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Liquidity, Efficiency and the 2007-2008 Global Financial Crisis.

Sergio Bianchi and Massimiliano Frezza*

We focus on the relationship between liquidity and market efficiency, and
investigate the behavior of three stock market indexes (S&P500, Nasdaq and
DAX) before, during and after the global financial crisis. We find that, once
accounted for the scale, the two attributes are strongly related and empirical
evidence is provided that, when market efficiency is measured through the
pointwise regularity of the price, it is a better forecaster of illiquidity than vice
versa. We also find that the variation of the illiquidity premium declined to
zero during the unconventional interventions that the Federal Reserve launched
to face the credit crunch.
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1. INTRODUCTION.

Liquidity and efficiency are two of the cornerstones of modern financial
theory. Their conceptual depth and their intrinsic difficulty to be measured
represent one of the challenges, which has produced even controversial re-
sults. Separately, the two topics are extensively studied in literature, in
terms of both market microstructure and econometric modeling and esti-
mation.

As for the first strand of research, the contributions have followed three
main approaches: a) the analysis of the relation between tick size and the
decrease in bid-ask spreads (Bessembinder (2003), Chordia et al. (2005));
b) the return/order flow relation, in connection of specific events or for
short spans of time (Lee (1992), Chan and Fong (2000), Hasbrouck and
Seppi (2001)); c) the link between liquidity and stock returns in terms
of premium demanded for illiquid stocks (Amihud and Mendelson (1986),
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Jones (2002), Amihud (2002), Pastor and Stambaugh (2003), Acharya and
Pedersen (2005)).

As for the second line of research, since the seminal work of Fama (1970) a
huge number of empirical studies have tried to address the question whether
the (discounted) stock prices follow a martingale. It is nearly impossible
to summarize in few lines the extent of the literature on efficient markets;
globally speaking, the contributions can be grouped into two broad sets:
those that test for the strong and semi-strong efficiency, by analyzing how
the information flow impacts on the formation of stock prices (e.g. Lo
(2004) and references therein); and those that focus on the weak efficiency,
by estimating linear and non linear dependence in stock returns (Willinger
et al. (1999); Mitra et al. (2017)).

Although the literature on efficient markets is almost overwhelming, the
link between liquidity and efficiency is examined in a relatively few num-
ber of works, and the question whether changes in liquidity are related
to variations in the degree of efficiency is still far from being completely
addressed. Chordia et al. (2008) and Chung and Hrazdil (2010) point out
that, in Chordia’s words, “In an efficient market, return predictability from
past information should be short-lived and minimal. Given th evidence that
such predictability does exist in the short run, understanding its time varia-
tion and its relation to other financial market attributes, such as liquidity,
are of fundamental importance.”. Nonetheless, more than on efficiency,
many contributions have focused on the binomial illiquidity-volatility and,
even if the debate is still open, some evidence indicates the former as a
predictor of the latter (see, e.g., Stoll (1978a), Stoll (1978b), Stoll (2000),
Amihud and Mendelson (1989b), Bao and Pan (2013)). The issue here is
to clarify whether and to which extent a link exists between volatility and
efficiency. This strong relationship will be established in a natural way
within the fractional model that will be discussed in Section 3.

Since prices are strongly related to trading volumes and liquidity (Shleifer
and Vishny (1992), Stein (1995), and Pulvino (1998)), the relation between
liquidity and efficiency is being increasingly studied in recent years. Indeed,
they both capture the market sentiment: Baker and Stein (2004) claims
that in an unusually liquid market pricing is dominated by irrational in-
vestors, who tend to underreact to the information embodied in either order
flow or equity issues. Liquidity is therefore a clue that irrational investors
have a positive sentiment, which turns into expected returns abnormally
low. Furthermore, the 2007-2008 global financial crisis has weakened the
idea of a ubiquitous market efficiency, due to the occurrence of extreme
events which take place with frequencies and orders of magnitude several
times higher than those foreseen by the current paradigm and not expli-
cable in terms of regime-switching. Markets imperfections of recent years
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have been acknowledged by financial institutions and have motivated large
interventions for their correction (e.g. QE or LTRO programs).

