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This paper considers the pricing of contingent claims involved in two new
swaps invented by Chinese entrepreneurs, the equity-for-guarantee swap (EGS)
and the option-for-guarantee swap (OGS), when the cash flow of a firm that
enters into the swaps follows a jump-diffusion process with jump sizes having
a double exponential distribution. Using an equilibrium pricing approach, we
provide explicit prices of all contingent claims and guarantee costs, where a
Nash equilibrium of the game between the insurer and the borrower is derived.
We present numerical analysis and find that OGS leads to an earlier default
than EGS. As far as the borrower is concerned, EGS is better than OGS while
keeping other parties the same. The advantage increases dramatically with
the cash flow risk.
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1. INTRODUCTION

On account of financing difficulties faced by small- and medium- sized
enterprises (SMEs), Shenzhen High-Tech Investment Guarantee Corpora-
tion (SHTIGC) in China invented two new type of swaps, called equity-
for-guarantee swap (EGS) and option-for-guarantee swap (OGS). Now, the
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two swaps are getting more and more popular in China. Although the two
swaps have appeared in China for a long time, as far as we know, there
is no paper in the literature that provides quantitative research on them
except Yang and Zhang (2013), Yang and Zhang (2015) and Wang, Yang
and Zhang (2015), which consider only EGS and assume the cash flow of
the firm that enters into the swap follows a pure diffusion process.

However, as a matter of fact, SMEs and in particular high-tech companies
usually undergo a sudden increase or an unexpectedly dramatical decline.
For this reason, in this paper we assume the cash flow generated by an
SME follows a jump-diffusion model instead of a pure diffusion process.
Motivated by Kou (2002) and Fidrmuc, Ciaian and Pokrivcak (2013), we
suppose the cash flow is described by a double exponential jump diffusion
process. Meanwhile, on account of that OGS is more popular than EGS in
China, unlike Yang and Zhang (2013), we consider OGS as well as EGS.
Utilizing an equilibrium pricing method, we provide explicit solutions to the
pricing of corporate securities under both EGS and OGS, optimal option
exercising boundary and the guarantee costs, which are the numbers of the
equity (option) allocated by the firm that enters into the EGS (OGS) to
an insurer in exchange for the guarantee.

As argued in Kou (2002), two puzzles emerge from many empirical inves-
tigations: the leptokurtic feature that the return distributions of assets may
have a higher peak and two (asymmetric) heavier tails than those of the
normal distribution, and an empirical abnormality called “volatility smile”
in option pricing. To incorporate both of them, Kou (2002) proposes, for
the purpose of option pricing, a double exponential jump diffusion model,
which consists of a continuous part driven by a Brownian motion and a
jump part with jump sizes following a double exponential distribution.

There are a lot of papers in the literature studying on the double expo-
nential jump-diffusion model because it usually leads to an explicit conclu-
sion and it seems realistic as well under many situations. For example, Kou
and Wang (2003) consider the first passage time to flat boundaries for a
double exponential jump diffusion process. Explicit solutions of the Laplace
transforms, of both the distribution of the first passage and the joint distri-
bution of the process and its running maxima, are obtained. Sepp (2004)
derives explicit formulas for pricing double (single) barriers and touch op-
tions with time-dependent rebates assuming that the asset price follows a
double-exponential jump diffusion process. Dao (2003) extends the frame-
work of Leland (1994) by examining corporate debt, equity and firm values
with jump diffusion processes. Atsuo and Hatsushoge (2009) consider an
optimal stopping problem for double exponential jump diffusion processes
and derive the value function of the option to postpone and its optimal
boundary. Kou and Wang (2004) address option pricing under a double
exponential jump diffusion model.
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On account of the above-mentioned reason, it is natural to attack the
pricing of contingent claims involved in EGS and OGS under a double ex-
ponential jump diffusion model. In particular, there is no formal research
on OGS except Yang and Zhang (2015), although OGS is more popular
than EGS in practice. Our work reveals that the study on OGS is much
more challengeable than that on EGS. For example, as far as OGS is con-
cerned, a game between an insurer and a firm that enters into OGS must
be considered.

The remainder of the paper proceeds as follows. Section 2 sets up the
model. In section 3, we explicitly obtain the equilibrium prices of all contin-
gent claims involved in the two swaps and the guarantee costs. We present
numerical results in section 4. Section 5 concludes.

2. MODEL SETUP

Consider an SME that has invested in a project, of which the earnings
before interest and tax (EBIT), denoted by δ is observable and independent
of the capital structure of the firm. We assume the cash flow is governed
by the following jump-diffusion process:

dδt = µδdt+ρσdZ
1
t +
√

1− ρ2σdZ2
t +d

(
Nt∑
i=1

Zi

)
, δ0 given , t ∈ [0,∞) (1)

where µδ is the mean growth rate, σ is the volatility rate, Z ≡ (Z1, Z2)
is a 2-dimensional standard Brownian motion, N is a Poisson process
with the intensity λ that is independent of Z, both Z and N are de-
fined on a complete filtered probability space (Ω,F , (Ft)t≥0,P) with Ft ≡
σ{Z1

s , Z
2
s , Ns,

∑Ns

i=1 Zi; 0 ≤ s ≤ t} describing the flow of information avail-
able to an investor at time t, and Zi, i = 1, 2, · · · , denote independent and
identically distributed (i.i.d.) random variables following a double expo-
nential distribution, of which the density function is given by

h(z) = p · η1e
−η1z1{z≥0} + q · η2e

η2z1{z<0},

where p, q ≥ 0 representing the probabilities of upward and downward
jumps, are constants, p + q = 1, and η1, η2 > 0. Note that the means of
the two exponential distributions are 1

η1
and 1

η2
respectively, we therefore

have ξ ≡ E(Zi) = p
η1
− q

η2
.

