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According to the logic of the Friedman rule, the opportunity cost of holding
money faced by private agents should equal the social cost of creating addi-
tional fiat money. Thus nominal rates of interest should be zero. This logic has
been shown to be correct in a number of contexts, with and without various
distortions.

In practice, however, economies that have confronted very low nominal rates
of interest over extended periods have been viewed as performing very poorly
rather than as performing very well. Examples include the U.S. during the
Great Depression, or Japan during the last decade. Indeed economies experi-
encing low nominal interest rates have often suffered severe and long-lasting
recessions. This observation suggests that the logic of the Friedman rule needs
to be reassessed.

We consider the possibility that low nominal rates of interest imply that
fiat money is a good asset. As a result, agents are induced to hold an excessive
amount of savings in the form of money, and a sub-optimal amount of savings
in other, more productive forms. Hence low nominal interest rates can lead to
low rates of investment and, in an endogenous growth model, to low rates of
real growth. This is a cost of following the Friedman rule. Benefits of following
the Friedman rule include the possibility that banks will provide considerable
liquidity, reducing the cost of transactions that require cash. With this trade-
off, we describe conditions under which the Friedman rule is and is not optimal.

Finally, our model predicts that excessively high rates of inflation, and
nominal rates of interest, are detrimental to growth. This implication of the
model, which is consistent with observation, in turn implies that there is a
nominal rate of interest that maximizes an economy’s real growth rate. We
characterize this interest rate, and we describe when it is and is not optimal
to drive the nominal rate of interest to its growth maximizing level.
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1. INTRODUCTION

The logic of the Friedman rule is very compelling. When nominal rates
of interest are positive, individual agents perceive an opportunity cost to
holding outside money. And yet, in a fiat money system, outside money is
free to create from society’s perspective. Hence a necessary condition for
optimality is that nominal rates of interest be zero.

This logic, on the other hand, need not be correct in an economy where
other distortions are present. Nonetheless, the Friedman rule has been
shown to be optimal in monetary economies with monopolistic competition
(Ireland, 1996) and, under certain circumstances, in a variety of monetary
economies where the government levies other distorting taxes (Kimbrough,
1986; Chari, Christiano, and Kehoe, 1996; Correia and Teles, 1996). In
short, in a number of theoretical contexts, there seems to be a strong
presumption that monetary policy should drive nominal rates of interest
to zero.1

This theoretical optimality of the Friedman rule does not sit well with
actual experience, however. In practice, economies that have had nominal
rates of interest at or near zero have been viewed as performing quite
badly, rather than performing quite well. Indeed, typical experiences with
very low nominal rates of interest—like those of the U.S. during the Great
Depression, or of Japan today—have been that low nominal interest rates
are associated with severe and long-lasting recessions.

This disparity between theory and experience seems to call strongly for
a reevaluation of the optimality of the Friedman rule. Simple reflection
suggests an obvious potential problem with that rule. When the nominal
rate of interest is zero, outside money becomes a very good asset. Hence
banks—or potential lenders in general—may be tempted to hold relatively
large amounts of money and to make relatively few loans. If this is the
case, then low nominal rates of interest will be associated with low rates of

1Bryant and Wallace (1984) have demonstrated that, when a government must finance
a deficit via a combination of borrowing and money creation, it may be better to issue
interest-bearing debt and non-interest bearing currency than to issue only perfectly
divisible, non-interest bearing currency. However, in the Bryant-Wallace set-up, full
optimality requires that all agents hold only a single kind of debt issued in a minimum
denomination. In other words, Bryant and Wallace do not provide a complete rationale
for the co-existence of money with assets that dominate it in rate of return.
Smith (1991) and Woodford (1994) consider environments where the Friedman rule is
optimal, but certain methods of implementing it lead to indeterminacies and excessive
economic volatility. This line of argument suggests at least the potential for a “tension”
between the determinacy and efficiency of equilibrium under a Friedman rule.
Williamson (1996) examines an economy with sequential markets and preference shocks
in which the Friedman rule is not optimal. However, in his environment the presence of
preference shocks, along with the sequential opening of markets, is a necessary condition
for the Friedman rule not to be optimal.
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investment, and low real rates of growth.2 And, in fact, low levels of bank
lending for investment purposes seem to have been a prominent feature
of the Great Depression in the U.S., and are a prominent feature of the
current Japanese situation.3

Our purpose in the present paper is to pursue this line of reasoning. To
do so, we consider a monetary growth model with financial intermediaries.
Spatial separation and limited communication create a transactions role
for currency in the model, so that agents are willing to hold outside money
even if it is dominated in rate of return. In addition, idiosyncratic shocks to
agents’ “liquidity preferences” create a role for banks to provide insurance
against these shocks. In this model, the provision of insurance by banks
requires them to hold cash reserves. In addition, banks make loans that
fund investments in physical capital.

The optimal allocation of bank portfolios between reserves and capital
depends on the nominal rate of interest. When the nominal rate is positive,
banks perceive an opportunity cost of holding reserves. Under a standard
assumption on preferences, the higher the nominal rate of interest, the more
banks economize on reserve holdings. And, the more banks economize on
reserve holdings, the less insurance against liquidity preference shocks they
provide. This interference with insurance provision represents a distortion
that arises in our model from a failure to follow the Friedman rule.

It is the case, however, that when the nominal rate of interest is low,
and banks hold relatively high levels of reserves, they also fund relatively
little investment in physical capital. We consider an endogenous growth
model, so that low investment rates translate into low rates of real growth.
This constitutes a cost of low nominal interest rates. And, as in the U.S.
experience during the Depression or the Japanese experience today, low
nominal interest rates are associated with low levels of bank lending to
finance capital investment and with low (possibly negative) real growth
rates.

The optimal level of the nominal rate of interest in our economy is de-
termined by trading off the benefits of bank liquidity provision (insurance)
against higher rates of real growth. When the Friedman rule implies a
sufficiently low real growth rate, the government will not want to follow it.
Instead, a benevolent government will raise the rate of money growth in
order to raise nominal interest rates, and to stimulate long-run real growth.

2See King and Levine (1993a,b) or Levine, Loayza, and Beck (2000) for evidence that
bank lending to the private sector is a strong predictor of future growth performance.

3Indeed Keynes argued that money was such a good asset during the Depression that
the government should actively increase the cost of holding it. Keynes proposed that
this be done by means other than raising the nominal rate of interest. See, for instance,
his “stamped money” proposal in “The General Theory.”
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There is, of course, a natural limit on the extent to which money cre-
ation can be used to stimulate growth. Considerable evidence (Bullard and
Keating, 1995; Khan and Senhadji, 2000) suggests that, when the rate of
inflation or money creation is fairly low, modest (permanent) increases in
it are conducive to higher long-run rates of real growth. However, once
the long-run rate of inflation or the rate of money growth exceeds some
threshold level, further increases in it actually cause growth to decline. A
model that can be used to evaluate the Friedman rule, and the optimal
quantity of money, should be consistent with this evidence.

Our analysis enables us to state conditions under which, at low initial
rates of money growth (low initial nominal interest rates), modest increases
in the rate of money creation will increase the rate of real growth. When
this transpires, we are also able to state conditions under which the Fried-
man rule is not optimal. These conditions imply that monetary policy
should be used to raise the nominal rate of interest above zero as a method
of stimulating growth. However, our model also has the feature that, once
the rate of money creation exceeds some threshold level, further increases
in it interfere with rather than promote growth. Not surprisingly, it is nev-
er optimal for the government to raise the money growth rate to the point
where inflation is high enough to inhibit growth. Finally, we provide con-
ditions under which the optimal rate of money creation maximizes the real
growth rate, as well as conditions under which the optimal rate of money
creation is below the growth maximizing level.

Throughout the analysis, we focus our attention on an economy where
the government has no revenue needs. Much of the literature that is critical
of the Friedman rule, beginning with Phelps (1973),4 focuses on the possi-
bility that the inflation tax is part of an optimal tax system. By considering
a government that has no revenue needs, we abstract from this issue, and
instead focus on the pure allocative consequences of positive nominal inter-
est rates. Additionally, some of the literature on the sub-optimality of the
Friedman rule (Levine, 1991; Wallace, 2000) has focused on the possibility
that money creation is used to fund desirable programs: often programs
that provide insurance against a sequence of adverse shocks. By contrast,
in our model, a failure to follow the Friedman rule actually interferes with
insurance provision. We think these observations make it clear that the
potential sub-optimality of the Friedman rule in our environment is a pure
consequence of the implications of this rule for bank portfolio allocations.

The remainder of the paper proceeds as follows. Section 2 describes
the economic environment, while section 3 considers the savings behavior
of young agents, the behavior of banks, and the nature of factor market

4See also Kimbrough (1986), Guidotti and Vegh (1993), Correia and Teles (1996),
Chari, Christiano, and Kehoe (1996), or Mulligan and Sala-I-Martin (1997).
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transactions. Section 4 discusses a full general equilibrium when nominal
rates of interest are and are not positive, and section 5 examines when
the Friedman rule is and is not optimal from a welfare perspective. Some
concluding remarks are offered in section 6.