Starting from these motivations, we connect the two notions by using
a widely employed measure of illiquidity (ILLIQ, introduced by Amihud
(2002)) and a topology-based measure of efficiency.

We find that: (a) the two measures are strongly related, and the measure
of efficiency is a better forecaster of the measure of illiquidity than vice
versa; (b) their correlation increases when markets experience inefficient
periods; (c) the two measure reveal that during the Quantitative Easing
Programs, the variation of the premium for the illiquidity risk decreases to
zero.

These findings corroborate the results in Rogers et al. (2014), who —
analyzing bond yields, exchange rates and stock prices from the Euro area,
Japan, United Kingdom and the United States — conclude that unconven-
tional monetary policy has proven effective in reducing the term premia
and has had some important cross-country spillovers.

The paper is organized as follows: in section 2 the measure of illiquidity is
described, along with a concise overview of the main approaches followed
to quantify the notion; in section 3 the measure of market efficiency is
introduced and its main properties are discussed; section 4 is devoted to
the empirical analysis on three main stock indices (S&P500, Nasdaq and
DAX) and section 5 concludes.

2. MEASURING ILLIQUIDITY

Despite liquidity represents one of the most debated topic in finance,
neither a unique definition nor a single measure have been unanimously
accepted (Baker (1996)). In general terms, liquidity is the capability to
trade a security easily or, in other words, the ability to buy or sell large
quantities of an asset quickly without impacting on the price in a sub-
stantial way. According to Sarr and Libek (2002)) and without any claim
for the following classification to be thorough, liquidity measures can be
broadly grouped into four categories:

1. transaction cost measures, whose aim is to capture the explicit (order
processing and taxes) or the implicit (execution) cost of trading financial
assets and trading frictions in secondary markets. The measure tradition-
ally used is the bid-ask spread and its extensions (Amihud and Mendelson
(1986), Amihud (2002), Demesetz (1968)) or the relative (or inside) spread
(Acker and Tonks (2002), Chordia et al. (2001b), Clark and Kassimatis
(2014));
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2. volume-based measures, that focus on depth and breadth1. Besides
the simple transaction volume (measured by the total value of trades over
a given time interval) and the turnover (scaling transaction volumes to the
size of the assets (Dennis and Strickland (2003))), the Hui-Heubel Liquidity
Ratio is one of the most common volume-based measures (Hui and Heubel
(1984));

3. price-based measures, that capture the resilience dimension, that is
the capability of a market to quickly correct order imbalances, which tend
to move prices away from what is predicted by fundamentals. The well-
known illiquidity measure introduced by Amihud (2002) (ILLIQ, from
now on) and the Market Efficient Coefficient (MEC), also named Variance
ratio, proposed by Hasbrouck and Schwartz (1988), are two widely used
indicators;

4. market-impact measures, that try to isolate the price movements strictly
caused by the degree of liquidity as opposite to those resulting from other
factors, such as general market conditions or arrival of new information.
An example is given by the Market-Adjusted liquidity model, proposed by
Hui and Heubel (1984), which attempt to capture the intrinsic illiquidity
of a stock using a CAPM-based approach.

As a proxy of illiquidity, in this analysis we will use the measure proposed
by Amihud. Even though other finer microstructure measures (requiring a
lot of data sometimes not available) are possible, ILLIQ remains a bench-
mark in the field of liquidity, due to its computational immediacy and
parsimony.

The measure is the daily ratio between the absolute stock return and
its dollar volume, averaged over some period. Analytically, denoted by
Ritd the return for stock i, on day d of period t (typically, t is one trading
month or one year), by DV OLitd the corresponding dollar trading volume
and by Dit the number of trading days for stock i in period t, the measure
is defined as:

ILLIQit =
1

Dit

Dit∑
d=1

|Ritd|
DV OLitd

. (1)

Intuitively, ILLIQit can be interpreted as the daily price response associ-
ated with one dollar of trading volume. In our analysis, we will calculate
(1) with respect to the whole market, which means assuming the stock i
as the market index.