In addition, investors have standard liquid financial opportunities which
involves a risk-free asset and a risky market portfolio. The risk-free interest
rate is r > 0. Denote by M the value process of the market portfolio, which
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is governed by the following equation:

dMt/Mt = µmdt+ σmdZ
1
t , M0 given, (2)

where µm and σm are the expected return and the volatility rate of the
market respectively. Clearly, the parameter ρ in (1) represents the correla-
tion coefficient between the firm’s cash flow and the return of the market
portfolio. The value ρσ represents the systematic volatility of the firm’s
cash flow.

We take it that the original owners of an SME have chosen a capital
structure consisting of pure equity and debt in the form of a single console
bond, promising a constant coupon payment b to the lender as long as
the firm remains solvent. However, unlike the common assumption in the
literature, based on many real world situations, we assume that an SME,
in contrast to a large company, can not issue any bond directly because of
its large default risk.

To solve the debt financing problem, the SME turns to an insurer and
signs a three party agreement with a bank and insurer. In the agreement,
a bank lends money at a given interest rate to an SME and gets constant
coupon payment b from the SME. Once the SME defaults, the insurer gets
the salvage value of the assets of the SME and pays all the outstanding in-
terest and principal to the bank instead of the SME. Under OGS, in return
for the guarantee, the SME must give the insurer a perpetual American call
option to buy a given fraction, denoted by ϕo, of equity at a given exercise
price K per share1 at any time. We call the fraction ϕo as guarantee cost.
This agreement is actually a swap in finance, which is similar with EGS
defined in Yang and Zhang (2013). The distinction is that OGS gives an
insurer a perpetual American call option on the value of equity instead of
a fraction, denoted by ϕe, of equity directly at the very beginning under
EGS.

Clearly, the fundamental issue is to determine how much the guarantee
cost ϕo under OGS or ϕe under EGS should be to make sure that the
agreements are fair. For this aim, in the next section we first consider
the pricing of corporate securities under the two swaps and then the two
different guarantee costs are derived. Following Goldstein et al. (2001), we
assume a simple tax structure that includes personal and corporate taxes,
where interest payments are taxed at a personal rate τi, effective dividends
are taxed at τd, and corporate profits are taxed at τc, with full loss offset
provisions.

1Without loss of generality, we assume the number of shares of all equity of the SME
is just one.
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3. EQUILIBRIUM PRICING OF CORPORATE SECURITIES
AND GUARANTEE COSTS

In this section, we first review the equilibrium pricing theory on the
jump-diffusion risk model and then based on the theory, we explicitly obtain
the equilibrium prices of all the contingent claims and the guarantee costs
defined in previous section.

3.1. Equilibrium pricing theory under a jump-diffusion model

In finance, most asset prices are derived from a linear pricing schedule.
To determine a linear pricing rule, we must specify a stochastic discount
factor. However, the market we consider here is incomplete, i.e. there are
infinite stochastic discount factors. To fix one, we can solve a single-agent
optimization problem and take the marginal utility of the agent as a special
stochastic discount factor. If the agent selected is a representative agent,
then we recover the equilibrium stochastic discount factor used in Ingersoll
(2006), Goetzmann, Ingersoll and Ross (2003), Yang and Zhang (2013) and
essentially also in Merton (1976).

Specifically, we assume the representative agent invests in the standard
liquid financial market defined in Section 2 with some given initial wealth
w0. Therefore, the dynamics of the agent’s wealth W is given by

dWt = rWtdt+ θt(dMt − rMtdt)− Ctdt, t ≥ 0, (3)

where θt is the number of shares of the risky asset (market portfolio) and Ct
represents her/his consumption rate at time t. The strategy (θt, Ct)t≥0 is
said to be admissible for initial wealth w0 if the wealth process W given by
(3) remains non-negative at all times. The set of all admissible strategies
is denoted by A(w0). The agent aims to maximize her/his expected total
discounted utility of consumption over an infinite planning horizon:

J(w0) = sup
(θ,C)∈A(w0)

E
[∫ ∞

0

U(t, Ct)

]
. (4)

Usually, to get some reasonably explicit solution, we shall have to assume
a simple form of the utility U , such as the following constant-relative-risk-
aversion (CRRA) utility:

U(t, Ct) = exp(−Λt)
C1−γ
t

1− γ
,

where Λ, γ > 0 and γ 6= 1. Under this assumption, the agent faces an
infinite-horizon Merton problem and it is well known that the optimal
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strategy is given by

θ∗t =
µm − r
σ2γ

Wt

Mt

and

C∗t = κWt, κ ≡ γ−1
[
Λ + (γ − 1)

(
r + 0.5η2/γ

)]
,

where η ≡ (µm − r)/σm is the market Sharpe ratio. Substituting the
optimal strategy into (3) leads to the following dynamics of the optimal
wealth:

W ∗t = w0 exp
(
γ−1ηZ1

t + [r − κ+ 0.5γ−2η2(2γ − 1)]t
)
.

After that, we immediately obtain the stochastic discount factor according
to Rogers (2013) and Ingersoll (2006) among others:

πt ≡ U ′Ct
(t, C∗t ) = (κw0)−γ exp

(
−ηZ1

t − 0.5η2t− rt
)
.

Consequently, thanks to the proposition in Section 6F of Duffie (2001),
the stochastic discount factor π corresponds to an equivalent martingale
measure Q, for which the density process ψ is given by

ψt = exp(rt)πt/π0 = exp
(
−ηZ1

t − 0.5η2t
)
. (5)

Noting that dψt = −ηψtdZ1
t and utilizing the Girsanov-Meyer theorem,2

we can rewrite the cash flow process δ in (1) as follows:

dδt = µdt+ ρσdZQ
t +

√
1− ρ2σdZ2

t + d

N(t)∑
i=1

Zi

 , (6)

where µ ≡ µδ − ρση and (ZQ, Z2) is a 2-dimensional standard Brownian
motion under the measure Q satisfying dZQ

t = dZ1
t + ηdt.

It is shown above that the equilibrium pricing is unrelated with the risk-
averse index γ of the representative agent. We also select an exponent
utility (CARA) instead of the power utility (CRRA) discussed above and
we obtain the same measure Q, which in particular also does not matter
how risk-averse the agent is. These phenomena remind us to check if the
measure Q is independent of the utility U . It turns out that under certain
regularity conditions, the answer is positive. We produce a short proof for
this in Appendix A.

