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This paper shows that a linear process with breaks can mimic autocor-
relations and other properties of I(d) processes, where d can be a fraction.
Simulation results show that S&P 500 absolute stock returns are more likely
to show the “long memory” property because of the presence of breaks in the
series rather than an I(d) process.

1. INTRODUCTION

There have been several works analyzing the long-run properties of stock
returns. Granger and Ding (1995a,b) considered long return series, using
the well-known Standard and Poor’s (S&P) 500 index of about 17,000 daily
observations, and established a set of temporal and distributional proper-
ties for such series. They suggested that the absolute returns are well
characterized by long memory process, but the parameter estimates of the
long-memory model sometimes vary considerably from one subseries to the
next as shown by Granger and Ding (1996). There are several attempts
to explain these findings, such as Rydén, Teräsvirta, and Åsbrink (1998).
They suggested that the temporal higher-order dependence observed in re-
turn series may be well described by a hidden Markov model. Such a model
is estimated for the series of the S&P 500 from 1928 to 1991 which is the
series considered by Granger and Ding (1996). However they failed to ex-
plain the one stylized fact that is the very slowly decaying autocorrelation
function for the absolute returns. One possible alternative explanation for
this time-varying long-memory property in the stock market might be de-
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rived from a recent paper of Granger and Teräsvirta (1999) using a simple
nonlinear model.

The purpose of this paper is to explain the long memory property in the
stock market by extending the idea of Granger and Teräsvirta (1999). Oc-
casional structural breaks might cause the “long memory” property of ab-
solute returns since Granger and Ding (1996) examined the series from 1928
to 1991. We suspect that there were structural changes in the absolute re-
turns or in the volatility of returns during this long period. If such changes
exist, a stationary process that encounters occasional regime switches will
have some properties that are similar to those of a long-memory process.

The plan of the paper is as follows. Section 2 contains considerations
of temporal properties of a linear model with occasional breaks. Section 3
introduces an estimation method of multiple breaks at unknown dates (Bai
(1997) and Bai and Perron (1998)) or changes in variance (Inclan and Tiao,
1994). Section 4 contains our analysis of spurious long memory properties
of a simple linear model with occasional breaks in mean. In Section 5
we discuss spurious breaks in I(d) process and overdifference caused by
removal of estimated breaks. Section 6 is devoted to an application using
the S&P 500 stock returns and finally Section 7 presents some extensions
of this paper and conclusions.

2. OCCASIONAL BREAKS AND AUTOCORRELATION
FUNCTION

We shall consider a simple linear model with occasional breaks in mean
(Chen and Tiao (1990) and Engle and Smith (1999)).

yt = mt + εt (1)

mt = mt−1 + qtηt = m0 +

t∑
i=1

qiηi (2)

where εt ∼ iid(0, σ2
ε), ηt ∼ iid(0, σ2

η) for t = 1, . . . , T . Assume that qt
follows an i.i.d binomial distribution as below1:

qt =

{
0 with probility 1− p
1 with probility p

(3)

Then combining (1) and (2) yields

yt = εt +m0 + qtη1 + qtη2 + · · ·+ qtηt (4)

1Engle and Smith (1999) use an endogenous smooth transition function, qt(γ) =
ε2t /(γ+ ε2t ), γ > 0, to capture different regime, i.e., random walk and stationary period.
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One problem with the binomial model in (3) is that this model implies
sudden change only. Structural change may occur gradually. One, there-
fore, can use a simple extension of (3), with qt following a regime switching
model:

qt =

{
0 when st = 1
1 when st = 2

(3′)

Let st be a latent random variable with two discrete values: 1,2. Each
value of st represents a different state in the length of memory of shock.
st is assumed to be governed by the following Markov probability law:
pij = Pr(st = j|st−1 = i). Then (1) can be solved exactly to yield (4).
In this specification, the state of st will determine if the shock of ηt is
permanent or not. A regime with st = 2 represents a period of structural
change.

Now focus on the binomial case first. Assume that εt, ητ and qs are
independent for all t, τ and s. For the initial conditions, let m0 = 0,
qt = 0, εt = 0 and ηt = 0 for all t ≤ 0, then the mean of yt is E(yt) = 0,
and its variance is

var(yt) = tpσ2
η + σ2

ε (5)

Similarly, one finds that the covariance between yt and yt+k is

cov(yt, yt+k) = tpσ2
η (6)

We can get the following k-th autocorrelation equation of this process,

corr(yt, yt+k) =
tpσ2

η√
tpσ2

η + σ2
ε

√
(t+ k)pσ2

η + σ2
ε

(7)

We can also derive properties of a sample autocorrelation function of this
process. A k-th sample autocorrelation equation is,

ρ̂T,k =

T−k∑
t=1

(yt − y)(yt+k − y)

T∑
t=1

(yt − y)2

≈

〈Tp〉σ2
η

6

(
1− k

T

)(
1− 2

k

T
+ 4

(
k

T

)2
)

〈Tp〉σ2
η

6
+ σ2

ε

(8)

for large T and k where y =
∑T
t=1 yt/T

ρ̂T,k
p−→
(

1 +
6σ2

ε

〈Tp〉σ2
η

)−1
, as T →∞ for fixed k and 0 < Tp <∞. (9)
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ρ̂T,k
p−→ 0, as T →∞ and k/T → 1. (10)

In this process, Tp is an expected number of structural breaks within the
sample period T and σ2

η will be related to the size of breaks. As explained
in the following proposition, these parameters are closely linked to the basic
properties of this process. Three qualitative conclusions can be drawn and
are stated in Proposition 1.

Proposition 1. A linear process with occasional breaks as described in
(1) and (2) has the following properties.

(a) Suppose that the probability of breaks converges to zero slowly as the
sample size increases (i.e., p → 0 as T → ∞, yet limTp → c < ∞ where
c is non-zero constant)2, then a k-th sample autocorrelation in (8), ρ̂T,k,
converges to nonzero value for fixed k as T →∞.