2. THE BASIC ENVIRONMENT

2.1. Production and Preferences

We consider a discrete time economy, with time indexed by t = 0, 1, . . .,
The economy is populated by an infinite sequence of two period lived, over-
lapping generations. In addition, there are two distinct locations (islands),
which are described in more detail below. At each date a new generation
is born on each island, consisting of a continuum of agents with unit mass.

In every period there is a single final good produced using capital and la-
bor as factors of production. Let Kt denote the capital input, let Lt denote
the labor input, and let kt denote the capital-labor ratio of a representative
producer at time t. In addition, let kt denote the aggregate, economy-wide
average capital-labor ratio. We wish to allow for endogenous growth. To
do so, we adopt the simplest possible specification of technology that is
consistent with sustained growth: the externalities in production formu-
lation of Shell (1966) and Romer (1986).5 We therefore assume that the
output of a representative firm at t is

Yt = F (Kt, Lt, kt) ≡ Ak
1−α

t Kα
t L

1−α
t ,

with α ∈ (0, 1). Each individual producer takes kt as given. Finally, we
assume that capital depreciates at the rate δ ∈ [0, 1].

There are two primary assets that agents in this economy can hold. One
is physical capital. One unit of the final good set aside at date t can be
converted into one unit of capital at t + 1,6 and, once it has been used in
the production process, one unit of undepreciated capital can always be
converted into one unit of consumption. The second asset is fiat money.
We let the nominal per capita supply of fiat money in each location at
time t be denoted by Mt. This money stock grows at the exogenously
selected gross rate σ, so that Mt+1 = σMt, with M−1 > 0 being a given
initial condition. Throughout, we assume that money is injected into or
withdrawn from the economy via lump-sum transfers to young agents.7

5There are many other specifications of technology that effectively make aggregate
production linear in the aggregate capital stock. Any of these would deliver results
analogous to those reported here.

6We describe the exact process of physical capital accumulation in more detail below.
7This method of injecting money implies that monetary policy works, in part, by

affecting the supply of credit. In our view, the connection between monetary policy and
credit market conditions is underemphasized in the monetary theory literature.
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All young agents are endowed with a single unit of labor, which they
supply inelastically. They have no other endowments in any period. With
respect to preferences, let c1t and c2t denote the first and second period
consumption of a representative agent born at date t. Then we assume
that this agent has preferences represented by the utility function

u(c1t, c2t) =
θ

1ρ
c1−ρ
1t +

1

1− ρ
c1−ρ
2t ,

with θ ≥ 0, and ρ ∈ (0, 1).8 Finally, the initial old are endowed with the
initial per capita capital stock, k0, and the initial per capita money supply,
M−1.

2.2. Transactions with Spatial Separation and Limited Com-
munication

At the beginning of each period, every individual is assigned to one of
the two locations. These locations are physically separate, and at this
point there is no communication between them. As a result, trade occurs
autarkically within each island.

The timing of events within period t is as follows. First, firms rent capital
and labor and produce the final good. Final goods and undepreciated
capital can either be consumed or be used to produce future capital. Young
agents receive wage income, which they allocate between consumption and
savings. All savings are ultimately used for the accumulation of capital
and the accumulation of money balances. The production of future capital
requires the services of a young agent. Thus any resources devoted to
capital investments must be allocated to young agents in the form of loans.

After production occurs, and after savings have been allocated between
capital investments and cash balances, a fraction π ∈ (0, 1) of young agents
is selected at random to be “moved” to the other location. The relocation
probability π is known at the beginning of each period, and each agent
understands that he has a probability π of being relocated. However, the
specific identities of the agents who are to be relocated are not known until
after consumption has occurred and portfolios have been allocated. The
significance of this stochastic relocation is as follows. Except when agents
are moving between locations, no interlocation communication is possible.
Hence relocated agents cannot pay for consumption using checks or other
privately issued claims on agents (banks) in their location of origin. In
addition, the relocation of agents occurs after goods have been consumed
at t, and after capital investment occurs. Thus relocated agents have two
options. One is that they can obtain currency in order to finance consump-

8The reasons for restricting ρ to be less than one, and the consequences of relaxing
this restriction are described below.



THE SUB-OPTIMALITY OF THE FRIEDMAN RULE 899

tion in their new location.9 The other is that they may “scrap” any capital
investments, and carry the proceeds with them to their new location. We
assume that one unit of capital investment scrapped at t yields r > 0 units
of consumption at t + 1. We will want to think of r as being fairly small,
so that scrapping a capital investment is a poor option.

The essence of these assumptions is that relocated agents may have to
liquidate higher yielding assets (claims to future capital income) in order
to acquire currency or other low yielding assets. If this is the case, stochas-
tic relocations act like “liquidity preference shocks” that force unfavorable
portfolio reallocations. As in Diamond and Dybvig (1983), agents will
wish to be insured against such shocks. This insurance can be efficiently
provided by banks that take deposits, hold reserves, and make loans to
young agents who produce future capital.10 The behavior of these banks
is described in detail in Section 3.

When agents discover that they are to be relocated, they liquidate any
other assets they are holding and convert the proceeds into assets that can
be carried to their new location. If they wish to make cash withdrawals from
a bank, first they must discharge their obligation to any bank they borrowed
from by turning over control of the capital good that they produced using
their loans. If cash withdrawal is not an attractive option, agents might
perceive an incentive to simply scrap the capital investment project that
they were in charge of and carry the proceeds to the new location. In this
case they cannot withdraw additional funds.11

FIG. 1. The timing of events
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In contrast, agents who are not relocated are not constrained in their

transactions by limitations on communication. Thus they need not with-
draw from banks or scrap capital in order to consume; they can pay for

9This use of currency in a model of spatial separation and limited communication
closely follows Townsend (1987), Mitsui and Watanabe (1989), Hornstein and Krusell
(1993) and, most specifically, Champ, Smith and Williamson (1996), and Schreft and
Smith (1997, 1998).

10For a comparison of alternative methods of providing insurance in this set-up, see
Greenwood and Smith (1997).

11In effect, deposits serve as collateral.
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consumption goods when old with checks or other credit instruments. In
effect, the model provides a physical story about why some purchases are
made with cash, while others are made with credit. The timing of events
is summarized in Figure 1. The next section provides details on the nature
of intermediation and exchange.

3. TRANSACTIONS

3.1. Goods and Factor Markets

The exchange of capital and labor occurs within each individual location
at the beginning of each period. Markets in capital and labor are compet-
itive, implying that all factors are paid their marginal products. Thus, if
wt is the time t real wage rate and rt is the time t capital rental rate, it
follows that

rt = F1(Kt, Lt, kt) = αA; t ≥ 0, (1)

wt = F2(Kt, Lt, kt) = (1− α)Akt; t ≥ 0, (2)

where the second equality in equations (1) and (2) uses the form of the
production function and the equilibrium condition kt = kt . Given our
assumptions on capital depreciation, agents who hold capital earn the gross
real return Rt = αA+ 1− δ ≡ R between periods t and t+ 1.

When final goods are produced, they are either saved (converted into
capital), or consumed. Goods are sold in competitive markets that operate
within each location at each date. The dollar price at which goods are sold
at t is denoted by pt.

3.2. Government Transfers

As already noted, the government accomplishes any changes in the money
stock by making lump-sum transfers to young agents. If we let τt denote
the transfer received by a young agent at t, then the government budget
constraint requires that

τt =
Mt −Mt−1

pt
=

σ − 1

σ
·mt; t ≥ 0, (3)

where mt denotes the equilibrium stock of real money balances outstanding
at t.

3.3. Banks and Savings Behavior

Young agents at t earn the real wage wt. In addition, they receive the
lump-sum transfer τt. Some portion of this young period income is saved
and, as in Diamond and Dybvig (1983), all savings will be intermediated.
Intermediaries operate by announcing a deposit return schedule, denoted
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by (dmt , dt). Here dmt and dt represent the gross real rate of interest paid
on deposits between dates t and t + 1 to agents who are relocated and to
those who are not. The determination of these deposit rates of interest is
described in more detail below. However, before discussing how deposit
rates of interest are determined, it is necessary to describe the savings
behavior of young agents.

3.3.1. Savings Behavior

Suppose that a young agent at t goes to a bank offering the deposit

return schedule (dmt , dt). Then, if the agent receives a wage income of wt

and a transfer of τt, and if the agent saves st, his expected utility is given

by the expression12

θ

1− ρ
(wt + τt − st)

1−ρ +
1

1− ρ
s1−ρ
t

[
π(dmt )1−ρ + (1− π)(dt)

1−ρ
]
.