2See Theorem 20 in Chapter III of Protter (1990).
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Remark 3.1. Intuitionally, the ‘strange’ result that the equilibrium
prices are independent of the agent’s utility is actually true since in some
way, the essence of a stochastic discounted factor is a measure of the wealth
level of the market, which is completely determined by the flow of uncertain
information generated only by the Brownian motion instead of the jump
part of the dynamics defined in our model.

Based on what we discuss above, according to the dynamic asset pricing
theory, see Duffie (2001) among others, we derive the following equilibrium
price

V ζt = EQ
[∫ ∞

t

exp (−r(s− t)) ζsds |Ft
]
, t ∈ [0,∞) (7)

for any asset defined by an F-adapted stochastic process ζ, which is the
cash flow generated by the asset. In corporate finance, we often need
to consider the pricing of the following asset: The cash flow rate of the
asset is a linear homogeneous function of the cash flow of the firm, i.e.
ζt = f(δt) = a1δt + a2, t ∈ [0,∞) with a1 and a2 being constant, up to a
stopping time τD ≡ inf{t : δt /∈ D}, which is the time of first departure of
δt from a given domain D. At the stopping time τD, the asset generates a
lump-sum dividend, which is a function, denoted by g(·), of the cash flow
rate δτD /∈ D. After time τD, the asset disappears or its cash flow rate is
zero forever. For the same reason with (7), the equilibrium price (value) of
the asset is independent of time and given by

EQ
[∫ τD

t

exp (−r(s− t)) (a1δs + a2)ds+ e−r(τD−t)g(δτD ) |Ft
]

= V (δt),

(8)
for δt ∈ D and some function V (·). Therefore, we conclude for x ∈ D that
the function V (·) satisfies

1

2
σ2Vxx(x)+µVx(x)+(a1x+a2)+λ

∫ +∞

−∞
[V (x+z)−V (x)]h(z)dz−rV (x) = 0,

(9)
with the following condition:

V (x) = g(x), x /∈ D, (10)

where the subscript of the function V (·) represents the differentiation with
that variable. We provide a proof for (9) and (10) in Appendix B.

Before solving (9), we present one conclusion derived by Kou and Wang
(2003) that introduces four numbers we will cite in the following text. The



378 ZHAOJUN YANG AND CHUNHONG ZHANG

conclusion says that the equation

G(β) ≡ 1

2
σ2β2 + µβ + λ

(
pη1

η1 − β
+

qη2

η2 + β
− 1

)
= r

has four roots denoted by β1, β2,−β3 and −β4 satisfying

0 < β1 < η1 < β2 <∞, 0 < β3 < η2 < β4 <∞.

Clearly, if we assume λ = 0, then the equation G(β) = r has only two

different roots, which are β1 =
−β+
√
β2+2rσ2

σ2 and −β3 =
−β−
√
β2+2rσ2

σ2 .
If we assume a1 = 0 and D ≡ (l, h), thanks to the Proposition 5.2. of

Sepp (2004), the solution of (9) is given for x ∈ (l, h) by

V (x) = B̄1e
β1(x−h) + B̄2e

β2(x−h) + B̄3e
−β3(x−l) + B̄4e

−β4(x−l) +
a2

r
, (11)

where the parameters {B̄i; i = 1, 2, 3, 4} are to be determined from (10).
We note that the term a2/r in (11) is just the value of a perpetual bond

with a fixed coupon of a2. At the same time, we also note that the value
of a claim at time t ≥ 0 to the perpetual cash flow of a1δs + a2, s ∈ [t,∞)
is given from (6) by

EQ
[ ∫∞

t
e−r(s−t)(a1δs + a2)ds|Ft

]
= a1

∫∞
t
e−r(s−t)EQ[δs|Ft]ds+ a2

r = a1x+a2

r + a1
µ+λξ
r2 .

Taking both into consideration,3 if a1 6= 0 and x ∈ D ≡ (l, h), we naturally
guess that the solution of (9) would be given by

V (x) = Ā1e
β1(x−h) + Ā2e

β2(x−h) + Ā3e
−β3(x−l) + Ā4e

−β4(x−l)

+
a1x+ a2

r
+ a1

µ+ λξ

r2
, (12)

where all the parameters {Āi; i = 1, 2, 3, 4} are derived from (10). Actu-
ally, substituting (11) into (9), we verify after some tedious algebra that
if the parameters {Āi; i = 1, 2, 3, 4} are determined by (10), the function
defined by (11) is really a solution of (9) with (10).

Remark 3.2. The two expressions (11) and (11) are powerful to derive
the equilibrium prices of corporate securities as shown in the following
subsection.

3In fact, each term in the guessed solution (11) has an economic explanation and if
we follow these explanation, it is even easier for one to make such guess like us.
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3.2. Equilibrium prices of corporate securities and guarantee
costs

Based on the above-stated equilibrium pricing theory, we explicitly derive
all the prices of the contingent claims defined in Section 2 in this subsection.
No matter whether the swap is EGS or OGS, naturally, it is not necessary
for creditors to have a protective covenant. After taking into account that
our model is a time-homogeneous Markov system, therefore, equityholders
declare default at a stopping time τD = inf {s ≥ t : δs /∈ D ≡ (δB ,+∞)},
where δB is a default threshold to be determined. Specifically, the equity-
holders must solve the following maximum-equity-valuation problem:

E(δt) ≡ sup
δB∈<

EQ
[∫ τD

t

e−r(s−t)(1− τf )(δs − b)ds |Ft
]
,

where τf is the effective tax rate derived from 1 − τf = (1 − τc)(1 − τd).
According to (9) and (10), for x ∈ D, the value function E(·) of equity
satisfies:

µEx(x) +
1

2
σ2Exx(x) + (1− τf )(x− b)

+ λ

∫ +∞

−∞
[E(x+ z)− E(x)]f(z)dz = rE(x),

(13)

with the condition

E(x) = 0, x /∈ D (14)

and the following smooth-pasting condition since δB is an free boundary
and determined by solving the maximum-equity-valuation problem

Ex(δB) = 0. (15)

According to (11), the solution is given by

E(x) = P1e
−β3(x−δB)+P2e

−β4(x−δB)+
(1− τf )x

r
− (1− τf )b

r
+

(1− τf )(µ+ λξ)

r2
.