(b) If p > 0, ρ̂T,k appears to approximate the autocorrelations of an I(1)
process. In fact, since Tp increases to infinity as T increases to infinity,
this process is an I(1) process.

(c) When p = 0, this process is an I(0) process.

Proof. (a) As T →∞, ρ̂T,k
p−→ (1+∆)−1, where ∆ is determined by the

values of T, p, σ2
ε , and σ2

η (see (9) and the 1st rows of Table 1). (b) As T →
∞, and Tp→∞, we get ρ̂T,k → 1 for any fixed k. (c) If p = 0, then ρ̂T,k =

0 for all k.

Let’s focus on the property of proposition 1(a) [spurious long-memory
process] in this following paper. Proposition 1(a) reflects the finite sample
property of autocorrelation, i.e., for T large (but finite) and Tp small but
not zero, corr(yt, yt+k) appears to approximate the autocorrelations of an
I(d) process which have a slow hyperbolic decay after the initial dropoff
from k = 0 to k = 1. The autocorrelations in (8) will not decline expo-
nentially (even if εt of equation (1) has serial correlation), but decay very
slowly as in Table 1. Figure 1 exhibits slow hyperbolic decay of the auto-
correlations as k increases. However, it will converge to zero as usual for the
linear, stationary model or the stationary long memory model (d < 0.5)
as k increases. For a given k, the sample autocorrelation approaches a
nonzero constant as T →∞ as shown (9).

If [Tp] is a small positive integer, a plot of yt against t shows a few
breaks in level since the value [Tp] is in some sense the expected number
of breaks within the sample period. As [Tp] increases there will be more
breaks and a higher value of the sample autocorrelation. The increase of
σ2
η, which means larger magnitude of breaks, has similar effects on the

2For example, let R be a number of breaks for the given sample size T , then p = R/T .
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FIG. 1. Sample Autocorrelation

autocorrelations. The intuition is that an increase of Tp or σ2
η make this

process closer to a random walk.
In the stock market, the correlogram of absolute stock return declines

steadily but not exponentially. It may start with ρ̂1 = 0.4, say, and then
declines only slowly from this value. Another stylized fact of financial
data is that the correlogram is low but remains positive for many lags3.
Granger and Ding (1996) suggest a fractionally integrated model amongst
the models known to generate series having such properties. In this paper,
we are suggesting a new class of model, a linear model with occasional
breaks, as possible generating mechanism, instead of the I(d) model with
a fraction d.

3Granger and Marmol (1997) explain this property by using a process which consists
of a stationary, long memory component plus a white noise component of much larger
variance.
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TABLE 1.

Theoretical Values of Autocorrelation

p, [Tp] 0.0025, [5] 0.005, [10] 0.01, [20] 0.05, [100]

σ2
η = 0.1 0.077 0.043 0.143 0.080 0.250 0.141 0.624 0.352

0.070 0.004 0.126 0.008 0.217 0.015 0.543 0.025

0.352 (3.22) 0.464 (4.23) 0.587 (5.47) 0.825 (8.09)

σ2
η = 0.5 0.294 0.165 0.454 0.256 0.624 0.352 0.892 0.502

0.236 0.013 0.369 0.018 0.528 0.024 0.832 0.024

0.585 (5.43) 0.707 (6.71) 0.815 (8.02) 0.951 (9.75)

σ2
η = 1 0.454 0.256 0.624 0.352 0.768 0.433 0.942 0.531

0.352 0.017 0.510 0.020 0.670 0.023 0.903 0.022

0.683 (6.46) 0.795 (7.78) 0.884 (8.90) 0.975 (10.11)

σ2
η = 5 0.806 0.454 0.892 0.502 0.942 0.531 0.987 0.556

0.654 0.021 0.799 0.018 0.894 0.017 0.975 0.020

0.858 (8.59) 0.929 (9.60) 0.970 (10.16) 0.997 (10.48)

Note: The number of series is T = 2, 000 and σ2
ε = 1. [Tp] means the number of structural

breaks within sample, and σ2
η related the size of breaks. The first numbers are theoretical

values of the autocorrelation at k = 1 and 500, by using (8). The numbers in the second
rows are average values of the autocorrelations at k = 1 and 500, which are simulated
from 1,000 replications with 2,000 sample size. The numbers in the third rows are the
estimated d by the GPH method and t-values in the parenthesis.

3. ESTIMATION OF BREAK POINTS AND NUMBER OF
BREAKS

As discussed before, the aim of this work is to investigate the properties
of time series with multiple unknown structural breaks. This may include
the case when there are a few known breaks in a finite sample. One could
deal with structural breaks in variance in the same way. Our goal is to
estimate break points, the number of breaks and their sizes. Bai (1997)
and Bai and Perron (1998) suggests sequential estimation of multiple breaks
in mean, and show that this method can estimate break points consistently
with order T even when the number of breaks in practice is unknown. To
detect discrete changes in the variance of an observed time series, we use the
ICSS (iterated cumulative sum of squares) algorithm presented by Inclan
and Tiao (1994).

Bai (1997)’s procedure works as follows. When the first break point
is identified at k, the whole sample is divided into two subsamples with
the first subsample consisting of k observations and the second subsample
consisting of the rest of the observations (T−k). One then estimates a break
point for the subsample where a hypothesis test of parameter constancy is
rejected. Divide the corresponding subsample further into subsamples at
the newly estimated break point, and perform parameter constancy test
for the hierarchically obtained subsamples. This procedure is repeated
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until the parameter constancy test is not rejected for all subsamples. The
number of break points is equal to the number of subsamples minus 1. He
shows how the sequential procedure coupled with hypothesis testing can
yield a consistent estimate for the true number of breaks.

