matrix for G in strategic form, the players
moving simultaneously:

Player II
⃝1 ⃝2

Player I 1 0,1 −p,−c+ 1

2 1,0 −p+ 1,−c

Here, p and c are positive numbers (“punishment” and “cost”); we may
think of them as being rather large. Thus, II may be in a position to
damage I severely, but only at a cost to himself that may perhaps be
unacceptable.9

In the repeated G∗, we shall use the discounted payoffs

∞∑
t=1

αthIt and
∞∑
t=1

βthIIt

to Players I and II, respectively, where 0 < α < 1 and 0 < β < 1. Some-
times we shall further assume that α ≤ β, i.e., that Player I has, if anything,
a bigger discount rate (= shorter “utility horizon”) than Player II.

As is easily seen, the one-shot game G has a unique EP, namely ( 2 ,
⃝1 ), which yields the payoff (1, 0). This means that the strategy-pair in

9One could think of I and II as North Vietnam and the United States in the 1960’s.
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which I always plays 2 and II always plays ⃝1 (regardless of history) is a
perfect EP of G∗, since obviously no defection, even in a subgame, can ever
be profitable.

Player II, however, would naturally prefer the outcome (0, 1), correspond-
ing to ( 1 , ⃝1 ). We shall now investigate under what conditions this out-
come can be sustained by an EP, or by a PEP, in the discounted repeated
game. Indeed , we shall find that it can be sustained by an EP if and only
if p ≥ 1/α; and, when α ≤ β, that it can be sustained by a PEP if and only
if p ≥ 1/α and p/c ≥ (1− β)/αβ. Thus, whereas the existence of an EP is
independent of the cost of the punishment to the punisher (the parameter
ε), the existence of a PEP is not.

Let us first consider the EP question. We claim that the following “grim”
strategy-pair:

I plays 1 always

II plays⃝1 so long as I plays 1 , but plays ⃝2
forever if I ever plays 2

is an an EP of G∗, provided that p ≥ 1/α. Moreover, we claim that if
p < 1/α there is no EP sustaining (1, 1). Note first that II will certainly
not wish to defect, as he cannot possibly improve on the sequence of payoffs
(1, 1, 1, . . .). On the other hand, if I wishes to improve on his sequence
(0, 0, 0, . . .), his best chance is to deviate to 2 at some time t0, then keeping

playing 2 forever. This yields him the payoff sequence (0, . . . , 0, 1,−p +
1, . . .), and this is worth

αt0

(
1

1− α
− pα

1− α

)
.

Since this is profitable to him if and only if 1 > pα the truth of our claims
is now evident.

For a numerical example, let p = 2. Then if α < .5 there will be no EP
sustaining the (0, 1) outcome, as the rewards for defecting will outweight
any possible punishment. But if α ≥ .5, the strategy pair given above is
clearly an EP.

Nothing in this result depends on the values of c or β. Yet, intuitively,
one feels that the credibility of II’s “threat,” with which he extracts such
a favorable outcome, ought to be very dependent on its cost. Our next
object will be to show that a PEP that sustains the (0, 1) outcome is not
possible for large values of c.

First let us give an example of such a PEP. It happens that we can define
it in a very simple way, making the instructions to the two players almost
independent of the history:
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1) In the first round, play ( 1 , ⃝1 ).

2) If the choices in round t− 1 were ( 1 , ⃝1 ) or ( 2 , ⃝2 ), play ( 1 , ⃝1
) in round t.

3) If the choices in round t− 1 were ( 1 , ⃝2 ) or ( 2 , ⃝1 ), play ( 2 , ⃝2 )
in round t.

The cooperative sequence resulting from this strategy pair is just a rep-
etition of ( 1 , ⃝1 ); this is worth β/(1− β) to II and 0 to I. In checking for
the PEP property, it is sufficient to look merely at deviations that occur
in the first round of a typical subgame G∗

t . Suppose player I defects when
he is supposed to play 1 . His best possible payoff sequence from then on
is (1,−p+ 1,−p+ 1, . . .), which is worth

αt

(
α

1− α
− α2p

1− α

)
to him. So if p ≥ 1/α he will not have any incentive to defect. Player II like-
wise will not defect when he is supposed to play ⃝1 , as he cannot possibly
improve on the payoff sequence (1, 1, 1, . . .). When I is supposed to play 2 ,
a defection could yield him at best the sequence (−p,−p+1, 0, 0, . . .); this
is clearly inferior for all p ≥ 0 to the prescribed sequence (−p+ 1, 0, , . . .).
Finaly, when II is called upon to play 2 at the beginning of G∗

t , he will have
to compare his prescribed payoff sequence (−c, 1, 1, 1, . . .) with sequences
like (0,−c, 1, 1, 1, . . .), (0, 0,−c, 1, 1, 1, . . .), etc., which he can obtain by de-
fecting for 1, 2, etc. rounds, or even the sequence (0, 0, 0, . . .) which he can
obtain by perpetually defecting. In the discounted sum, these “heresies”
are worth

βk(−cβ + β2/(1− β)), k = t+ 2, t+ 3, . . . ,

or 0, while “orthodoxy” is worth

βt(−cβ + β2/(1− β)).