The agent maximizes his expected utility by the choice of st. As a result,

the optimal savings behavior of a young agent at t is described by

st =
θ−1/ρ[π(dmt )1−ρ + (1− π)(dt)

1−ρ]1/ρ(wt + τt)

1 + θ−1/ρ[π(dmt )1−ρ + (1− π)(dt)1−ρ]1/ρ

≡
[
1 + θ1/ρ[π(dmt )1−ρ + (1− π)(dt)

1−ρ]−1/ρ
]−1

(wt + τt) (4)

It is easy to verify that, when savings behavior is governed by (4), the

expected utility of a young agent at t is

V (dmt , dt;wt+τt) ≡
θ

1− ρ
(wt+τt)

1−ρ
[
1 + θ−1/ρ[π(dmt )1−ρ + (1− π)(dt)

1−ρ]1/ρ
]ρ

3.3.2. Banks

Since all savings are intermediated, all capital investments are financed

through bank loans and the entire stock of money is held as bank reserves.

As noted above, capital earns the gross real return R which is also the

gross real rate of interest on loans. The gross real return on currency

between t and t+1 is pt/pt+1. Banks behave competitively in asset markets

in the sense that they take the real returns on these primary assets as

given. Let zt denote a representative bank’s (per depositor) holdings of

real balances, and let it denote the bank’s (per depositor) investment in

12The agent’s second period consumption is stdmt in the event that he is relocated
and it is (stdt) if he is not.
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physical capital (loans). When agents deposit their time t savings, st, banks

face the balance sheet constraint

zt + it ≤ st; t ≥ 0. (5)

In deposit markets banks are Nash competitors: they announce gross real

rates of return paid on deposits to agents who withdraw “early” (agents

who move), and to agents who do not. These announcements of dmt and dt
are made taking the deposit returns offered by other banks, as well as the

savings behavior of young agents, as given. If agents who are relocated are

given currency to make purchases, then the bank’s payments to them are

constrained by its holdings of cash reserves. In particular, since the gross

real return on currency is pt/pt+1, banks face the constraint

π · dmt st ≤ (zt − bt) ·
pt

pt+1
; t ≥ 0, (6)

where bt is the real value of cash reserves that the bank carries between t

and t + 1. Agents who are not relocated, on the other hand, can be paid

out of any remaining income on bank assets. Consequently,

(1− π) · dtst ≤ Rit + bt
pt

pt+1
; t ≥ 0, (7)

is the constraint on payments made to agents who are not relocated.

The constraints (5)-(7) are predicated on the notion that it is not optimal

for the consumption of relocated agents to be funded by liquidating capital

investments. This requires that the return on currency exceed the return

obtained by scrapping capital investments. Thus, throughout we consider

equilibria with

pt
pt+1

≥ r; t ≥ 0, (8)

since in the opposite case money is not valued.

In addition, capital investments by banks must be made in the form

of loans to young agents, whose efforts are required to convert current

resources into future capital. We assume that these loans are made in a pro

rata fashion to young agents at each date. Thus, each agent receives a loan

of it at t. Since relocated agents have the option of scrapping capital and

carrying the proceeds to their new location, these agents will repay their

loans and make cash withdrawals from banks iff the payoff associated with

doing so exceeds the payoff obtained by scrapping capital and consuming
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the proceeds at t + 1. The associated incentive compatibility constraint

requires that

dmt st ≥ rit; t ≥ 0. (9)

We assume that there is free entry into the activity of banking. In

addition, we assume that all young agents simply make a deposit with a

bank that offers them their most preferred deposit return schedule. Then

it is easy to verify that, in a Nash equilibrium, competition among banks

for depositors implies that the values dmt , dt, zt, and it must be chosen to

maximize the expected utility of a representative depositor, V (dmt , dt;wt+

τt), subject to the constraints (5)-(7), (9), zt ≥ 0, it ≥ 0, and bt ≥ 0.13

The nature of the solution to the bank’s problem depends on whether or

not the incentive constraint (9) is binding, and on whether or not banks

perceive a positive opportunity cost of holding reserves. In particular,

define the gross nominal rate of interest It in the conventional way; It ≡
R(pt+1/pt). Then the solution to the bank’s problem can differ, depending

on whether It > 1 or It = 1 holds. We now consider each case in turn.

2.1 Bank Behavior with Positive Nominal Interest Rates (It > 1)

and a Non-binding Incentive Constraint

When nominal rates of interest are positive, banks perceive an oppor-

tunity cost of carrying reserves between periods. Therefore, since their

withdrawal demand is perfectly predictable,14 banks will never choose to

do so; that is, bt = 0 will hold. In addition, if we define γt ≡ zt/st to be

the reserve-deposit ratio of a representative bank, it is easy to verify that

the optimal choice of γt satisfies

γt =

[
1 +

1− π

π
I
( 1−ρ

ρ )

t

]−1

≡ γ(It), (10)

as long as this choice does not violate (9). It follows, then, that it =

(1 − γ(It)) · (wt + τt). In addition, the values dmt and dt are given by (6)

and (7) at equality (and with bt = 0). For future reference, it will be

useful to note that γ(1) = π. In addition, the assumption that ρ ∈ (0, 1)

implies that γ′(I) < 0 is satisfied.15 Finally, it is easy to verify that positive

13Identical results would be obtained if the intermediary was regarded as a coalition
of young agents formed at each date.

14See Champ, Smith, and Williamson (1996) for an analysis of stochastic withdrawal
demand in this context.

15If ρ ≥ 1 holds, then the income effects associated with a change in the nominal
interest rate dominate substitution effects, and the bank’s optimal reserve-deposit ratio
will be an increasing function of the rate of interest. We comment below on how this
would affect our analysis. However, clearly γ′ < 0 is the intuitively more appealing case.
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nominal interest rates render it sub-optimal for banks to provide complete

insurance against the event of a relocation. In other words, when It > 1,

dmt < dt will obtain. The absence of complete insurance against the event

of a relocation is a consequence of the fact that relocated agents must be

given currency, and that positive nominal interest rates cause agents to

regard holding currency as involving an opportunity cost. The resulting

failure of agents to be fully insured against the event of a relocation is a

distortion induced by a failure to follow the Friedman rule.

It remains to state conditions under which the incentive constraint does

not bind in the bank’s problem. Equations (6), (7), and (10) imply that

(9) is satisfied at t iff

γ(It)R

πIt
≥ r(1− γ(It)), (11)

where equation (11) uses the fact that pt/pt+1 ≡ R/I. Equation (10)

implies that (11) has the equivalent representation

It ≤
[

R

(1− π)r

]ρ
≡ Î (11′)

When (11’) holds — that is, when It ≤ Î — banks face a non-binding

incentive constraint.16

It will be useful for future reference to describe the savings behavior,

and the expected utility of young agents when banks behave optimally,

and when the incentive constraint (9) does not bind. To do so, we begin

by noting that, when banks do behave optimally, dmt = γ(It)R/(πIt) and

dt = R(1− γ(It))/(1− π) both hold. Next, define the function ξ by

ξ(I) ≡ π

[
γ(I)R

πI

]1−ρ

+ (1− π)

[
R(1− γ(I))

1− π

]1−ρ

.

The function ξ describes how well the bank insures depositors against re-

location risk when there are no binding incentive constraints. Finally note

that, when banks behave optimally, equation (4) implies that

st
wt + τt

=
1

1 + θ1/ρξ(It)−1/ρ
≡ η(It),

16Note that Î > 1, so that for low values of the nominal interest rate the incentive
constraint is never binding. In addition, it is easy to see that equation (8) has the

equivalent representation It < R/r. We make the assumption that Î < R/r, which is
equivalent to r < R(1 − π)ρ/(1−ρ). When this condition holds, the constraint (9) is

not binding when It ∈ [1, Î], and it is binding when It ∈ (Î, R/r]. For Î ∈ (R/r,∞), a
monetary equilibrium does not exist.
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so that η(It) is the equilibrium savings rate of young agents. It is easy to

verify that

Iξ′(I)

ξ(I)
= −(1− ρ)γ(I)

and

Iη′(I)

η(I)
=

1− ρ

ρ
γ(I) · (1− η(I))

both hold.

Using what we know about the equilibrium values of dmt and dt, along

with the definitions of ξ and η, it is easy to show that the maximized value

of a young agent’s expected utility at t is given by

V

(
Rγ(It)

πIt
,
R(1− γ(It))

1− π
;wt + τt

)
=

θ

1− ρ
(wt + τt)

1−ρ[1 + θ−1/ρ(ξ(It))
1/ρ]ρ

≡ θ

1− ρ
(wt + τt)

1−ρ(1− η(It))
−ρ; 1 < It ≤ Î .

2.2 Bank Behavior with Positive Nominal Interest Rates (It > 1)

and a Binding Incentive Constraint

We now describe what happens when (11’) is not satisfied. As before,

let γt ≡ zt/st be the bank’s reserve-deposit ratio. Since (6) and (7) must

hold with equality in equilibrium, it is easy to verify that the incentive

constraint (9) reduces to

γt(pt/pt+1)/π ≥ r(1− γt). (12)

When It ≥ Î, (12) holds as an equality. It is then straightforward to show

that the bank’s optimal reserve-deposit ratio is given by

γt =

[
1 +

R

πrIt

]−1

≡ γ̃(It), (13)

where (13) again uses the identity pt/pt+1 ≡ R/It. Note that Itγ̃
′(It)/γ̃(It) =

1− γ̃(It), implying that γ̃(It) > 0 holds.