(16)
From (13), (14) and (16), we derive P1, P2 satisfying the following system
of linear equations:{

P1η2

η2−β3
+ P2η2

η2−β4
+

(1−τf )δB
r − 1−τf

rη2
+

(1−τf )(µ+λξ−rb)
r2 = 0

P1 + P2 +
(1−τf )δB

r +
(1−τf )(µ+λξ−rb)

r2 = 0.
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By inserting its solution into (16), the value of equity is given by

E(x) = (1 − τf )

[
η2 − β3

rη2(β3 − β4)
(1 − bβ4 + β4δB − β4

η2
+

(µ+ λξ)β4

r
)e−β3(x−δB)

+
η2 − β4

rη2(β4 − β3)
(1 − bβ3 + β3δB − β3

η2
+

(µ+ λξ)β3

r
)e−β4(x−δB) +

x

r
− b

r
+
µ+ λξ

r2

]
,

(17)
and according to (15) and (17), the optimal default-triggering level δB is
given by

δB = b− µ+ λξ

r
− 1

β3
− 1

β4
+

1

η2
. (18)

To derive the value of equity under OGS, we must take into account the
guarantee cost and optimal exercising strategy of the holder of the call
option and therefore, we postpone the derivation later and now turn to the
value of the option.

If an SME enters into OGS instead of EGS and the perpetual call option
is not exercised, the optimal default-triggering level, denoted by δB̄ , is,
though, somewhat different from δB given by (18). It is in fact much more
difficult to determine δB̄ than δB . This work will be done only after the
value of equity under OGS is derived and so it is also delayed.

For the perpetual American call option, due to the same reason of the
time-homogeneous system, we conclude that at any time t ≥ 0, there is a
constant exercising boundary δK such that, once the cash flow rate δ hits
the boundary δK , the holder (insurer) will optimally exercise the perpetual
American call option immediately. That is, for a given default threshold
δB̄ before the option is exercised, which will be determined later, at any
time t ≥ 0 and δt ∈ D̄ ≡ (δB̄ , δK), the value of the perpetual American call
option is given by

V AC(δt) = max
δK

{
F (δB̄ , δK , δt) ≡ EQ

[
e−r(τD̄−t)g(δτD̄ )|Ft

]}
,

where τD̄ = inf{s ≥ t : δs /∈ D̄} and the function g(·) is given by

g(x) =

{
[E(x)−K]+, x ≥ δK ;
0, x ≤ δB̄ ,

where E(x) is given by (17).



THE PRICING OF TWO NEWLY INVENTED SWAPS 381

According to (8)∼(10), the function F (δB̄ , δK , ·) satisfies

µFx(δB̄ , δK , x) +
σ2

2
Fxx(δB̄ , δK , x)

+ λ

∫ +∞

−∞
[F (δB̄ , δK , x+ z)− F (δB̄ , δK , x)]f(z)dz − rF (δB̄ , δK , x) = 0,

(19)

with the conditions

F (δB̄ , δK , x) =

{
[E(x)−K]+, x ≥ δK ;
0, x ≤ δB̄ .

(20)

Thanks to (11), when x ∈ D̄, the function F (δB̄ , δK , ·) is given by

F (δB̄ , δK , x) = B1e
β1(x−δK) +B2e

β2(x−δK) +B3e
−β3(x−δB̄) +B4e

−β4(x−δB̄).
(21)

From (19), (20) and (21), we conclude that the parameters B1, B2, B3 and
B4 satisfy the following system of linear equations:

B1

β1+η2
eβ1(δB̄−δK) + B2

β2+η2
eβ2(δB̄−δK) + B3

η2−β3
+ B4

η2−β4
= 0;

B1e
β1(δB̄−δK) +B2e

β2(δB̄−δK) +B3 +B4 = 0;
B1 +B2 +B3e

−β3(δK−δB̄) +B4e
−β4(δK−δB̄) = E(δK)−K;

B1

β1−η1
+ B2

β2−η1
− B3

β3+η1
e−β3(δK−δB̄) − B4

β4+η1
e−β4(δK−δB̄)

+ P1

β3+η1
e−β3(δK−δB) + P2

β4+η1
e−β4(δK−δB) +

1−τf
rη1

(δK − b+ 1
η1

+ µ+λξ
r )− K

η1
= 0,

where E(δK) is given by (17).
The optimal exercising boundary δK is given by the following smooth-

pasting condition:

∂F (δB̄ , δK , x)

∂x
|x=δK =

∂E(x)

∂x
|x=δK . (22)

To sum up, at any time t ≥ 0 and δt ∈ (δB̄ , δK), the value V AC(δt) of
the perpetual American call option held by the insurer in the option-for-
guarantee swap is given by

V AC(δt) = B1e
β1(δt−δK) +B2e

β2(δt−δK) +B3e
−β3(δt−δB̄) +B4e

−β4(δt−δB̄),
(23)

where the optimal exercising boundary δK is derived from (21) and (22). It
is clear that under a given coupon payment b, the value of debt is completely
determined by default threshold. As shown above, we have two different
default thresholds: δB and δB̄ . For this reason, we consider the value of
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debt, denoted by D(δB , δt), under the case of that an SME enters into EGS
or OGS but the option is exercised, i.e δB is the default threshold and one,
denoted by D(δB̄ , δK , δB , δt), under the case of that an SME enters into
OGS and the option is not exercised, i.e. δB̄ is the default threshold.