Although asymptotic theory implies that the sequential procedure will
not underestimate the number of breaks, Bai (1997) shows by Monte Carlo
simulations that the procedure has a tendency to underestimate. This
problem can be overcome by using a two-step procedure as suggested by
Bai (1997). In the first step, the goal is to obtain a consistent (or less
biased) estimate for the error variance. This can be achieved by allowing
more breaks (R), solely for the purpose of constructing the error variance.
It is evident that as long as R ≥ R0 (the true number of breaks) the
error variance will be consistently estimated. Obviously one does not know
whether R ≥ R0, but the specification of R in this stage is not as important
as in the final model estimation. When R is fixed, the R break points can be
selected either by the Schwarz-Bayesian criterion simultaneously or by the
“one additional break” sequential procedure described in Bai and Perron
(1998). In the second step, the number of breaks is determined by the
sequential procedure coupled with hypothesis testing. The test statistics
use the error variance estimator obtained in the first step. The details of
the test statistic and methods were given in Bai (1997).

4. SPURIOUS LONG-MEMORY PROPERTY OF
OCCASIONAL STRUCTURAL BREAKS PROCESS

Suppose that mt is the series from (2) that, when differenced once, gives
the series

∆mt = (1− L)mt = qtηt

which has an ARMA representation (here we assume a white noise process
in (2)). mt will then be called an integrated series, and denoted mt ∼ I(1).
If ∆mt has spectrum f(ω), then mt does not strictly posses a spectrum,
but from filtering considerations the spectrum of mt can be thought of as

fm(ω) = |1− z|−2f(ω), ω 6= 0

where z = e−iω. Since ∆mt is strictly ARMA with f(ω) = 1
2πpσ

2
η, then

lim
ω→0

f(ω) =
1

2π
pσ2

η

For small ω,

fm(ω) = cω−2
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where c = pσ2
η/2π.

Since mt is independent of εs for all t and s the spectrum of yt in (1) is
then

fy(ω) = fm(ω) + fε(ω) = |1− z|−2 1

2π
pσ2

η +
1

2π
σ2
ε , ω 6= 0 (11)

It follows that

fy(ω) = cω−2 + c′, for ω small. (12)

where c = pσ2
η/2π, c′ = σ2

ε/2π.
Geweke and Porter-Hudak (1983) (henceforth GPH) show that, when

attention is confined to frequencies near zero, the differencing parameter
can be estimated consistently from the least square regression since

∂ ln(fz(ω))

∂ ln(ω)
= −2d, with some zt ∼ I(d) series.

If we apply this to (12), then

−1

2

∂ ln(fy(ω))

∂ ln(ω)
=

(
1 + ω2 σ

2
ε

pσ2
η

)−1
If we evaluate at ω0 = −2πT−1/2 using g(T ) = T 1/2, which is a popular
choice in GPH estimation, then

d̃ = −1

2

∂ ln(fy(ω))

∂ ln(ω)

∣∣∣∣
ω=ω0

=

(
1 + 4π2 σ2

ε

Tpσ2
η

)−1
(13)

where 0 < d̃ < 1. Of course it is true d̃→ 1 as ω → 0. However, we would
get an estimated d less than 1 only because σ2

ε/(Tpσ
2
η) is small enough to

counter-balance small w and an estimated d is calculated from 0 < ω < ω0

in a finite sample estimation.
In support, we conduct a Monte Carlo analysis of GPH estimation and

Lobato and Robinson’s LM test (Lobato and Savin, 1998) using the series
with occasional breaks. The purpose of our Monte Carlo simulation is
to investigate whether the apparent long-run dependence could be due to
occasional structural breaks in a finite sample. Instead of inspecting the
autocorrelation, an easy way to summarize these correlograms is to present
the value of the estimated d by the GPH method or Lobato and Robinson’s
LM statistics.

log{I(λj)} = c− d log{4 sin2(λj/2)}+ uj , j = 1, . . . , g(T ). (14)
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where I(λj) = 1
2πT |

∑T
i=1 yt exp(iλjt)|2 is the periodogram at frequency

λj = 2πj/T which will depend on the sample size T . The following (15)
is Lobato and Robinson’s LM test statistic to test H0 : d = 0 against
Ha : d 6= 0,

LM = m

 m∑
j=1

vjI(λj)/

m∑
j=1

I(λj)

2

(15)

where vj = log j − 1
m

∑m
j=1 log j and m = g(T ).

The following two artificial data sets illustrate the long memory property
of a linear model with occasional breaks with different parameters.

FIG. 2-1. A Series with Occasional Breaks

FIG. 2-2. Break Points (Binomial Distribution)

FIG. 2-3. Autocorrelations

FIG. 2-4. Log-periodogram

Example 1: qt has a binomial distribution of (3). Length of series =
2,000, σ2

ε = 1, σ2
η = 0.25, p = 0.01. The second graph of Figure 2 plots

sample autocorrelations of this series up to lag 500. Sample autocorrela-
tions start around 0.44 (quite close to 0.45 calculated by (8) with k = 1),
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but decrease very slowly with increasing lags and the corresponding peri-
odogram in Figure 2 clearly has a pole at the origin. These figures might
suggest that this series has long memory. By the GPH method, d̂ is 0.747
with t-value = 6.17, a clear long memory.

FIG. 3-1. A Series with Occasional Breaks

FIG. 3-2. Break Periods (Markov Switching Process)

FIG. 3-3. Autocorrelations

FIG. 3-4. Log-periodagram

Example 2: qt has a regime switching process (3’). Length of series =
2,000, σ2

ε = 1, σ2
η = 0.01, p11 = 0.998, p22 = 0.99, implying unconditional

probability of state 2 (break) is 0.167. A sample autocorrelation at k = 1
is 0.337 close to 0.357 calculated by (8). The second graph of Figure 3

plots the value of qt which is determined by the state variable, and d̂ for
this series is 0.860 with t-value = 5.38. We could observe gradual changes
when st = 2.

Estimated values of d by GPH in the simulation are presented in the
3rd rows of Table 1 using a sample size of 2,000 and σ2

ε = 1 with different
values of p and σ2

η. Simliarly to Granger and Teräsvirta (1999)’s examples,
this process has long-memory rather than short-memory, if we just consider
linear properties of the data. As Tp increases there will be more breaks
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TABLE 2.