When the incentive compatibility condition (9) binds in the banks’ prob-

lem, banks must ration credit in order to prevent agents from defaulting

on loans. This rationing of credit will be required whenever the nominal
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rate of interest is sufficiently high, signaling a high rate of inflation. Under

these circumstances the return on currency is so low that relocated agents,

if they received an unrestricted credit allocation, would prefer scrapping

capital and defaulting on loans instead of withdrawing currency and car-

rying it with them to their new location. In order to overcome this moral

hazard problem, banks restrict the size of the loans that they make. By

doing so, they prevent agents who default (scrap capital) from obtaining

excessively high levels of future consumption. Moreover, the higher the

nominal rate of interest (the rate of inflation) the more severely banks will

have to ration credit. As a result, as the nominal rate of interest increases,

banks make fewer rather than more loans (hold more rather than fewer

reserves). Thus, for It > Î, γ̃′(It) > 0.17

When the bank’s reserve-deposit ratio satisfies (13), equations (7) and

(9) imply that dmt = r(1 − γ̃(It)), while dt = R(1 − γ̃(It))/(1 − π). Then,

for It ≥ Î, define the function ξ̃ by

ξ̃ ≡ π[r(1− γ̃(It))]
1−ρ + (1− π)ρ[R(1− γ̃(It))]

1−ρ.

As before, the function ξ̃ describes how well banks insure agents against

relocation risk when the incentive constraint (9) is binding. Repeating the

same sequence of steps as previously, it is easy to check that the savings

behavior of a young agent at t obeys

st
wt + τt

=
1

1 + θ1/ρξ̃(It)−1/ρ
≡ η̃(It),

so that η̃(It) is the savings rate of young agents when incentive constraints

bind on banks’ behavior. And,

Iξ̃′(I)

ξ̃(I)
= −(1− ρ)

Iγ̃′(I)

1− γ̃(I)
= −(1− ρ)γ̃(I)

and

Iη̃′(I)

η̃(I)
= −1− ρ

ρ
γ̃(I)(1− η̃(I))

both hold. Finally, when the incentive constraint binds in the bank’s prob-

lem, the maximized expected utility of a young agent at t is

V

(
Rγ̃(It)

πIt
,
R(1− γ̃(It))

1− π
;wt + τt

)
17The notion that higher rates of inflation may make credit rationing more severe is

also pursued by Azariadis and Smith (1996) and Boyd and Smith (1998).
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=
θ

1− ρ
(wt + τt)

1−ρ(1 + θ−1/ρ(ξ(It))
1/ρ)ρ

≡ θ

1− ρ
(wt + τt)

1−ρ(1− η̃(It))
−ρ.

For future reference, define the function γ̂ by

γ̂(It) ≡ max{γ(It), γ̃(It)} ≡
{

γ(It) for 1 ≤ It ≤ Î

γ̃(It) for Î < It ≤ R
r

Then the optimal reserve-deposit ratio of a representative bank is given by

γ̂(It). Analogously, we define the functions ξ̂ and η̂ by

ξ̂(I) ≡
{

ξ(I); I ≤ Î

ξ̃(I); i > Î

and

η̂(I) ≡
{

η(I); I ≤ Î

η̃(I); I > Î

These functions describe the equilibrium allocation of relocation risk, and

the equilibrium savings rate — taking full account of whether or not incen-

tive constraints are binding — when nominal rates of interest are positive.

2.3 Bank Behavior with Zero Nominal Interest Rates (It = 1)

When the nominal rate of interest is zero, there is no opportunity cost to

carrying reserves between periods. Hence bt > 0 can hold. Moreover, it is

easy to verify that each bank opts to provide complete insurance, so that

dmt = dt = R = pt/pt+1. In addition, banks are indifferent regarding their

portfolio composition so long as their reserves are adequate to provide the

insurance desired. This will be the case iff zt/st ≥ π holds. Thus, zero

nominal interest rates are consistent with optimal bank behavior if and

only if the per capita supply of real balances is sufficiently large.

When the nominal rate of interest is zero, it is apparent that the savings

rate of young agents is η(1), and that the expected utility of a young agent

at t is

V (R,R;wt + τt) =
θ

1− ρ
(wt + τt)

1−ρ[1 + θ−1/ρR(1−ρ)/ρ]ρ.
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4. GENERAL EQUILIBRIUM

As in the case of optimal bank behavior, the conditions of equilibrium

differ depending on whether or not the nominal rate of interest is positive.

Of course it also matters whether or not banks face a binding incentive

constraint with respect to loan repayments. We now describe each case in

turn.

4.1. Positive Nominal Interest Rates (It > 1).

When banks have a determinate optimal portfolio, there are several con-

ditions that an equilibrium must satisfy. First, the supply of and the de-

mand for real balances must be equal, so that

mt = γ̂(It)η̂(It)(wt + τt); t ≥ 0. (14)

Second, the time t + 1 capital stock must equal the level of investment at

date t. From the bank balance sheet constraint (5), this requires that

kt+1 = (1− γ̂(It))η̂(It)(wt + τt); t ≥ 0.

Finally, the government budget constraint (3) must hold. Conditions (14)

and (3) together imply that the equilibrium level of transfers satisfies

τt =

[
σ

(σ − 1)γ̂(It)η̂(It)
− 1

]−1

wt

Combining this with (2) allows us to express the income of young agents

as

wt + τt =

[
1− σ − 1

σ
γ̂(It)η̂(It)

]−1

(1− α)Akt.

Therefore, the equilibrium sequences {kt}, {mt}, and {It} must satisfy

mt =
γ̂(It)η̂(It)

1− σ−1
σ γ̂(It)η̂(It)

(1− α)Akt; t ≥ 0 (15)

kt+1 =
(1− γ̂)η̂(It)

1− σ−1
σ γ̂(It)η̂(It)

(1− α)Akt; t ≥ 0, (16)

and,

It = R
pt+1

pt
= σR

mt

mt+1
; t ≥ 0. (17)
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There are several implications that follow immediately from equations

(15)-(17). First, equation (16) implies that the real growth rate of the

capital stock is given by

kt+1

kt
=

(1− γ̂(It))η̂(It)(1− α)A

1− σ−1
σ γ̂(It)η̂(It)

; t ≥ 0. (18)

Second, equations (15) and (17) imply that the equilibrium nominal rate

of interest must evolve according to

It = σR · γ̂(It)η̂(It)

1− σ−1
σ γ̂(It)η̂(It)

·
1− σ−1

σ γ̂(It+1)η̂(It+1)

γ̂(It+1)η̂(It+1)
· kt
kt+1

(19)

=
σR

(1− α)A
· γ̂(It)

1− γ̂(It)
·
[

1

γ̂(It+1)η̂(It+1)
− σ − 1

σ

]
; t ≥ 0.

Equations (18) and (19) govern the equilibrium dynamics of the capital

stock and the nominal rate of interest. We now consider equilibria when the

incentive constraint (9) does and does not bind on bank portfolio choices.

4.2. Equilibria with a Non-Binding Incentive Constraint (1 <

It ≤ Î)

When the incentive constraint is not binding, γ̂(It) = γ(It) and η̂(It) =

η(It) hold. It is then straightforward to verify that the equilibrium law of

motion for {It}, equation (19), reduces to

1

γ(It+1)η(It+1)
=

(1− π)(1− α)A

πσR
I
1/ρ
t +

σ − 1

σ
; t ≥ 0. (20)

We begin our analysis with a description of balanced growth paths, and

then turn our attention to a discussion of dynamical equilibria.

4.2.1. Balanced Growth Paths.

Equation (20) implies that, along a balanced growth path, the (constant)

nominal rate of interest satisfies

σ =
(1−α)A

R Iη(I)(1− γ(I))− η(I)γ(I)

1− η(I)γ(I)

=
η(I)γ(I)

1− η(I)γ(I)

[
(1− π)(1− α)A

πR
I1/ρ − 1

]
≡ σ(I). (21)

The function σ(I) defined in equation (21) can be interpreted as giving

a value for the gross rate of money creation that supports a particular
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nominal rate of interest, along a balanced growth path. If σ(I) is invertible

then for a given value of the money growth rate σ, equation (21) gives

a candidate value for the gross nominal interest rate I. If that value, in

addition, satisfies I ∈ (1, Î], then we have an equilibrium with a positive

nominal rate of interest, and in which banks do not face binding incentive

constraints on their portfolio choices. The following lemma characterizes

some properties of the function σ(I).

Lemma 1. (a) σ(1) = η(1)((1−π)(1−α)A−πR)
R(1−πη(1)) .

(b) σ′(I) > 0 hold for all I ∈ (1, Î].

(c) Iσ′(I)
σ(I) > 1 holds.