First, we have

D(δB , δt) = EQ
[∫ τD

t

exp (−r(s− t)) (1− τi)bds+ e−r(τD−t)g(δτD ) |Ft
]
,

(24)
Thanks to the equilibrium pricing theory shown in subsection 3.1, we get
that for x ∈ D = (δB ,∞), the function D(δB , ·) satisfies

µDx(δB , x) +
1

2
σ2Dxx(δB , x) + (1− τi)b

+ λ

∫ +∞

−∞
[D(δB , x+ z)−D(δB , x)]f(z)dz = rD(δB , x), (25)

with the condition

D(δB , x) = (1− τf )(1− α)
µ+ λξ + rx

r2
x ≤ δB , (26)

where α is the bankruptcy loss rate. The bankruptcy loss can be interpreted
as loss from selling the real assets, asset fire-sale losses, legal fees, etc.
According to (11), the solution is given by

D(δB , δt) = Ãe−β3(δt−δB) + B̃e−β4(δt−δB) +
(1− τi)b

r
, (27)

From (24), (24), (26) and (27), we can get Ã and B̃ satisfy the following
system of linear equations:{

Ã+ B̃ = (1− τf )(1− α)µ+λξ+rδB
r2 − (1−τi)b

r ,
Ã

η2−β3
+ B̃

η2−β4
= − (1−τi)b

rη2
+

(1−τf )(1−α)
rη2

(δB − 1
η2

+ µ+λξ
r ).

Thus, for δt ∈ (δB ,∞), we get the value of debt under EGS as follows:

D(δB , δt)

= η2−β3

(β4−β3)rη2

[
(1− τf )(1− α)( (µ+λξ+rδB)β4

r + η2−β4

η2
)− (1− τi)bβ4

]
e−β3(δt−δB)

+ η2−β4

(β4−β3)rη2

[
(1− τi)bβ3 − (1− τf )(1− α)( (µ+λξ+rδB)β3

r + η2−β3

η2
)

]
e−β4(δt−δB)

+ (1−τi)b
r .
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Second, following (8)∼(10), we derive the value of debt under OGS and
before the option is exercised as follows:

D(δB̄ , δK , δB , δt) = EQ
[∫ τD̄

t

exp (−r(s− t)) (1− τi)bds+ e−r(τD̄−t)g(δτD̄ ) |Ft
]
,

(28)
where D̄ = (δB̄ , δK) and

g(x) =

{
(1− τf )(1− α)µ+λξ+rx

r2 , x ≤ δB̄ ;
D(δB , x), x ≥ δK .

After that, the function D(δB̄ , δK , δB , ·) satisfies

µDx(δB̄ , δK , δB , x) +
1

2
σ2Dxx(δB̄ , δK , δB , x) + (1− τi)b

+ λ

∫ +∞

−∞
[D(δB̄ , δK , δB , x+ z)−D(δB̄ , δK , δB , x)]f(z)dz = rD(δB̄ , δK , δB , x),

(29)

with the boundary condition{
D(δB̄ , δK , δB , x) = (1− τf )(1− α)µ+λξ+rx

r2 , x ≤ δB̄ ;
D(δB̄ , δK , δB , x) = D(δB , x), x ≥ δK .

(30)

According to (11), the solution is given by

D(δB̄ , δK , δB , δt)

= C1e
β1(δt−δK) + C2e

β2(δt−δK) + C3e
−β3(δt−δB̄) + C4e

−β4(δt−δB̄) + (1−τi)b
r ,
(31)

where Ci, i = 1, 2, 3, 4 are constants to be determined. From (28), (29),
(30) and (31), we conclude that C1, C2, C3 and C4 satisfy the following
system of linear equations:

C1

β1+η2
eβ1(δB̄−δK) + C2

β2+η2
eβ2(δB̄−δK) + C3

η2−β3
+ C4

η2−β4

+ (1−τi)b
rη2

− (1−τf )(1−α)
rη2

(
µ+λξ+rδB̄

r − 1
η2

)
= 0;

C1

β1−η1
+ C2

β2−η1
− C3

β3+η1
e−β3(δK−δB̄) − C4

β4+η1
e−β4(δK−δB̄)

+ Ã
β3+η1

e−β3(δK−δB) + B̃
β4+η1

e−β4(δK−δB) = 0;

C1e
β1(δB̄−δK) + C2e

β2(δB̄−δK) + C3 + C4 + (1−τi)b
r = (1− τf )(1− α)µ+λξ+rδB̄

r2 ;

C1 + C2 + C3e
−β3(δK−δB̄) + C4e

−β4(δK−δB̄) = Ãe−β3(δK−δB) + B̃e−β4(δK−δB).

Now, we are ready to determine how much guarantee cost an SME should
be charged for getting the loan.
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Naturally, we assume the present time is t = 0 when the swap contract
is signed and δ0 ∈ D = (δB ,∞) under EGS, while δ0 ∈ D̄ = (δB̄ , δK) under
OGS. In the following, we denote by V e(δ0) and V o(δ0) the equilibrium
value of the insurer’s contingent compensatory payment to the bank/lender
under EGS and OGS respectively, which are taxed at a personal rate τi.

Clearly, under EGS, in order to fully protect the lender, the value V e(δ0)
must satisfy the following equality:

D(δB , δ0) + (1− τi)V e(δ0) =
b

r
(1− τi).

From (27), we obtain that the value V e(δ0) of the insurer’s compensatory
payment to the bank/lender is given by

V e(δ0) = − Ãe
−β3(δ0−δB) + B̃e−β4(δ0−δB)

1− τi
. (32)

Consequently, in order to make the EGS contract fair, i.e. make sure that
the value of what an insurer pays is equal to the value of the cash flow the
insurer gets due to the guarantee, we must have from (32) that

V e(δ0) = ϕeE(δ0), (33)

where ϕe is called guarantee cost, i.e. the amount (fraction) of equity
allocated to the insurer in return for his guarantee.

Therefore, we derive from (33) the following explicit guarantee cost:

ϕe = − Ãe
−β3(δ0−δB) + B̃e−β4(δ0−δB)

(1− τi)E(δ0)
,

where E(δ0) is given by (17). Naturally, the value, denoted by Ee(δt, ϕ
e),

of equity held by a firm who enters into EGS is given by

Ee(δt, ϕ
e) = (1− ϕe)E(δt).