Estimated d for 20 Sub-periods

Case I Case II Case III Case IV

Period d t-stat d t-stat d t-stat d t-stat

1 0.405 2.754 0.337 1.923 0.840 5.121 0.668 5.831

2 0.031 0.151 0.204 1.117 0.274 1.649 0.595 3.836

3 0.079 0.634 0.493 4.946 0.079 0.634 0.798 8.035

4 0.155 1.456 0.461 2.729 0.155 1.456 0.802 4.247

5 −0.105 −0.884 0.313 2.109 −0.105 −0.884 0.923 5.095

6 −0.167 −1.197 0.347 2.446 −0.166 −1.439 0.710 6.945

7 −0.087 −0.891 0.238 2.317 −0.148 −1.437 0.568 4.441

8 −0.145 −1.496 0.292 3.019 −0.115 −1.142 0.708 5.250

9 −0.067 −0.532 0.226 1.883 −0.067 −0.532 0.638 4.811

10 −0.003 −0.020 0.419 2.850 0.210 1.267 0.918 6.434

11 0.142 1.563 0.517 5.346 0.142 1.563 0.927 8.025

12 0.003 0.034 0.362 3.289 0.003 0.034 0.765 4.564

13 0.252 1.842 0.723 5.744 0.252 1.842 1.005 10.343

14 −0.058 −0.548 0.309 3.341 −0.058 −0.548 0.722 3.602

15 0.262 2.128 0.445 3.971 0.374 2.067 0.868 6.767

16 −0.063 −0.592 0.386 2.653 −0.063 −0.592 0.802 4.800

17 0.083 0.632 0.284 2.428 0.083 0.632 0.621 6.322

18 −0.239 −1.975 0.269 2.515 −0.239 −1.975 0.728 5.492

19 0.123 1.127 0.288 2.147 0.336 2.843 0.849 4.833

20 0.068 0.554 0.711 3.947 0.068 0.554 0.978 7.317

Note: The number of total sample is 20,000 and the size of each sub-sample is 1,000. d is
estimated by the GPH method and g(T ) = 32 ≈ 1, 0000.5. (Tp, σ2

η) for Case I= (20, 0.1),
Case II = (200, 0.1), Case III = (20, 0.5), and Case IV = (200, 0.5) where Tp means the
expected number of structural breaks within sample.

and a higher value of d̂ is obtained from the regression (14). An increase

of σ2
η will have similar effects on d̂ since it is more likely that breaks are

detected. Table 2 shows estimated values of d from 20 subsamples of size
1,000. The d̂’s based on the total sample are 0.376 for Case I, 0.782 for Case
II, 0.687 for Case III and 0.888 for Case IV. For Case I and III, only a few
subsamples have significant changes, so most of them look like white noise.
For Case II and IV, d seems to be time-varying, for example, going from
0.337 in period 1 to 0.204 in period 2 and upto 0.723 in period 13 in Case
II. As Tp or σ2

η increase (i.e., as the number of breaks or the size of breaks
increase), a higher value of estimated d is obtained from the regression.

The value of d̂ will depend on the values of Tp or σ2
η of each subsample.

In Table 3, Lobato and Robinson’s LM test was conducted for the various
values of parameters, T = 200, p = 0.025, 0.05, 0.1, σ2

ε = 1, and σ2
η = 0.001,
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TABLE 3.

Rejection Rates of the Null of Stationarity against I(d) Process

p (Tp) 0.025 (5) 0.05 (10) 0.1 (20)

σ2
η = 0.001 6.6 6.4 8.5

1.0 1.6 1.9

0.005 7.2 9.9 12.9

1.7 3.3 7.2

0.01 10.4 12.7 20.0

2.5 7.0 14.0

0.05 23.6 36.5 55.0

17.7 33.6 52.8

0.1 33.6 52.6 72.7

30.9 54.4 70.6

0.5 69.2 86.1 93.1

68.9 85.9 93.9

1 81.6 91.1 95.7

80.2 90.0 94.8

Note: The first numbers equals the % of t −
value > 1.645 in the GPH. The number in the
second rows is the % of p-value of the LM test
which is less than 0.05. The results are based on
1,000 replications with 200 sample size.

0.005, 0.01, 0.05, 0.1, 0.5, 1. As the value of Tp or σ2
η is getting larger, the

rejection rate of the LM test is close to 100% spuriously. The GPH shows
similar results. For the same value of Tpσ2

η, the rejection rates are similar.
For example, when p = 0.1 (20 breaks on average within sample) and
σ2
η = 0.05, the rejection rate of the LM test is 52.8% which is reasonably

close to the value, 54.4% with p = 0.05 (10 breaks) and σ2
η = 0.1.

5. SPURIOUS NUMBER OF BREAKS AND I(D) PROCESS

Nonstationarity of the DGP causes many breaks to be detected spuri-
ously by standard estimation methods. Unlike stationary processes, I(d)
or I(1) processes would have different effects on the estimated number of
breaks. Suppose yt is generated from (1 − B)dyt = εt, when d is not an
integer, 0 < d < 1, the fractional difference operator (1 − B)d defined by
its Maclaurin series is,

(1−B)d =

∞∑
j=0

πjB
j , πj =

j − 1− d
j

πj−1, π0 = 1 (16)
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FIG. 4-1. I(d) process (d = 0.2) and Estimated Level Shifts

FIG. 4-2. I(d) process (d = 0.4) and Estimated Level Shifts

FIG. 4-3. I(d) process (d = 0.6) and Estimated Level Shifts

In Table 4, the number of breaks is estimated by Bai’s method for various
values of d in the DGP. To simulate the series it is assumed that πj = 0
for j > 1, 000, and the first 2,000 observations are discarded. It is initially
assumed that the maximum number of breaks is 50 and we do not estimate
a break if the size of a subsample is less than 50 observations. Figures 4-1
- 4-4 show examples of plots of I(d) processes and estimated means of each

regime: (4-1) d̂ = 0.092 (t−value = 1.04), 12 breaks, (4-2) d̂ = 0.500 (4.18),

26 breaks, (4-3) d̂ = 0.519 (5.51), 32 breaks, and (4-4) d̂ = 0.808 (7.80),
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FIG. 4-4. I(d) process (d = 0.8) and Estimated Level Shifts

and 42 breaks. These graphs clearly suggest a positive relation between the
number of breaks and the value of d as in the Table 4. After removing the
break component from the original series, yt −mt, we find some evidences
of overdifferencing, i.e., the estimated value of d is less than zero. This
might suggest that estimated breaks in I(d) may be spurious.