The proof of Lemma 1 appears in Appendix A. Part (a) of the lemma

implies that there is a rate of money creation consistent with I = 1 iff

(1 − π)(1 − α)A > πR is satisfied. If this inequality is violated, then no

rate of money creation is consistent with a zero nominal interest rate, and,

indeed, the nominal rate of interest cannot fall below the value [πR/(1 −
π)(1 − α)A]ρ > 1. We will typically assume that σ(1) > 0 is satisfied, so

that it is feasible — if not necessarily optimal — to follow the Friedman

rule. From part (b) of the lemma it follows that the function σ(I) has

an inverse. Moreover, if σ(1) > 0 holds then there is a unique constant

nominal interest rate with I ∈ [1, Î] iff σ ∈ [σ(1), σ(Î)].

Finally, part (c) of Lemma 1 asserts that increases in the rate of money

creation induce a less than proportional increase in the gross nominal rate

of interest. This fact implies that increases in the rate of money creation

necessarily raise the real rate of growth when I ∈ (1, Î], for the following

reason. Note that if σ > σ(1) > 0 holds, then (18) and (21) imply that

kt+1

kt
=

η(I)γ(I)[(1− π)(1− α)AI1/ρ − πR]

πI(1− η(I)γ(I))
≡ µ(I) ≡ σ(I)R

I
. (22)

Thus the function µ(I) gives the equilibrium gross real rate of growth —

along a balanced growth path — for all I ∈ (1, Î]. A simple consequence

of the last identity in equation (22) is that

Iµ′(I)

µ(I)
=

Iσ′(I)

σ(I)
− 1 > 0,

which establishes that µ′(I) > 0 for I ∈ (1, Î]. We then have the following

result.
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Proposition 1. When 1 < I < Î, then the equilibrium rate of growth

is an increasing function of the nominal rate of interest (the rate of money

growth), along a balanced growth path.

Intuitively, higher rates of money growth lead to higher nominal rates

of interest. These higher nominal interest rates, in turn, cause banks to

economize on reserve holdings. The result is a change in the composition of

bank portfolios that leads to more capital investment, and to higher rates

of capital accumulation. This, of course, is a balanced growth version of

the Mundell-Tobin effect.18

4.2.2. Dynamical Equilibria

For equilibria where the nominal interest rate is not necessarily constant,

equation (20) gives the equilibrium law of motion for It. The following

lemma states some properties of this law of motion.

Lemma 2. Along the equilibrium law of motion given by (20) we have

It
It+1

dIt+1

dIt
=

1

1− ρ
· η(It+1)γ(It+1)

1− η(It+1)γ(It+1)
· (1− α)A(1− π)I

1/ρ
t

σπR
> 0.

Moreover, at a steady state, dIt+1/dIt > 1.

Lemma 2 is proved in Appendix B. The lemma establishes that the e-

quilibrium law of motion for It has the configuration depicted in Figure 2.

It follows that the unique balanced growth path equilibrium is unstable.

Thus, the only equilibria with positive and non-constant nominal rates of

interest either have It > 1 for only a finite number of periods, or else have

It ≤ Î for only a finite number of periods. Since neither types of dynami-

cal equilibria have particular interest in this context, we henceforth confine

our attention to equilibria displaying constant nominal rates of interest and

balanced growth.19

18If ρ > 1 [γ′(I) > 0] holds, then higher nominal interest rates lead banks to expand
their holdings of cash reserves, and reduce their investments in capital accumulation.
As a result, higher nominal rates of interest can be associated with lower rates of real
growth.

19If ρ > 1 [γ′(I) > 0] holds, then the equilibrium law of motion described by (20) is
negatively sloped. The unique balanced growth path equilibrium may be either asymp-
totically stable or unstable. Thus there may be many dynamical equilibrium paths
consistent with perpetually positive and bounded nominal rates of interest. In addition,
all such equilibria — other than the one with a constant nominal interest rate — will
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FIG. 2. Law of motion for It (The incentive constraint does not bind).
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It+1 
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4.3. Equilibria with Binding Incentive Constraints (It > Î)

Suppose that σ > σ(Î) holds. Then any equilibria of interest have the

property that the incentive constraint (9) binds in the problem solved by

banks. As a result, γ̂(I) = γ̃(I) and η̂(I) = η̃(I) both obtain. Consequently,

equation (19) reduces to

1

γ̃(It+1)η̃(It+1)
=

(1− α)A

σR
· 1− γ̃(It)

γ̃(It)
· It +

σ − 1

σ
. (23)

Moreover, it is easy to verify that It(1− γ̃(It))/γ̃(It) = R/πr holds. Thus

equation (23) has only trivial associated dynamics, so that there is a unique

equilibrium characterized by a constant value of I. This equilibrium has

the property that the economy follows a balanced growth path, which we

now describe.

display oscillation, so that indeterminacy of equilibrium and endogenous volatility will
emerge. It is also possible that equilibria displaying two-period cycles will exist, so that
endogenously arising volatility need not vanish asymptotically.
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When the nominal rate of interest is constant, and when the incentive

constraint binds, equation (19) reduces to

σ =
γ̃(I)η̃(I)

1− γ̃(I)η̃(I)
·
[
(1− α)A

πR
− 1

]
≡ σ̃(I). (24)

It is easy to show that σ̃′(I) > 0. Therefore, as previously, we regard

equation (24) as defining the gross rate of money creation that is required

in order to support any nominal rate of interest I > Î as a balanced growth

path equilibrium. The following lemma states an important property of the

function σ̃.

Lemma 3. Iσ̃′(I)/σ̃(I) ≤ 1 holds, and the inequality is strict if θ > 0.

The proof of Lemma 3 appears in Appendix C. The lemma has strong

implications for how higher nominal rates of interest (higher rates of money

growth) affect the economy’s real growth rate when the incentive constraint

is binding. We now explore these implications.

Equations (18) and (24) imply that, when I > Î holds, the equilibrium

rate of growth is given by

kt+1

kt
=

(1− α)A(1− γ̃(I))η̃(I)

1− γ̃(I)η̃(I) + γ̃(I)η̃(I)/σ̃(I)
≡ µ̃(I) ≡ σ̃(I)R

I
.

It then follows that Iµ̃′(I)/µ̃(I) = Iσ̃′(I)/σ̃(I) − 1 ≤ 0, and that the

inequality is strict if θ > 0. We therefore have the following result.

Proposition 2. When I > Î, the equilibrium rate of growth is a de-

creasing function of the nominal rate of interest (the rate of money growth).

This function is strictly decreasing if agents do not save all of their young

period income.

Intuitively, increases in the nominal rate of interest (the rate of inflation)

make the incentive problem in credit markets more severe, and therefore

such increases force banks to ration credit more heavily. Hence, above

the threshold Î (i.e. once σ > σ̃(Î)), increases in the nominal rate of

interest (the rate of money growth) cause reductions in the rate of capital

investment, and reductions in the real rate of growth.

The equilibrium growth rate, for all I > 1, is depicted in Figure 3. Notice

that this figure is consistent with a substantial body of empirical evidence

suggesting that there exist threshold effects associated with the long-run
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FIG. 3. Equilibrium growth rate.
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rate of inflation.20 In particular, for inflation rates (or rates of money

growth) below some threshold, permanent increases in the rate of inflation

are associated with increases in the long-run rate of real growth. However

once inflation exceeds some threshold level, further increases in it actually

cause growth to decline. Our analysis offers one explanation as to why this

might be the case.

4.4. Equilibria with Zero Nominal Interest Rates (It = 1).

We now turn our attention to equilibria where the nominal rate of interest

is zero. We begin with a discussion of balanced growth paths.

4.4.1. Balanced Growth Paths

When nominal rates of interest are zero, R = pt/pt+1 = mt+1/σmt.

Moreover, the bank balance sheet constraint (5), along with the government

budget constraint (3), implies that

kt+1 +mt = η(1)

(
(1− α)Akt +

σ − 1

σ
mt

)
; t ≥ 0 (25)

20See, for instance, Bullard and Keating (1995) or Khan and Senhadji (2000).
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Finally, along a balanced growth path, kt+1/kt = mt+1/mt = σR. Using

this fact in (25) allows one to obtain

mt =
η(1)(1− α)A− σR

1− σ−1
σ η(1)

kt; t ≥ 0. (26)

This set of conditions completely determines a balanced growth path equi-

librium with zero nominal rates of interest.

Clearly several conditions must be satisfied in order for such an equilib-

rium to exist. One is that, with zero nominal rates of interest, banks wish

to provide complete insurance against the risk of relocation. However, it is

feasible for them to do so only if mt ≥ πst holds. Using (3), (2) and (26),

the savings of a young agent can be written as

st = η(1)

(
wt +

σ − 1

σ
mt

)
= η(1)

(1− α)A− (σ − 1)R

1− σ−1
σ η(1)

kt.

Then it is easy to verify that mt ≥ πst is satisfied iff

σ ≤ η(1)((1− α)A(1− π)− πR)

R(1− πη(1))
≡ σ(1).