In the same way, when the contract is an option-for-guarantee swap (OGS),
in order to fully protect the lender, the value V o(δ0) of the insurer’s con-
tingent compensatory payment must satisfy the following equality:

D(δB̄ , δK , δB , δ0) + (1− τi)V o(δ0) =
b

r
(1− τi).

Then, utilizing (31), we get the value V o(δ0) as follows:

V o(δ0) = −C1e
β1(δ0−δK) + C2e

β2(δ0−δK) + C3e
−β3(δ0−δB̄) + C4e

−β4(δ0−δB̄)

1− τi
.

(34)
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Consequently, in order to make the swap contract fair, we must have
from (34) that

V o(δ0) = ϕoV AC(δ0), (35)

where ϕo is called guarantee cost, i.e. the amount (fraction) of the Ameri-
can call option held by the insurer in return for the guarantee.

Therefore, we derive from (35) the following explicit guarantee cost:

ϕo = −C1e
β1(δ0−δK) + C2e

β2(δ0−δK) + C3e
−β3(δ0−δB̄) + C4e

−β4(δ0−δB̄)

(1− τi)V AC(δ0)
,

where V AC(δ0) is given by (23).
Last, we turn to the value of equity under OGS and the default-triggering

level δB̄ selected by an SME, who enters into OGS and aims to maximize
the equilibrium value of his claim before the option is exercised.

For this aim, there are two different expressions of the value of equity:
One is denoted by Ēo(δt, ϕ

o), which corresponds to the case that the option
is not exercised; The other is denoted by Eo(δt, ϕ

o), which corresponds to
the case that the option has been exercised.

First, we note that under any given OGS contract, the guarantee cost
must be determined at the initial time when the contract is signed. There-
fore, if the option has been exercised, and the firm has not gone bankrupt,
we conclude directly from (17) that the value Eo(δt, ϕ

o) is given by

Eo(δt, ϕ
o)

= (1− τf )(1− ϕo)
[

η2−β3

rη2(β3−β4) (1− bβ4 + β4δB − β4

η2
+ (µ+λξ)β4

r )e−β3(δt−δB)

+ η2−β4

rη2(β4−β3) (1− bβ3 + β3δB − β3

η2
+ (µ+λξ)β3

r )e−β4(δt−δB) + δt
r −

b
r + µ+λξ

r2

]
,

where the default threshold δB is given by (18).
Second, if the option has not been exercised and the firm has not gone

bankrupt, i.e. δt ∈ D̄ ≡ (δB̄ , δK), the equilibrium value Ēo(δt, ϕ
o) of the

SME’s claim is given by

Ēo(δt, ϕ
o) = sup

δB̄∈<
EQ
[∫ τD̄

t

e−r(s−t)(1− τf )(δs − b)ds+ e−r(τD̄−t)g(δτD̄ ) |Ft
]
,

where according to the OGS agreement, the function g(·) is defined by

g(x) =

{
0, x ≤ δB̄ ;
Eo(x, ϕo) + ϕoK, x ≥ δK .

Therefore, utilizing the equilibrium pricing theory provided in subsection
3.1 and a standard endogenous default timing theory, we obtain that the
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market value Ēo(x, ϕo) of equity satisfies the following differential equation:

µĒox +
σ2

2
Ēoxx + (1− τf )(x− b)

+ λ

∫ +∞

−∞
[Ēo(x+ z)− Ēo(x)]f(z)dz = rĒo, δB̄ < x < δK

(36)

with the following value-matching and smooth-pasting conditions4 Ēo(x, ϕo) = Eo(x, ϕo) + ϕoK, x ≥ δK ;
Ēo(x, ϕo) = 0, x ≤ δB̄ ;
Ēox(δB̄ , ϕ

o) = 0.
(37)

According to (11), we get the following explicit solution of (36) with (37):

Ēo(x, ϕo) = A1e
β1(x−δK) +A2e

β2(x−δK) +A3e
−β3(x−δB̄) +A4e

−β4(x−δB̄)

+
(1−τf )x

r − (1−τf )b
r +

(1−τf )(µ+λξ)
r2 ,

(38)
where {Ai; i = 1, 2, 3, 4} are constants to be determined. From (36)∼(38),
we conclude that {Ai; i = 1, 2, 3, 4} satisfy the following system of linear
equations:

A1

β1+η2
eβ1(δB̄−δK) + A2

β2+η2
eβ2(δB̄−δK) + A3

η2−β3
+ A4

η2−β4

+
1−τf
rη2

(µ+λξ
r − 1

η1
+ δB̄ − b) = 0,

A1η1

β1−η1
+ A2η1

β2−η1
− A3η1

β3+η1
e−β3(δK−δB̄) − A4η1

β4+η1
e−β4(δK−δB̄)

+
(1−τf )(1−ϕo)η1

rη2(β3−β4)

[
η2−β3

β3+η1
(1− bβ4 + β4δB − β4

η2
+ (µ+λξ)β4

r )e−β3(δK−δB)

−η2−β4

β4+η1
(1− bβ3 + β3δB − β3

η2
+ (µ+λξ)β3

r )e−β4(δK−δB)

]
− (1−τf )ϕo

r (δK − b+ 1
η1

+ µ+λξ
r ) + ϕoK = 0,

A1e
β1(δB̄−δK) +A2e

β2(δB̄−δK) +A3 +A4 +
(1−τf )δB̄

r +
(1−τf )(µ+λξ)

r2 − (1−τf )b
r = 0,

A1 +A2 +A3e
−β3(δK−δB̄) +A4e

−β4(δK−δB̄) + (1− τf )( δKr + µ+λξ
r2 − b

r )

= (1− τf )(1− ϕo)
[

η2−β3

rη2(β3−β4) (1− bβ4 + β4δB − β4

η2
+ (µ+λξ)β4

r )e−β3(δK−δB)

+ η2−β4

rη2(β4−β3) (1− bβ3 + β3δB − β3

η2
+ (µ+λξ)β3

r )e−β4(δK−δB) + δK−b
r + µ+λξ

r2

]
+ ϕoK,

and the default threshold δB̄ is a solution of the following equation

β1A1e
β1(δB̄−δK) + β2A2e

β2(δB̄−δK) − β3A3 − β4A4 +
1− τf
r

= 0. (39)

4The exercising boundary δK in (37) is determined in advance and therefore, the
smooth-pasting condition at the point δK is not imposed here.
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Remark 3.3. To solve the simultaneous equations defined by (18), (22)
and (39), we are able to get the optimal default threshold δB after the
option is exercised, the default threshold δB̄ before the option is exercised
and the optimal exercising boundary δK simultaneously. Clearly, the strat-
egy profile determined by the default thresholds δB and δB̄ selected by an
SME and an exercising boundary δK selected by an insurer is actually a
Nash equilibrium of the game between the SME and the insurer from game
theory.