TABLE 4.

Estimated d for Decomposed I(d) Process into Break Process and Residual

DGP Number of yt : d mt : d yt −mt : d

of I(d) Breaks (t-value) (t-value) (t-value)

d = 0.2 8.19 0.202 0.630 −0.168
(1.90) (6.05) (−1.53)

d = 0.4 19.76 0.409 0.657 −0.453
(3.82) (6.04) (−4.07)

d = 0.6 28.36 0.618 0.797 −0.623
(5.78) (7.43) (−5.64)

d = 0.8 34.77 0.827 0.953 −0.708
(7.84) (9.04) (−6.41)

Note: Numbers of breaks are estimated by Bai’s method. d
is estimated by the GPH method. Results are based on 1,000
replications with 2,000 sample.

We could further investigate if the estimated number of breaks has some-
thing to do with the underlying DGP. Since the Schwarz-Bayesian criterion
(SBC) can be considered as an alternative for which might be inferred from
visual inspection of a time series, we can show that spuriously4 many breaks

4They might be interpreted as real breaks in a finite sample approximation.
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(but with different numbers depending on value of d) will be inferred when
the process is I(1)5 or I(d) without breaks in the parameters of the DGP.

Consider the following simple model of R structural breaks:

yt = µt + εt, εt ∼ iidN(0, σ2
ε),

and µt = µi, for ki−1 < t ≤ ki, where i = 1, . . . , R + 1, k0 = 0, kR+1 = T
and 0 < k1 < · · · < kR < T .

Then the maximum likelihood estimator of σ2 is

σ̂T (R)2 = min
0<k1<···<kR<T

1

T

T∑
t=1

y2t−
1

T

R+1∑
r=1

1

kr − kr−1

 kr∑
t=kr−1+1

yt

2

(17)

Using SBC, the estimated number of break points R is found by

R̂ = arg min
R

SBC(R) = log(σ̂T (R)2) + (1 + 2R)
log T

T
(18)

subject to R < RU , with RU a given fixed upper bound for R. Since the
second term in (18) goes to 0 as T increases, for any fixed R, only the first
term in (18) matters asymptotically. For the given large T , we would have
different value of SBC with different number of R because of the second
term in (17).

In this section, we focus on following data generating processes without
break, where εt is white noise:

(I) yt = εt,
(II) (1−B)dyt = εt with 0 < d < 1/2,
(III) (1−B)dyt = εt with 1/2 < d < 1, and
(IV) (1−B)yt = εt.
The following asymptotic facts will be useful to obtain the results of

Proposition 2:
(II’) T−1/2−dS[Tγ] = Op(1), with 0 < d < 1/2,

(III’) T−1/2−dS[Tγ] = Op(1), with 1/2 < d < 1, and

Proposition 2. Assume yt follows four different DGP of (I), (II), (III)
and (IV) with no break, then the estimated numbers, R̂, of breaks by the
SBC method as T →∞ are

(a) R̂→ 0, with d = 0,
(b) R̂→∞, with 0 < d < 1/2
(c) R̂→∞, with 1/2 < d < 1

5Nunes, Kuan and Newbold (1995) showed that the SBC failed to estimate the true
number of breaks, but estimated the maximum permitted number of breaks when the
DGP was a random walk.
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(d) R̂→∞, with d = 1.

Proof. The proofs of part (a) and (d) are in Yao (1988) and Bai (1998).
The proof of part (b) is as follows: Define

M∗T (k) = T−1−2d

1

k

(
k∑
t=1

εt

)2

+
1

T − k

(
T∑

t=k+1

εt

)2


For an arbitrary projection matrix P , we have z′Pz ≤ z′z. Then supλ∈(0,1)M
∗(λ) =

Op(1) from Theorem 1 of Bai (1998), since M∗T (k) ≤ T−1−2d
∑k
t=1 ε

2
t ≤

T−1
∑k
t=1 ε

2
t = Op(1) for 0 < d < 1/2. By applying Theorem 2 of Bai

(1998), we have
M∗(0) = M∗(1) < M∗(λ), for every 0 < λ < 1 with probability 1, since

T−1/2−dS[Tγ] = T−1/2−d
∑[Tγ]
t=1 εt ⇒ G(r) where G(.) has a continuous

distribution for each r. The proof of part (c) is obvious since

M∗T (k) ≤ T−1−2d
k∑
t=1

ε2t ≤ T−2d
k∑
t=1

ε2t = Op(1) for 1/2 < d < 1.

In Table 5, we present simulation results of proposition 2 in a small
sample. Six different DGPs are considered and show a positive relation
between the number of breaks and the value of d in a finite sample. When
the DGP is an I(d) or a random walk, the SBC selects the maximum
permitted number of breaks on the majority of occasions as d close to 1.
Clearly the I(d) process is an intermediate process between I(0) and I(1)
in terms of the estimated number of breaks in finite sample.

6. OCCASIONAL BREAK IN THE STOCK MARKET AND
LONG MEMORY

In this section we investigate the “long memory” property in the stock
market. As a preliminary analysis, we plot stock returns, absolute returns
and the 220 days moving average of absolute returns from January 4, 1928
to August 30, 1991 with 17054 daily observations in Figure 5. By the GPH,
d̂ is 0.475 with t-value = 8.22. However, it can be seen from Figure 5-3
that large absolute returns are more likely to be followed by large absolute
return than small returns. For example, the October 1987 crash (16,076-th
observation) significantly increased volatility for a while.