By relating the excess return and ILLIQit, Amihud investigates how
the illiquidity represents a source of risk and, as such, investors require

1“Depth” refers to a market characterized by a large amount of orders (actually or
easily uncovered by potential sellers or buyers); “breadth” indicates that the orders are
both numerous and large in volume with minimal impact on prices.
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to be compensated for holding illiquid assets. He finds that the expected
stock return for a period is an increasing function of the illiquidity forecast
in previous period, and that an unexpected rise in illiquidity in a certain
period lowers the stock prices in the same period, producing a negative liq-
uidity relationship. These findings confirm previous results due to Amihud
and Mendelson (1986) and Anihud and Mendelson (1989a): using data on
stocks traded in the NYSE between 1960 and 1980, they provided evidence
that across stock portfolios sorted on illiquidity and risk, average stock re-
turn is an increasing function of the stock bid-ask spread (after controlling
for systematic and unsystematic risk)2. Other contributions support the
hypothesis of a relationship between expected return and illiquidity. In an
intraday analysis, Brennan and Subrahmanyam (1996) use the Kyle’s mea-
sure of illiquidity3 and find that both the price impact and the fixed cost
are priced. Pastor and Stambaugh (2003) propose that asset prices should
reflect a premium for the sensitivity of stock returns to market-wide liquid-
ity; they show that stocks with greater exposure to market liquidity shocks
(i.e. with greater systematic liquidity risk) should earn higher returns.
Acharya and Pedersen (2005) show that the persistence of liquidity implies
that liquidity predicts future returns and co-moves with contemporaneous
returns: a high illiquidity today predicts a high expected illiquidity next
period, implying a high required return. These findings will be confirmed
by our analysis.

International evidence about the association between expected returns
and illiquidity are also traced in Amihud et al. (2015) using data from 45
countries divided into 26 developed and 19 emerging markets. They show
both that illiquid stocks outperform liquid stocks in nearly all countries and
that there is a cross-country commonality in the illiquidity return premium
(after controlling for the six global and regional Fama and French (1993)
return factors). This approach differs from the commonality in the level of
shocks to illiquidity found for the U.S. market by Chordia et al. (2001a),
Hasbrouck and Seppi (2001), Huberman and Halka (2001) and for other
countries by Brockman et al. (2009) and Karolyi et al. (2012).

2Furthermore, the authors also show the existence of liquidity clientele, by which the
high-frequency traders choose more liquid assets whereas the low-frequency investors
prefer less liquid assets because they can depreciate the transaction costs over longer
periods.

3In the model of Kyle (1985), λ is a measure of adverse selection, essentially defined
as the slope coefficient in a regression relating the price change to trade-by-trade signed
order flow. Brennan and Subrahmanyam (1996) use Kyle’s λ as a proxy for the trading
cost, since they argue that adverse selection is “a primary cause of illiquidity”.
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3. MEASURING MARKET EFFICIENCY

The idea relies on the assumption that the martingales have a well defined
signature in terms of pointwise irregularity of their sample paths, which can
be quantified by means of their Hölder exponent.

The transposition of the Efficient Market Hypothesis (EMH) in terms
of expected values of discounted payoffs dates back to Fama (1970) and it
is “(...) the unavoidable price one must pay to give the theory of efficient
markets empirical content”. In this framework, given the filtered proba-
bility space (Ω,F , (F)t,P), efficiency requires that an asset whose price at
time t is St and whose payoff at time T > t is XT , fulfills the following
relation

St = Et (YTXT ) , (2)

where YT is the stochastic discount factor4 between t and T . In terms of
the asset’s gross return RT = XT

St
= 1 + rT , equality (2) becomes

1 = Et
(
YT

XT

St

)
= Et (YTRT ) . (3)

A habit in financial literature is to test the EMH by checking the validity of
the random walk model through relation (3) or its variants. Even ignoring
the so called joint hypothesis problem5, since Et (YTRT ) = Et (YT )Et (RT )+
Covt (YTRT ), one has

Et (RT ) =
1− Covt (YTRT )

Et (YT )
, (4)

stating that the sole predictability of returns, that is the controversial fail-
ure of the random walk model, does not prove market inefficiency. Indeed,
it suffices the expected conditional return to comply with (4) to save both
efficiency and predictability. Likewise, it could also be not so easy to be
aware and exploit the predictability following a lack of efficiency; for exam-
ple, the deviates from the martingale model should be promptly understood
by those market participants able to arbitrage the inefficiency away, or the
transaction costs could make the trading strategies not profitable enough
(see e.g. Guasoni (2006) and Guasoni et al. (2008)).