4. COMPARATIVE STATICS AND NUMERICAL RESULTS

In this section, we examine how default thresholds, the exercising bound-
ary of the option, guarantee costs and the value of equity held by an SME
who enters into EGS or OGS change with cash flow volatility σ, correla-
tion ρ and jump intensity λ respectively. To this end, all model parameters
take the following annualized baseline parameter values unless otherwise
stated: the risk-free interest rate r = 0.05, the expected growth rate of
the cash flow µδ = 0.2, cash flow volatility σ = 0.9, initial cash flow rate
δ0 = 10 correlation coefficient ρ = 0.2 between the market and the cash
flow, market Sharpe ratio η = 0.4, coupon b = 8, exercise price K = 35,
bankruptcy loss rate α = 0.5, jump intensity λ = 0.5, the probabilities
p = 0.4 (q = 0.6) of upward (downward) jumps, and the means of the two
exponential distributions 1

η1
= 1

3 , 1
η2

= 1
4 . According to the Tax System of

China, personal rate τi = 0.05, corporate profit tax rate τc = 0.25, effective
dividend tax rate τd = 0.2 and so the effective tax rate τf = 0.4 derived
from 1− τf = (1− τc)(1− τd).

4.1. Equilibrium prices vs. the diffusive volatility of the cash
flow

TABLE 1.

The table represents the impacts of changes in the diffusive volatility
(σ) of cash flow with the baseline parameter values.

σ 0.3 0.5 0.7 0.9

δB 4.2526 4.1462 3.9141 3.5992

δB̄ 6.5875 6.4850 6.2650 5.9750

δK 11.3150 11.7275 12.2275 12.7575

ϕe 1.2072e-5 0.0020 0.0259 0.0949

ϕo 0.0022 0.0496 0.2310 0.5104

Ee(δ0, ϕ
e) 64.2393 60.2912 55.2987 48.6310

Ēo(δ0, ϕ
o) 64.1548 58.6867 49.5662 39.0529
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Table 1 describes the impacts of the diffusive volatility σ of the cash flow
on optimal default thresholds δB , δB̄ , exercise boundary δK , guarantee cost
ϕe under the EGS, guarantee cost ϕo under the OGS, equilibrium values
Ee(δ0, ϕ

e) and Ēo(δ0, ϕ
o) of equity held by the entrepreneur under EGS

and under OGS respectively.
As we expected, Table 1 states that the two optimal default thresholds

decrease with the diffusive volatility, i.e. the higher the business risk, the
later the entrepreneur defaults. However, on the contrary to the well-known
conclusion that the value of equity increases with the diffusive volatility, as
the business risk (volatility σ) increases, the value of the equity held by the
entrepreneur conversely decreases rather than goes up. This is because as
business risk rises, the insurer’s compensatory payment V o(δ0) (V e(δ0)) as-
cends and naturally, the guarantee cost ϕo (ϕe) increase. Clearly, the larger
the guarantee cost ϕo or ϕe, the less the amount of equity left to the en-
trepreneur and so the less the equilibrium values Ee(δ0, ϕ

e) and Ēo(δ0, ϕ
o)

of equity held by the entrepreneur.
Table 1 shows that EGS is better than OGS for the entrepreneur while

keeping the other two parties in the agreement the same. The bigger the
volatility σ, the bigger the difference between the two equilibrium values
Ee(δ0, ϕ

e) and Ē(δ0, ϕ
o). The larger the volatility, the bigger the difference

δB̄ − δB > 0 and thus, the value of equity held by the entrepreneur under
OGS moves downward faster than that under EGS since a bigger default
threshold leads to a higher default probability and bankruptcy cost.

4.2. Equilibrium prices vs. cash flow correlation with market
portfolio

TABLE 2.

The table represents the impacts of changes in correlation coefficient
(ρ) between the cash flow and the return of the market portfolio

with the baseline parameter values.

ρ −0.4 −0.2 0 0.2

δB 0.1632 1.3925 2.5479 3.5992

δB̄ 2.4969 3.7279 4.8918 5.9705

δK 12.0359 12.2295 12.4639 12.7557

ϕe 1.9195e-4 0.0022 0.0175 0.0949

ϕo 0.0017 0.0154 0.1007 0.5093

Ee(δ0, ϕ
e) 104.5423 87.1112 68.9704 48.6310

Ēo(δ0, ϕ
o) 104.4218 86.3225 65.6245 39.0872

Now we turn to the impacts of correlation ρ between the firm’s cash flow
and the market portfolio plotted by Table 2 on default thresholds, exercise
boundary, guarantee costs and equilibrium prices.
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Table 2 states that with a growth of correlation ρ, both default thresholds
go up. This is because the larger the correlation ρ, the smaller the risk-
adjusted return µ = µδ − ρση and therefore, the less the value of equity,
which naturally leads to an earlier default. On the other hand, similar with
Table 1, EGS is better than OGS for the entrepreneur while keeping the
other two parties in the agreement the same. The bigger the correlation
coefficient ρ, the bigger the difference between the two equilibrium values
Ee(δ0, ϕ

e) and Ē(δ0, ϕ
o).

4.3. Equilibrium prices vs. cash flow jump intensity

TABLE 3.