It is possible to suggest two conjectures. The first one is that the absolute
returns follow a linear process with occasional breaks (If Tp is a constant
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TABLE 5.

Number of Breaks Selected by the SBC

RU R I(0) d = .2 d = .4 d = .6 d = .8 I(1)

1 0 92.3 62.6 30.7 12.3 5.8 1.4

1 7.7 37.4 69.3 87.7 94.2 98.6

2 0 90.9 54.9 19.9 5.5 2.0 0.3

1 7.3 28.4 37.1 25.5 13.4 4.5

2 1.8 16.7 43.0 69.0 84.6 95.2

3 0 90.9 54.2 19.1 4.7 1.5 0.3

1 7.3 27.2 31.7 17.6 6.4 1.3

2 1.8 14.4 30.3 32.0 24.8 12.2

3 0.0 4.2 18.9 45.7 67.3 86.2

4 0 90.9 54.2 19.1 4.7 1.5 0.2

1 7.3 27.2 31.3 16.7 5.5 1.3

2 1.8 14.1 28.2 28.1 18.5 8.5

3 0.0 4.2 15.2 30.5 29.2 24.7

4 0.0 0.3 6.2 20.0 45.3 65.3

Note: Results based on 1,000 replications with 50 observation-
s, We consider 6 different DGP’s, i.e., white noise, I(d) and
random walk without breaks.

FIG. 5-1. S&P 500 Daily Retures 1/4/28-8/30/91

FIG. 5-2. Absolute Returns

FIG. 5-3. S&P 500 Daily Absolute Returns (Moving Averaged with 220 days)

positive integer as T increases to infinite, this process is still not explosive.
That means the variance of this series is bounded). The second one is that
the breaks may not be determined by the size of shock as suggested by the
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FIG. 5-4. Autocorrelations for Returns. Absolute Returns

specification of Engle and Smith (1999). Sometimes a big shock could be a
transitory, not permanent effect on the volatility of returns in Figure 5-2.

There would be several competing theories to explain the long memory
properties, and also time-varying d in the stock market volatility. We
suggest that this series would be well characterized by a linear model with
occasional breaks. An I(d) process could be a possible alternative but it
has its own drawbacks, for example,

Proposition 3. Let εt > 0, yt > 0 for all t, and (1− B)dyt = εt, then
yt is a process with upward trend component.

Proof. Even for d < 1/2, yt =
∑∞
j=0 djεt−j such that

∑∞
j=0 d

2
j <∞ but∑∞

j=0 |dj | → +∞.

Since εt > 0 for all t, yt =
∑t
j=0 djεt−j → +∞ as t→∞.

That is, if we characterize stock return volatility by an I(d) process,
it implies explosive volatility. It might be a good approximation in finite
sample, but can not be a true DGP of stock return volatility.

Lobato and Savin (1998) point out that the evidence in favor of long
memory in stock return might be due to structural breaks, and they inves-
tigate if the observed evidence of long memory is, in fact, due to nonsta-
tionarity during long period. They split their sample (1962-1994) into two
periods, taking January 1973 as the break point. But they do not find any
evidence that long memory was caused by the structural break of 1973. A
different, but related work by Aggarwal, Inclan and Leal (1999) indicates
how to investigate the effect of breaks on the long memory property. An
iterated cumulative sums of squares (ICSS) algorithm is used to identify
the points of breaks in the variance of returns in the stock market and how
long the shift lasts. Dummy variables are then introduced into the variance
equation of a GARCH model to account for the sudden changes in variance,
to yield a combined model with GARCH and dummy variables.

Instead of Lobato and Savin’s approach (using pre-determined break),
we estimate unknown structural breaks in the stock market by adapting
the method of Aggarwal, Inclan and Leal, and check whether these breaks
contain long memory component. In our analysis, the structural breaks in
volatility detected by either Bais method or the ICSS algorithm can be used
directly to decompose stock returns into a break component and residuals.
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TABLE 6.

Estimated d and LM statistics of the Absolute Stock Returns, Break
Process and Residuals

Abs. return (|yt|) Break Process (mt) Residual (|yt|/mt)

time d LM Break d LM d LM

(t-stat) (p-val) (t-stat) (p-val) (t-stat) (p-val)

1 1928-1934 0.352 49.35 10 0.520 88.61 0.034 0.163

(2.72) (0.00) (3.75) (0.00) (0.34) (0.69)

2 1934-1940 0.405 52.08 9 0.583 85.01 0.104 1.001

(3.10) (0.00) (6.00) (0.00) (0.84) (0.31)

3 1941-1947 0.438 18.34 5 0.519 31.10 0.082 1.308

(4.51) (0.00) (5.36) (0.00) (0.65) (0.25)

4 1947-1953 0.347 14.97 8 0.492 40.06 0.137 0.827

(2.31) (0.00) (5.81) (0.00) (1.12) (0.36)

5 1954-1960 0.154 15.44 9 0.567 82.80 0.091 0.859

(1.49) (0.00) (5.71) (0.00) (0.77) (0.35)

6 1960-1966 0.451 14.87 5 0.686 41.23 0.082 0.737

(4.11) (0.00) (7.90) (0.00) (0.70) (0.39)

7 1967-1973 0.517 38.38 11 0.681 57.29 0.151 0.039

(5.96) (0.00) (5.99) (0.00) (1.06) (0.84)

8 1973-1979 0.715 129.67 17 0.746 131.52 0.109 0.517

(6.80) (0.00) (6.74) (0.00) (1.16) (0.47)

9 1980-1986 0.418 34.63 17 0.499 42.88 0.231 0.002

(3.80) (0.00) (4.64) (0.00) (1.60) (0.97)

10 1986-1991 0.352 20.73 9 0.350 26.66 0.117 0.640

(5.00) (0.00) (7.99) (0.00) (1.07) (0.42)

Note: 1705 daily absolute stock returns, |yt|, for each subperiod. After identifying breaks in
mean of the absolute returns by Bai’s method, decompose the absolute stock returns into break
component (mt) and break-free component (|yt|/mt). mt is a sample mean of each regime.