Thus, in order for the nominal rate of interest to be zero, σ ≤ σ(1) must

hold. Once again, choosing σ ≤ σ(1) is feasible only if σ(1) > 0.

We now have a complete characterization of balanced growth path equi-

libria: there exists a unique equilibrium displaying balanced growth and a

positive nominal interest rate if σ(1) ≤ 0, or if σ > σ(1) > 0. Otherwise,

there is a unique equilibrium displaying balanced growth with I = 1. Credit

rationing occurs (banks face a binding incentive constraint) iff σ > σ(Î).

Finally, we note that, along a balanced growth path displaying a zero

nominal rate of interest, the maximal rate of growth is achieved by setting

the rate of money creation as high as possible: that is, by setting σ = σ(1).

The implied rate of real growth is then Rσ(1) = µ(1) ≤ µ(I), ∀I ∈ [1, Î].

4.4.2. Dynamical Equilibria

If It = 1 for all t, then mt+1/mt = σR ∀t, and equation (25) can be

written as

kt+1

mt+1
=

η(1)(1− α)A

σR

kt
mt

−
1− σ−1

σ η(1)

σR
; t ≥ 0 (27)

The law of motion described by equation (27) is depicted in Figure 4. If

σ ∈ [0, σ(1)] holds, then it is readily established that η(1)(1 − α)A >



916 BEATRIX PAAL AND BRUCE D. SMITH

σR. Hence the unique balanced growth path is unstable. Moreover, any

candidate equilibrium paths with zero nominal interest rates other than the

balanced growth path have mt < πst after a finite number of periods, and

hence are not consistent with banks providing complete insurance against

the event of relocation. Thus, the only possible equilibrium with a zero

nominal rate of interest is the balanced growth path derived above.

FIG. 4. Law of motion for kt/mt. (Zero nominal rates of interest)
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5. WELFARE

We now wish to evaluate the optimal rate of money growth along a

balanced growth path. We are particularly interested to know two things:

(a) whether such a rate of money creation implies positive or zero nominal

rates of interest, and (b) whether such a rate of money growth implies that

credit is or is not rationed.

Choosing different money growth rates affects the economy through two

main channels. First, higher rates of money creation (higher nominal rates

of interest) are associated with more rapid rates of real growth, at least as

long as σ < σ(Î). Second, positive nominal interest rates cause banks to

perceive an opportunity cost of holding cash balances, which interferes with

the provision of insurance against the risk of relocation. An optimizing

government must confront this trade-off. Intuitively, this logic suggests
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that there is little reason for an optimizing government to choose a money

growth rate below σ(1) or above σ(Î). Both of these choices would reduce

the real rate of growth without improving insurance provision. However,

in order to formalize this argument, we also need to consider how different

rates of money creation affect the value of transfers received by young

agents.

We begin by considering the government’s trade-offs when I ∈ (1, Î]. We

then show that the government will never want to set I > Î, so that in an

optimum credit is never rationed. Finally, we consider the government’s

optimal policy among the set of policies consistent with a zero nominal rate

of interest. Having done so, it will be possible to state conditions under

which the Friedman rule is and is not optimal.

5.1. Positive Nominal Interest Rates and a Non-binding Incen-

tive Constraint

Clearly we must begin by ascribing some objective function to the gov-

ernment. We take the government’s objective function to be the discounted

sum of the expected utilities of all current and future young generations,

where the government discounts the future at the rate β < 1.21

We have already shown that when 1 < I < Î holds, the (maximized)

expected utility of a representative member of the generation born at t is

given by the expression θ
1−ρ (wt + τt)

1−ρ[1 − η(It)]
−ρ. Furthermore, if we

define the function χ(I) by

χ(I) ≡
[
1− σ(I)− 1

σ(I)
γ(I)η(I)

]−1

; I ∈ (1, Î],

then we also have that wt + τt = χ(I)(1−α)Akt and kt = (µ(I))tk0, along

a balanced growth path. Thus, the welfare of a member of generation t, as

a function of the equilibrium nominal rate of interest I, is

θ

1− ρ
[χ(I)µ(I)t]1−ρ[1− η(I)]−ρ[(1− α)Ak0]

1−ρ

It is also easy to verify that this expression gives the welfare of a represen-

tative member of generation t when σ = σ(1) holds.

21Thus the government does not take account of the welfare of the initial old genera-
tion. We describe below how the analysis would need to be modified if the government
also considered the welfare of this generation.
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We can now view the government as choosing a value for the nominal

rate of interest,22 I ∈ [1, Î], to maximize

∞∑
t=0

βt(1− η(I))−ρ[χ(I)µ(I)t]1−ρ =
(1− η(I))−ρχ(I)1−ρ

1− β(µ(I))1−ρ
≡ Ω(I),

so that Ω(I) is the government’s objective function. In order for the func-

tion Ω to be well-defined, we must have βµ(I)1−ρ < 1, ∀I. It is easy to

check that this condition is satisfied if

β[η(1)(1− α)A]1−ρ < 1,

as we henceforth assume. Finally, let I∗ = argmaxΩ(I); I ∈ [1, Î].

The following proposition states our results about the sub-optimality of

the Friedman rule. Its proof appears in Appendix D.23

Proposition 3. (a) Suppose that σ(1) > 0, and that

R > µ(1)(1− πη(1))[1− β(µ(1))1−ρ] (28)

is satisfied. Then it is feasible, but not optimal, to follow the Friedman

rule. The optimal choice of I satisfies I∗ > 1.

(b) A sufficient condition for the Friedman rule to be sub-optimal is that

R ≥ µ(1).

The first inequality in part (a) of the proposition states a condition under

which welfare can be increased by raising the nominal interest rate above

zero. Not surprisingly, this inequality will be satisfied whenever setting

I = 1 leads to a sufficiently low rate of real growth. Furthermore, note

that β governs the extent to which the government is willing to trade off

liquidity provision for growth. For higher values of β, condition (28) is

more likely to be satisfied, meaning that if the government cares about

future generations more, it is more likely to want to stimulate growth by

driving the nominal rate of interest above zero. Part (b) of the proposition

states that the Friedman rule cannot be optimal whenever the maximal

rate of growth associated with a zero nominal rate of interest is below the

real rate of interest, R. This finding reflects some well-known results about

22Once the optimal nominal rate of interest is chosen, the money growth rate is given
by σ(I).

23If ρ > 1 holds, then the Friedman rule is suboptimal if the inequality in equation
(28) is reversed.
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golden rule allocations in conventional overlapping generations models with

production. Indeed, when such models have steady states, steady state

welfare is increased by promoting capital accumulation whenever the real

rate of interest exceeds the rate of growth. The same kind of reasoning

clearly obtains in this context as well.24 Finally, we note that this reasoning

does not depend on how risk averse agents may be. This follows from the

fact that, when I = 1 holds, agents receive full insurance against the risk of

relocation, and therefore they are locally risk neutral. Thus the Friedman

rule is not optimal, and the government should raise the nominal rate of

interest, whenever the real rate of interest exceeds the real rate of growth

at I = 1.

It remains to say more about what the optimal choice I∗ actually is, at

least over the interval [1, Î]. Proposition 4 gives some results on this point.

Its proof appears in Appendix E.

Proposition 4. (a) Suppose that the conditions of Proposition 3 (a)

and

β(µ(1))1−ρ ≥ 1 + ρ

1 + 2ρ− ρ2
(29)

are satisfied. Then I∗ = Î.

(b) Suppose that the conditions of Proposition 3 (a) hold, that

β(µ(Î))1−ρ <
1 + ρ

1 + 2ρ− ρ2
, (30)

and that 1 ≥ (2−ρ)(µ(Î))1−ρ all hold. Then the optimal choice of a nominal

rate of interest satisfies I∗ ∈ (1, Î) if

R1−ρ((1− π)r)ρ ≤ µ(1)(1− β(µ(1))1−ρ)(1− πη(1)). (31)

(c) Suppose that the conditions of Proposition 3 (a) hold, that (30)

holds, and that 1 < (2−ρ)β(µ(1))1−ρ. Then the optimal value of I satisfies

I∗ ∈ (1, Î) if

R1−ρ((1− π)r)ρ ≤ µ(Î)
(
1− β(µ(Î))1−ρ

)
(1− πη(1)). (32)

24How would this analysis be modified if the government also cared about the welfare
of the initial old generation? The consumption, and hence the welfare of this generation
is affected by the choice of I only through the effect of I on the value of initial real
balances. This value is easily shown to be given by γ(I)/σ(I). Thus, if the government
weights the welfare of the initial old, we can represent this by appending the constraint
γ(I)/σ(I) ≥ V to the government’s problem, where V depends on the minimum welfare
level to be offered to the initial old. If this constraint is not binding at the value I = 1,
it continues to be the case that the Friedman rule is not optimal.
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Proposition 4 states conditions under which the gains in real growth that

derive from driving the nominal rate of interest to Î are and are not large

enough to overcome the associated losses in risk sharing that occur as banks

economize to a greater and greater degree on their holdings of reserves.