The table represents the impacts of the jump intensity (λ) with the baseline
parameter values.

λ 0.01 0.5 1 1.5 2

δB 3.5993 3.6027 3.6048 3.6062 3.6077

δB̄ 5.9650 5.9750 5.9787 5.9875 5.9950

δK 12.6275 12.7575 12.8850 13.0094 13.1350

ϕe 0.0680 0.0949 0.1270 0.1634 0.2039

ϕo 0.4001 0.5104 0.6327 0.7671 0.9116

Ee(δ0, ϕ
e) 51.6022 48.6310 45.5160 42.3439 39.1383

Ēo(δ0, ϕ
o) 43.2846 39.0529 34.8078 30.5786 26.4281

TABLE 4.

The table represents the impacts of the jump intensity (λ) with η1 =
8, η2 = 13 and the baseline parameter values.

λ 0.01 0.5 1 1.5 2

δB 3.5985 3.5573 3.5153 3.4733 3.4314

δB̄ 6.3375 6.2950 6.2550 6.2097 6.1675

δK 12.5950 12.5975 12.6050 12.6050 12.6094

ϕe 0.0675 0.0659 0.0644 0.0629 0.0615

ϕo 0.4789 0.4624 0.4473 0.4314 0.4169

Ee(δ0, ϕ
e) 51.6720 52.1712 52.6799 53.1879 53.6951

Ēo(δ0, ϕ
o) 40.6813 41.4126 42.1201 42.8724 43.5894

Table 3 and 4 describe the impacts of the jump intensity λ of the cash flow
on default thresholds, exercise boundary, guarantee costs and equilibrium
prices. For an obvious reason, we consider two cases: (i) The mean jump
value of the cash flow is negative; (ii) The mean value is positive.

In Table 3, we assume the cash flow has a negative mean jump value ξ =
p
η1
− q

η2
= −0.017. Under this case, as we expected, the default thresholds

δB , δB̄ , exercise boundary δK , and guarantee costs ϕe and ϕo increase with
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the jump intensity λ. Naturally, the values Ee(δ0, ϕ
e) and Ēo(δ0, ϕ

o) of
equity held by the entrepreneur decrease with the jump intensity λ, since
the larger the guarantee costs ϕe and ϕo, the less the amount of equity left
to the entrepreneur. Table 3 also says that EGS is better than OGS for the
entrepreneur while keeping the other two sides of the agreement the same,
and the advantage increases slowly with the jump intensity.

On the contrary to Table 3, we assume the mean jump value is positive
in Table 4: ξ = p

η1
− q

η2
= 0.004. Roughly speaking, the opposite holds

true as seen in the table.

5. CONCLUSIONS

In this paper, we discuss the equilibrium pricing of corporate securities
under EGS and OGS respectively. Unlike Yang and Zhang (2013) who
consider only EGS in a continuous model, we suppose that the cash flow
follows a jump-diffusion process and also study a much more complex swap,
OGS.

As pointed out in Kou (2002), the major advantages of the jump-diffusion
model are: (i) It can lead to the asymmetric leptokurtic feature and to the
implied “volatility smile”; (ii) It has a good analytical tractability.

We present explicit equilibrium prices of all contingent claims involved
in the two swaps. As far as OGS is concerned, the default thresholds before
and after the option is exercised are somewhat different from each other.
The two thresholds determined by a firm that enters into OGS and the
exercising boundary of the option determined by its holder (the insurer)
constitute a Nash equilibrium, which is explicitly derived in this paper.
Based on these conclusions, we provide numerical analysis, which explains
what and how factors involved in the two swaps should be taken into ac-
count in the agreement. For example, the larger the correlation between the
firm and the market, the higher the guarantee costs should be charged and
the less the value of equity held by the firm. Such important relationships
are, however, generally ignored in reality. Specifically, in sharp contrast to
Yang and Zhang (2015), who assume the borrower is risk-averse towards
idiosyncratic risk, here EGS is better than OGS as far as the borrower is
concerned. The advantage increases dramatically with the cashflow risk.

In our paper, for simplicity, we assume the guaranteed bank loan is a
console bond. Theory and practice would predict that a lender or loan
insurer would require a short maturity so that the financial condition of
the firm could be frequently monitored and financing could be cut off if the
firm did poorly. In addition, we do not consider optimal capital structure,
the asset substitution effect and debt overhang problem to save the space.
However, these issues are also important and so we leave them for future
research.
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APPENDIX A

A PROOF OF THAT THE MEASURE Q IS INDEPENDENT
OF THE UTILITY U

Let Gt ≡ σ{Z1
s ; 0 ≤ s ≤ t}. It is easy to derive that the optimal con-

sumption C∗t is Gt measurable, i.e. C∗t ∈ Gt. Hence, we get the stochastic
discount factor πt ≡ U ′Ct

(t, C∗t ) ∈ Gt and the density process ψ for its
equivalent martingale measure Q satisfies ψt = exp(rt)πt/π0 ∈ Gt. Utiliz-
ing the well known martingale representation theorem, there is G-adapted
process χ, such that dψt = χtψtdZ

1
t . Since exp(−rt)Mt must be a mar-

tingale under Q, we therefore derive χt = −η for all t ≥ 0, following the
Girsanov-Meyer theorem. That is, no matter what the utility function in
(4) is, we obtain the same measure Q given by (5). This concludes the
proof.

APPENDIX B

A PROOF OF EQUATIONS (9) and (10)

First, the boundary condition (10) holds obviously. Second, we get for
δ0 ∈ D that∫ t

0

e−rs(a1δs+a2)ds+e−rtV (δt) = EQ

[∫ TD

0

e−rs(a1δs + a2)ds+ e−rTDg(δTD
) |Ft

]
.

Accordingly, the process
∫ t

0
e−rs(a1δs + a2)ds + e−rtV (δt) is a martingale

if we stop the process once δ hits the boundary ∂D and consequently, the
drift of its differential is zero. For this reason, by utilizing Ito-Doeblin
formula for one jump process, it is not difficult to derive (9).
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