So if c ≤ β(1− β), II cannot gain by defecting. The given strategy pair is
therefore a PEP on the assumptions that p ≥ 1/α and c ≤ β/(1 − β), as
diagrammed in Figure 2.

To wrap up our example, it is necessary to show that there are signifi-
cance cases, where, because of the positive discount rate, a PEP does not
exist. Showing nonexistence is a more difficult undertaking, because in
general a PEP can be a very complex thing. In particular, while pure
G-strategies have suffice up to now, we cannot ignore the possible use of
mixed strategies against a defection. In our example, if p and c are both
large numbers, the threat of a small probability of using ⃝2 may be enough
to keep I in line while holding the (expected) cost to a level that II can
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accept.10 However, it would be out of place in this discussion to develop
the elaborate technical apparatus of mixed strategies just for the sake of
one example, whose purpose is only illustrative. Instead, we shall adopt a
far simpler expedient, called “convexification in pure strategies,” which is
more or less equivalent to the introduction of mixed strategies.

FIG. 2.

In our example, this convexification merely means allowing player II the
option of “scaling down” his punishment by giving him a continuum of
strategies in G, as follows:

Player II
⃝1 ⃝2λ (0 < λ ≤ 1)

Player I 1 0,1 −λp,−λc+ 1

2 1,0 −λp+ 1,−λc

Here, λ = 1 corresponds to the old ⃝2 and λ = 0 corresponds to the old
⃝1 . (However, we still indicate the latter choice by a separate column
in the matrix. Playing ⃝2λ has much the same effect as playing a mixed
strategy {⃝2 with probabilityλ,⃝1 with probability1 − λ}, and it can be
shown (though we shall not do it here) that if the new G∗ has no PEP in

10This is a realistic consideration for the world of nuclear politics and arms races,
where the pressure of the nuclear deterrent is felt in every situation that creates any
perceptible risk that the situation might escalate out of control.
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pure strategies that sustains the cooperative sequence (( 1 , ⃝1 ), ( 1 , ⃝1 ),
. . . ), then the original G∗ (with the same values of α, β, p, c) has no PEP
in pure or mixed strategies that sustains that sequence.

Consider now a play of the revised G∗, with II making the sequence
of moves Λ = (λ1, λ2, . . . , λt, . . .). The total punishment received by I is
then given by P = P (Λ) =

∑∞
t=1 λtα

tp, and the total cost incurred by
II is C = C(Λ)

∑∞
t=1 λtβ

tc. We now bring in the assumption, not used
until now, that α ≤ β. This implies that

∑∞
t=1 λt(β

t − αt) ≥ 0, so that
P/C ≤ p/c. This inequality shows that it is most efficient, in terms of the
damage/cost ratio, for II to punish immedistely; he thereby minimizes his
cost for a given level of deterrence. It follows that the game has a PEP,
of the type described above, whenever there is any number λ such that λp
and λc satisfy the inequalities

λp ≥ 1/α, λc ≤ β/(1− β).

This is illustrated in Fig. 3. As we can see, there is a critical ratio of c to
p, namely

R0 =
αβ

1− β
,

above which no such λ can be found.
For a numerical example, if α = β = .75 then R0 = 2.25. If p = 100 and

c = 200 then c/p < R0, and we may, for example, choose λ = .014, giving
us λc = 2.8 < β/(1− β) = 3 and λp = 1.4 > 1/α = 1.33. So a 1.4 percent
chance of II using his threat strategy ⃝2 after a defection by I sustains the
perfect equilibrium at (0, 1).

We can also make the converse argument. If (c, p) is not in the crosshatched
region indicated in Fig. 3, then there is no way for II to inflict any given
amount P of punishment without incurring a cost of more than R0P . By
the foregoing, it is clear that this is above the cost that he can “afford”;
in other words, he would prefer to accept his max-min payoff of 0 forever,
rather than carry out the requisite threat. So a PEP cannot exist.
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