5.2. Positive Nominal Interest Rates and Credit Rationing

Intuitively, there seems to be no reason for the government to increase

the nominal rate of interest above the level Î. Doing so does not stim-

ulate growth, and it interferes with the provision of liquidity (insurance)

by banks. However, because of the fact that money is injected via lump-

sum transfers here, the possibility exists that raising the rate of money

growth above σ(Î) increases the value of the government’s objective func-

tion. This could occur if the value of the transfers received by young agents

was enough to more than outweigh the other two considerations. We now

demonstrate that this is not the case, and that — in fact — the optimal

nominal rate of interest never exceeds Î.

When the incentive constraint (9) is binding in banks’ problems, we

have already shown that the expected utility of a young agent born at t is
θ

1−ρ (wt + τt)
1−ρ(1 − η̃(I))−ρ. We have also demonstrated that wt + τt =

χ̃(I)(1− α)Akt, where

χ̃(I) ≡
[
1− η̃(I)γ̃(I) +

η̃(I)γ̃(I)

σ̃(I)

]−1

= 1−
πR

(1−α)A

1− η̃(I)γ̃(I)
.

Thus the expected utility of a young agent born at t is given by the ex-

pression

θ

1− ρ
((1− α)Ak0)

1−ρ[χ̃(I)µ̃(I)t]1−ρ(1− η̃(I))−ρ.

If the government discounts the utility of future generations at the rate β,

then over the range I > Î, the government’s objective function is25

∞∑
t=0

βt(1− η̃(I))−ρ[χ̃(I)µ̃(I)t]1−ρ =
(1− η̃(I))−ρχ̃(I)1−ρ

1− β(µ̃(I))1−ρ
≡ Ω̃(I).

We now state the following result.26

25Assumption (a.1) continues to imply that the government’s objective function is

well-defined for all I ∈ (Î, R/r].
26If ρ > 1 holds, then it is possible that Ω̃′(I) > 0 holds for some I > Î satisfying (8).

Whether this condition holds or not depends on the magnitude of β. Thus it need not
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Proposition 5. For all I ∈ (Î , R/r), Ω̃′(I) ≤ 0 holds. The inequality

is strict if θ > 0.

The proof of Proposition 5 appears in Appendix F. The proposition

asserts that young agents do not benefit sufficiently from higher lump-sum

transfers to overturn the fact that increasing the nominal rate of interest

above Î interferes with both real growth, and the provision of liquidity by

banks.

5.3. Zero Nominal Rates of Interest

It remains to consider the possibility that it is optimal for the government

to set σ < σ(1). Intuitively one would expect that this choice cannot be

optimal. Setting σ = σ(1) allows banks to provide complete insurance

against the risk of relocation, and it maximizes the rate of real growth that

is attainable with a zero nominal rate of interest. However, again the fact

that money is injected via lump-sum transfers to young agents means that

the consequences of these transfers must be considered in evaluating the

governments objective function.

We have already demonstrated that, when nominal rates of interest are

zero, the expected utility of a young agent born at t equals θ
1−ρ (wt +

τt)
1−ρ[1+θ−1/ρR(1−ρ)/ρ]ρ. In addition, equation (33) implies that wt+τt =

G(σ)kt, where

G(σ) ≡ σ
(1− α)A− (σ − 1)R

σ − (σ − 1)η(1)
.

We now state the following result. Its proof is given in Appendix G.

Lemma 4. Suppose that R ≥ µ(1). Then G′(σ) ≥ 0, for all σ ≤ σ(1).

Lemma 4 states a simple condition under which, in the interval (0, σ(1)],

the value of a young agent’s lump-sum transfer is always increased by

increasing σ. Since, in this interval, increasing the rate of money growth

also increases the rate of real growth, and since it does not interfere with

insurance provision, it is therefore not optimal to set σ < σ(1) if the real

rate of interest is greater than or equal to the maximal rate of real growth

consistent with a zero nominal rate of interest. This result, together with

Proposition 3, then implies that the Friedman rule is sub-optimal. Or,

in other words, R ≥ µ(1) is a sufficient (although far from a necessary)

be the case that the optimal choice of the nominal rate of interest is less than or equal
to Î.
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condition for it to be desirable to have positive nominal rates of interest in

this economy.

6. CONCLUSIONS

A large literature states conditions under which it is optimal for a mon-

etary authority to drive the nominal rate of interest to zero. And, indeed,

doing so equates the social cost of creating outside money with agents’

perceptions of the opportunity cost of holding it. Nonetheless, experience

suggests that having nominal rates of interest at or near zero need not lead

to desirable outcomes. In fact, the closest practical approximations to the

Friedman rule have been observed in places like the U.S. during the Great

Depression, or in Japan recently. And, the result has invariably been a

severe and long-lasting recession.

This paper has pursued the notion that low nominal rates of interest

can have very negative implications for real growth. In particular, when

nominal rates of interest are (nearly) zero, money is a very good asset. As

a result, banks have limited incentives to lend. The consequence is low

rates of capital investment, and low rates of real growth. And, indeed, in

situations like the Great Depression — or like that in Japan today — not

only have real rates of growth been very low, but so have levels of bank

lending to the private sector and rates of capital investment.

When the maximal rate of real growth consistent with a zero nominal

rate of interest is less than or equal to the real rate of interest, it will be

desirable for the government to raise the rate of money creation, and the

nominal rate of interest, in order to promote real growth.27 And, this is true

essentially independently of the rate at which the government discounts the

utility of future generations.

Of course there is a limit on the extent to which money creation can

be used to promote growth. Considerable empirical evidence suggests that

higher long-run rates of money creation can promote long-run real growth,

over some range. But, this same evidence suggests that, once the rate of

money creation exceeds some threshold level, further increases in the money

growth rate (the rate of inflation) are — in fact — detrimental to long-run

real performance. Our analysis is consistent with this finding as well. And,

we have stated conditions under which a benevolent government will and

27Of course this is true if the reserve-deposit ratio of banks is a decreasing function
of the opportunity cost of holding reserves.
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will not want to push the rate of money creation to its growth maximizing

level.

Naturally our analysis has abstracted from a number of issues. One

is the possibility that the government has revenue needs. Introducing a

sequence of government expenditures would allow us to consider whether

or not the government’s incentives to print money would be substantially

altered by the possibility of using inflationary finance. The optimal use

of such finance here would probably differ significantly from that in the

existing literature on the Friedman rule (see footnote 4). And, it would

raise the possibility that the government would want to regulate banks

as part of an optimal tax scheme in order to enhance the inflation tax

base.28 Another obvious extension of the analysis would be to allow the

government to issue (potentially) interest bearing bonds as well as money.

If seigniorage income can be used to pay interest on government bonds, the

nature of the relationship between inflation and real rates of growth can

be substantially different from the one demonstrated above.29 It would be

interesting to see how these modifications of the analysis would affect the

optimality of the Friedman rule.

APPENDIX A

A.1. PROOF OF LEMMA 1.

Part (a) of the lemma follows immediately from the definition of σ(I) in

equation (21), and the fact that γ(1) = π. Parts (b) and (c) follow from

the fact that

Iσ′(I)

σ(I)
=

IΨ′(I)

Ψ(I)

1

1−Ψ(I)
+

ρ−1(1− α)A(1− π)I1/ρ

(1− α)A(1− π)I1/ρ − πR
, (A.1)

where Ψ(I) ≡ γ(I)η(I), and where

IΨ′(I)

Ψ(I)
=

Iη′(I)

η(I)
+

Iγ′(I)

γ(I)

= −1− ρ

ρ
(1− γ(I))− 1− ρ

ρ
γ(I)

θ1/ρ(ξ(I))−1/ρ

1 + θ1/ρ(ξ(I))−1/ρ

28See, for instance, Bencivenga and Smith (1992), Bhattacharya, et. al. (1997), or
Espinosa and Yip (2000).

29This point is discussed by Schreft and Smith (1997).
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= −1− ρ

ρ

(
1− γ(I)

(
1− θ1/ρ(ξ(I))−1/ρ

1 + θ1/ρ(ξ(I))−1/ρ

))
= −1− ρ

ρ
(1−Ψ(I)). (A.2)

Substituting (A.2) into (A.1) and rearranging terms yields

Iσ′(I)

σ(I)
= 1 +

πρ−1R

(1− α)A(1− π)I1/ρ − πR
> 1, (A.3)

completing the proof.

A.2. PROOF OF LEMMA 2

Let Ψ(I) ≡ γ(I)η(I). Then, differentiating equation (26) yields

−It+1Ψ
′(It+1)

Ψ(It+1)

(
It

It+1

)
dIt+1

dIt

=
ρ−1((1− π)(1− α)A/πσR)I

1/ρ
t

((1− π)(1− α)A/πσR)I
1/ρ
t + [(σ − 1)/σ]

. (A.4)

Substituting (A.3) and (20) into (A.4) one obtains the expression in the

lemma. Moreover, along a balanced growth path,

Ψ(I)((1− π)(1− α)A/πσR)I
1/ρ
t = 1− σ − 1

σ
Ψ(I)

is satisfied. Thus, when It is constant,

dIt+1

dIt
= (1− ρ)−1

[
1− σ−1

σ Ψ(I)

1−Ψ(I)

]
> 1

holds, as claimed.