We found clear evidence of a positive relation between the time-varying
property of d and the number of breaks (see Tables 6 - 8).

For the analysis of variance, we introduce a simple version of occasional
breaks in variance. Let {yt} be independent observations from a normal
distribution with zero mean and variance σ2

t . When the total number of
variance changes in T observations is R, and 1 < k1 < k2 < · · · < kR < T
are the set of change points, the variance between two consecutive break
points is denoted by τ2j , j = 0, 1, . . . , R. One could use the following

GARCH process as a general case of a process with breaks in variance6:

yt = σtνt, νt ∼ iid(0, 1), σ2
t = E(y2t |It−1) (19)

6Recently Mikosch and Starica (1999) show long range dependence of financial time
series by using shifts in the variance.
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TABLE 7.

Estimate Breaks in Variance by the ICSS, and Apply to the Absolute Stock Returns

Break Process (mt) Residual (|yt|/mt)

time Breaks d (t-stat) LM (p-val) d (t-stat) LM (p-val)

1 1928-1934 9 .669 (9.58) 129.57 (0.00) −.041(−0.31) 0.693 (0.41)

2 1934-1940 7 .691 (7.16) 105.36 (0.00) −.102(−0.80) 1.149 (0.28)

3 1941-1947 17 .458 (4.61) 17.70 (0.00) −.363(−2.59) 0.580 (0.45)

4 1947-1953 14 .397 (4.48) 27.31 (0.00) −.304(−2.87) 3.253 (0.07)

5 1954-1960 8 .608 (6.77) 83.40 (0.00) −.132(−1.16) 0.964 (0.35)

6 1960-1966 11 .431 (4.67) 21.99 (0.00) .084 (1.09) 0.052 (0.82)

7 1967-1973 17 .567 (6.58) 40.52 (0.00) −.519(−4.89) 3.782 (0.05)

8 1973-1979 9 .704 (5.22) 158.85 (0.00) −.204(−1.99) 0.196 (0.66)

9 1980-1986 4 .986 (11.06) 120.24 (0.00) .125 (1.11) 1.628 (0.20)

10 1986-1991 8 .278 (6.375) 18.33 (0.00) .080 (0.89) 0.697 (0.40)

Note: Estimate breaks in variance of stock returns by the ICSS algorithm for 10 sub-samples with
1,705 observations. Not estimate break if the size of observation is less than 50 observations. After
identifying break points, decompose the absolute stock returns into break component (mt) and
break-free component (|yt|/mt). mt is a sample mean of |yt| of each regime. |yt| is the absolute
stock returns.

σ2
t = ωt + βσ2

t−1 + αy2t−1 (20)

ωt = ωt−1 + qtηt, ηt ∼ iid(0, σ2
η) (21)

where νt and ηs are independent for all t and s. In the GARCH equation
(20), the parameters α, β are nonnegative and ωt are positive for all t. It
might be better to use EGARCH instead of GARCH because no restriction
on α, β and ωt are necessary. Let α = β = 0, for the simplest case, i.e.,
this is a process with occasional breaks in variance.

After identifying unknown structural breaks, we could obtain a break
process and a series, y∗t , without any break component. If we estimate
break points in level, we could get y∗t , by dummy variables regression:

y∗t = yt − (a0 + a1D1 + · · ·+ aR−1DR+1) (22)

where Di =

{
1 if t ∈ regime i
0 otherwise

, for i = 1, . . . , R+ 1.

Although there is a similarity between a model for breaks in mean and
in variance, the method of removing the break component in (19) - (21) is
completely different from (22). Instead divide series yt by τi = ωt, for each
different regime i as below:

y∗t = yt/τi, if yt belongs to regime i = 1, . . . , R+ 1. (23)
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TABLE 8.

Estimate Breaks in Variance by the ICSS, and Estimate d and LM statistics
of the Squared Stock Return, Break Process and Squared Residuals

Squ. Return (y2t ) Break Process (mt) Residual (yt/mt)
2

time d LM Break d LM d LM

(t-stat) (p-val) (t-stat) (p-val) (t-stat) (p-val)

1 1928-1934 0.218 15.14 9 0.668 133.93 −0.077 0.709

(1.85) (.000) (9.09) (0.00) (−0.64) (0.40)

2 1934-1940 0.457 35.85 7 0.707 105.39 −0.110 0.890

(4.68) (.000) (8.03) (0.00) (−0.73) (0.35)

3 1941-1947 0.445 8.23 17 0.483 19.48 −0.449 1.962

(2.37) (.004) (4.15) (0.00) (−3.78) (0.16)

4 1947-1953 0.200 7.69 14 0.441 31.89 −0.295 3.672

(2.04) (.006) (5.02) (0.00) (−2.87) (0.06)

5 1954-1960 0.106 5.61 8 0.564 62.41 −0.145 0.658

(0.87) (.018) (6.75) (0.00) (−1.16) (0.42)

6 1960-1966 0.286 5.63 11 0.351 17.90 0.112 0.046

(3.37) (.018) (3.21) (0.00) (1.15) (0.83)

7 1967-1973 0.485 23.33 17 0.619 47.85 −0.463 4.734

(4.95) (.000) (7.34) (0.00) (−3.76) (0.03)

8 1973-1979 0.925 108.75 9 0.834 158.83 −0.334 0.401

(6.67) (.000) (7.82) (0.00) (−2.77) (0.53)

9 1980-1986 0.341 22.51 4 0.985 115.74 −0.138 0.271

(3.17) (.000) (10.53) (0.00) (−1.01) (0.60)

10 1986-1991 0.101 1.29 8 0.283 20.03 −0.013 0.024

(5.77) (.256) (6.77) (0.00) (−0.13) (0.88)

Note: Estimate breaks in variance of the stock returns, yt, by the ICSS algorithm for 10 sub-
samples with sample size 1,705. After identifying break points, decompose the stock returns into
break component (mt) and break-free component (yt/mt). mt is a sample standard deviation of
each regime. The GPH and LM are applied to the squared returns and squared residuals.