A.3. PROOF OF LEMMA 3.

From the definition of σ̃ we have

Iσ̃′(I)

σ̃(I)
=

IΨ̃′(I)

Ψ̃(I)

1

1− Ψ̃(I)
. (A.5)

where, as before, we define Ψ̃(I) = γ̃(I)η̃(I). In addition, it is easy to show

that

IΨ̃′(I)

Ψ̃(I)
= 1− Ψ̃(I)− ρ−1(γ̃(I)− γ̃(I)η̃(I)). (A.6)
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The claim then follows from (A.5) and (A.6), along with the observation

that η̃(I) < 1 holds if θ > 0.

A.4. PROOF OF PROPOSITION 3.

In order to prove Proposition 3, it will be useful to begin with the fol-

lowing lemma.

Lemma 5. The function χ(I) has the representation

χ(I) =
µ(I)

(1− α)Aη(I)(1− γ(I))
.

Proof. The definitions of the functions χ(I) and σ(I) imply that

χ(I) =
1

1− σ−1
σ γ(I)η(I)

=
(1− α)A(1− π)I1/ρ − πR

(1− γ(I)η(I))((1− α)A(1− π)I1/ρ)

=
Iµ(I)

(1− α)A 1−π
π η(I)γ(I)I1/ρ

=
µ(I)

(1− α)Aη(I)(1− γ(I))
,

as claimed.

To continue with the proof of Proposition 3, define the function H(I) by

H(I) ≡ (1− β(µ(I))1−ρ)−1. (A.7)

Then equation (A.7) and Lemma A.1 imply that the government’s objective

function takes the form

Ω(I) = H(I)(1− η(I))−ρ

[
µ(I)

η(I)(1− γ(I))

]1−ρ

. (A.8)

It then follows from (A.8) that

IΩ′(I)

Ω(I)
=

IH ′(I)

H(I)
+ ρ

Iη′(I)

1− η(I)
− (1− ρ)

[
Iη′(I)

η(I)
− Iµ′(I)

µ(I)
− Iγ′(I)

1− γ(I)

]
.

(A.9)

Moreover, we observe that

Iγ′(I)

1− γ(I)
= −1− ρ

ρ
γ(I), (A.10)



926 BEATRIX PAAL AND BRUCE D. SMITH

IH ′(I)

H(I)
=

(1− ρ)β(µ(I))1−ρ

1− β(µ(I))1−ρ

Iµ′(I)

µ(I)
(A.11)

Iη′(I)

1− η(I)
= −1− ρ

ρ
γ(I)(1− η(I)), (A.12)

and

Iµ′(I)

µ(I)
=

Rγ(I)η(I)

ρIµ(I)(1− γ(I)η(I))
. (A.13)

Substituting equations (A.10)-(A.13) into (A.9) and rearranging terms yield-

s

IΩ′(I)

Ω(I)
=

1− ρ

ρ
γ(I)η(I)

[
R

I(1− γ(I)η(I))µ(I)(1− β(µ(I))1−ρ)
− 1

]
.

It follows that Ω′(1) > 0 holds iff

R > µ(1)(1− πη(1))(1− β(µ(1))1−ρ), (A.14)

where (A.14) follows from the fact that γ(1) = π. This establishes part (a)

of the proposition. Part (b) is then immediate, since 1 > (1 − πη(1))(1 −
βµ(1)1−ρ).

A.5. PROOF OF PROPOSITION 4.

Define the function Q(I) by

Q(I) ≡ RH(I)

Iµ(I)(1− Φ(I))
, (A.15)

where, as before, Ψ(I) ≡ γ(I)η(I), and where the function H(I) is defined

in (A.7). Then Appendix D establishes that Ω′(I) ≥ 0 holds iff Q(I) ≥ 1.

And, if the conditions of Proposition 3 (a) hold, Ω′(1) > 0 [Q(1) > 1] is

satisfied.

Differentiating (A.15) yields

IΩ′(I)

Q(I)
=

IH ′(I)

H(I)
− 1− Iµ′(I)

µ(I)
+

IΨ′(I)

Ψ(I)

1

1−Ψ(I)
. (A.16)

Substituting (A.2), (A.11) and (A.13) into (A.16) and rearranging terms,

we obtain

IQ′(I)

Q(I)
=

β(1 + 2ρ− ρ2)(µ(I))1−ρ − (1 + ρ)

ρ(1− β(µ(I))1−ρ)
.
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Thus, if

β(µ(I))1−ρ ≥ 1 + ρ

1 + 2ρ− ρ2
(A.17)

is satisfied for all I ∈ (1, Î], and if the conditions of Proposition 3 (a) hold,

Q(I) > 1 is satisfied for all I ∈ [1, Î]. Moreover, (A.17) is satisfied for all

I if (29) holds. It follows that I∗ = Î. This establishes part (a) of the

proposition.

For parts (b) and (c), satisfaction of (30) is required in order for Q(Î) <

Q(1) to hold. Moreover, Q(Î) < 1 [Ω′(Î) < 0] is satisfied iff

µ(Î)(1−Ψ(Î))(1− β(µ(Î))1−ρ) >
R

Î
≡ R1−ρ((1− π)r)ρ.

In addition, since Ψ(I) is a decreasing function, it follows that 1−Ψ(Î) >

1−Ψ(1) = 1− πη(1). Finally, it is straightforward to show that the term

µ(I)(1− β(µ(I))1−ρ) is increasing in I iff

1 ≥ (2− ρ)β(µ(I))1−ρ. (A.18)

Thus if

β(µ(I))1−ρ >
1 + ρ

1 + 2ρ− ρ2
(A.19)

and (A.18) are satisfied for all I ∈ (1, Î], and if the conditions of Proposition

3 (a) hold, then equation (31) is sufficient for Q(Î) < 1 [Ω′(Î) < 0] to hold.

Moreover, (A.18) and (A.19) are satisfied for all I if 1 ≥ (2− ρ)β(µ(Î))1−ρ

and (30) hold. Hence I∗ < Î obtains. Similarly, if (A.19) holds but (A.18)

is violated for all I ∈ (1, Î], then equation (32) is sufficient for Q(Î) < 1

[Ω′(Î) < 0] to be satisfied. Since 1 < (2 − ρ)β(µ(1))1−ρ implies that

1 < (2− ρ)β(µ(I))1−ρ for all I, we again have I∗ < Î. This establishes the

proposition.

A.6. PROOF OF PROPOSITION 5.

Straightforward differentiation yields

IΩ̃′(I)

Ω̃(I)
=

(1− ρ)β(µ̃′(I))1−ρ

1− β(µ̃(I))1−ρ

Iµ̃(I)

µ̃(I)
+ρ

Iη̃′(I)

1− η̃(I)
+(1−ρ)

IΨ̃′(I)

1− Ψ̃)I
, (A.20)

where Ψ̃(I) = γ̃(I)η̃(I). Substituting (14) and (A.6) into (A.20) gives

IΩ̃′(I)

Ω̃(I)
=

(1− ρ)β(µ̃(I))1−ρ

1− β(µ̃(I))1−ρ

Iµ̃′(I)

µ̃(I)
− (1− ρ)Ψ̃(I)
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+ (1− ρ)Ψ̃(I)

[
1− ρ−1 γ̃(I)− Ψ̃(I)

1− Ψ̃(I)

]

Since µ̃′(I) ≤ 0, it follows that, for all I > Î, Ω̃′(I) ≤ 0. Moreover, the

inequality is strict if θ > 0, so that Ψ̃(I) ≡ γ̃(I)η̃(I) < γ̃(I).

A.7. PROOF OF LEMMA 4.

Straightforward differentiation implies that

G′(σ)

G(σ)
=

η(1)

1− σ−1
σ η(1)

− R

(1− α)A− (σ − 1)R
.

Note, then, that G′(σ) > 0 necessarily holds if (σ − 1)R > (1− α)A. And,

if (σ − 1)R < (1− α)A holds, then G′(σ) > 0 is satisfied iff

η(1)(1− α)A ≥ σ2R

(
1− σ − 1

σ
η(1)

)
. (A.21)

Since σ ≤ σ(1), note that a sufficient condition for (A.21) to obtain, and

hence for G′(σ) > 0 to hold, is that

η(1)(1− α)A ≥ Rσ(1)2. (A.22)

Now, since µ(I) ≡ σ(I)R/I, it follows that Rσ(1)2 ≡ µ(1)2/R. Moreover,

it is easy to verify that µ(I) ≤ η(I)(1−α)A ≤ η(1)(1−α)A, for all I. Then

(A.22) is satisfied if

η(1)(1− α)A ≥ (µ(1)/R)µ(1).

But this necessarily holds if R ≥ µ(1).
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