For 10 sub-periods of S&P 500 daily return, Tables 6 - 8 provide the
estimated d with t-statistics, number of breaks, and LM statistics with
p-value. The 1st panel of Table 6 presents the estimated values of d by
GPH in the absolute returns and LM statistics. d̂’s are changing from
0.352 in period 1 to 0.154 in period 5 and upto 0.715 in period 8. All of
the sub-periods have strong evidence of long memory in the absolute stock
return. The estimated number of breaks in the level of absolute returns
by Bai’s method (in the 2nd panel) obviously has positive relation with d̂.
For example, period 8 has 17 breaks and has the highest value of d = 0.715
amongst all sub-periods. But they do not show an exact relation since d
is affected by the magnitude of the break too. We assume the maximum
number of breaks is 50 in the first step, and restrict not to estimate a break



742 CLIVE W.J. GRANGER AND NAMWON HYUNG

if the size of the sample is less than 50 observations7. The 4th panel shows
the results of fitting structural breaks that correspond to the points of level
shifts in the absolute returns. Although all of the sub-periods have strong
evidence of long memory in the absolute returns, none of its residuals,
{y∗t }8, has long memory.

However, Bai’s procedure might be problematic when applied to this da-
ta since it is based on the assumption of no breaks in variance. It is a well
known fact that absolute stock returns have an exponential distribution,
which implies mean and variance are determined by one parameter. To
avoid this problem, we use the ICSS method to identify breaks in vari-
ances of stock returns by using the model (19) - (21). Table 7 reports the
number of sudden changes in variance as identified by the ICSS algorithm
for stock returns. Periods 3 and 7 have 17 break points and period 9 has
only 4 change points and so on. Figures 6-1 - 6-10 present plots of abso-
lute stock returns for each sub-period. The solid line shows the sudden
changes detected by plotting sample means of absolute returns, where the
sample means calculated for the observation between the change points.
The significant changes in variance are a little bit more than those in level
of absolute returns. The 3rd panel of Table 7 shows the results of fitting
breaks that correspond to the points of breaks in variance to the level of
absolute stock returns. When breaks in variance are introduced, the evi-
dence is somewhat mixed. In some sub-series, negative estimates of d in
the residuals are obtained, so there is some possibility of overdifference as
pointed out in section 5.

As an additional analysis, we also examined long memory in the squared
stock returns in Table 8. As occasional breaks are incorporated directly
into return series, the existence of long memory in volatility is mixed, too.

In the empirical analysis the evidence is somewhat mixed as to whether
volatility has I(d) process or structural breaks. However, structural changes
in the absolute stock return or squared returns are evident and result in
spurious “long memory” of these series in a certain degree. Either model by
itself may not capture all of the persistence in the volatility, i.e., there may
be residual I(d) effects when a model is fitted that includes only structural
breaks, and there may still be sudden changes in the volatility of residuals
after fitting an I(d) model. Therefore, a more complete analysis would
allow for both kinds of effects.

7As we increase the maximum permitted number of breaks or decrease the minimum
number of observations to detect a break within that sample, we get a little bit more
breaks.

8In Table 6, we use (23) instead of (22) to get break ‘free’ series since the absolute
stock returns show some co-break in mean and variance. Because we estimate breaks
by Bai’s method, (22) is suitable one. However, the application of (22) to the absolute
returns shows similar long memory property as Table 6, since spurious long memory
depends on changes in mean.
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FIG. 6. Absolute Stock Return and Breaks of 10 Sub-Periods in 1/4/1928-8/30/1991

FIG. 6-1. Period 1 (1928-1934) FIG. 6-2. Period 2 (1934-1940)

FIG. 6-3. Period 3 (1941-1947) FIG. 6-4. Period 4 (1947-1953)

FIG. 6-5. Period 5 (1954-1960) FIG. 6-6. Period 6 (1960-1966)

FIG. 6-7. Period 7 (1967-1973) FIG. 6-8. Period 8 (1973-1979)

FIG. 6-9. Period 9 (1980-1986) FIG. 6-10. Period 10 (1986-1990)
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7. EXTENSION: COMMON OCCASIONAL BREAKS
PROCESS IN MULTIVARIATE SERIES

Ray and Tsay (1997) find that common long-range dependent compo-
nents occur as frequently in a randomly chosen group of S&P 500 com-
panies as in companies of similar market capitalization, but that common
long-range dependent components are more likely for companies in the
same business sector. These results suggest that there might exist common
breaks in stock markets since stock market volatility can be characterized
by a linear model with occasional breaks instead of an I(d) process. One
could have alternative explanations of common long-range dependence by
applying the common break concept which might capture any common long
memory component of these multivariate series. Structural breaks may be
related across variables, in an analogous way to common long-range depen-
dence or cointegration.

The following is a model for multivariate series with a common break
process in mean. This model could easily be altered for common breaks in
variance. If there are N individual series which have one common break
component,

yit = mit + εit, i = 1, . . . , N, t = 1, . . . , T. (24)

mit = mit−1 + qtηit = mi0 +

t∑
s=1

qsηis (25)

The process, mit, will capture coincident breaks among several series.
Individual series might have different levels of mean within each regime.
The break component ‘free’ series here is y∗it = yit −mit, where mit is the
mean of each regime of individual i. This y∗ is a series without any break
components, where all of the series have the same structure of breaks, qt,
but allowing different size of shocks to each series by the amount, ηit.

8. CONCLUSIONS

It has been shown that a series with breaks can mimic some of the
properties of I(d) processes, particularly the autocorrelations, where d can
be a fraction, its value depending on the number of breaks for a particular
sample size. From simulation results it is also shown that absolute returns
for the S&P 500 stock index are more likely to show the “long memory”
property because of the presence of breaks in the series rather than being an
I(d) process. This has relevance for the forecastability of absolute returns,
which are potentially useful for value at risk estimates, especially if the
timing and the size of breaks can be shown to be forecastable. This is
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potentially possible if the breaks are endogenous and needs to be explored
further.
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