This suggests to characterize the martingale behavior by means of its
path regularity. Indeed, the signature of a Brownian martingale is that

4Remind that Y = (Yt) is a stochastic discount factor (or pricing kernel) if: (a)
P(Yt = 1, YT > 0) = 1, and (b) St = E[YTXT ].

5Any test of market efficiency involves testing at the same time an equilibrium asset
pricing model, with the consequence that any anomalous evidence of abnormal market
returns can be ascribed to market inefficiency, improper asset pricing model or both.
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the Hölder pointwise regularity of its trajectories is 1/2 almost surely6.
Following Ayache (2013), given the stochastic process X(t, ω) with a.s.
continuous and not differentiable trajectories over the real line R, the local
Hölder regularity of the trajectory t 7→ X(t, ω) with respect to some fixed
point t can be measured through the pointwise Hölder exponent, defined
as

αX(t, ω) = sup

{
α ≥ 0 : lim sup

h→0

|X(t+ h, ω)−X(t, ω)|
|h|α

= 0

}
. (5)

For certain classes of stochastic processes, remarkably for Gaussian pro-
cesses, by virtue of zero-one law, there exists a non random quantity aX(t)
such that P(aX(t) = αX(t, ω)) = 1 (see e.g. Ayache (2013)). In addition,
when X(t, ω) is a semimartingale (e.g. Brownian motion), αX = 1

2 ; values
different from 1

2 describe non-Markovian processes, whose smoothness is
too high, when αX ∈

(
1
2 , 1
)
, or too low, when αX ∈

(
0, 12
)
, to satisfy the

martingale property. In particular, the quadratic variation of the process
can be proven to be zero, if αX > 1

2 and infinite, if αX < 1
2 . Two aspects

deserve to be discussed more carefully:

a) Intuitively, the larger the pointwise regularity αX(t) the lower the
volatility process σX(t). Being an efficient market a semimartingale charac-
terized by αX(t) = 1

2 , the relation with the volatility suggests the existence
of a “physiological” level of volatility for efficiency to hold. When X(t) is
a fractional Brownian motion of parameter H (whose pointwise regularity
is αX(t) = H almost everywhere), this relation is known in closed form
(Decreusefond and Üstünel (1999)). For this reason, in the following we
will refer to pointwise regularity and volatility as the two sides of the same
coin;

b) the larger the difference |αX(t+ 1)−αX(t)| the greater the impact of
the new information on the price process. Obviously, if a great impact event
occurs when αX(t) lies in a neighborhood of 1

2 , the resulting new value of
regularity is likely to be inconsistent with the martingale case. This justifies
the attention that will be devoted to the study of the pointwise regularity
exponents significantly different from 1

2 .

6For non Brownian martingales, an analogous result follows from observing
that if Zt is a martingale difference with respect to the filtration Ft such

that n−1
∑n
t=1 E(Z2

t |Ft−1)
P→ v for a positive constant v, and such that

n−1
∑n
t=1 E(Z2

t 1|Zt|>ε
√
n|Ft−1)

P→ 0 for every ε > 0, then
√
nZ̄n

d→ N (0, v) (here,

1 denotes the indicator function). Given the convergence to the normal law, the proof
which covers the Brownian case applies to non Brownian well-behaved martingales (in
the sense stated above), see e.g. Revuz and Yor (1999)
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3.1. Estimation of the Pointwise Regularity

Many estimators of αX(t) have been proposed in literature (see, e.g.
Péltier and Lévy Véhel (1994), Péltier and Lévy Véhel (1995), Istas and
Lang (1997), Benassi et al. (2000), Ayache (2000), Coeurjolly (2008)).
Among these, extending the work of Péltier and Lévy Véhel, Bianchi (2005)
and Bianchi et al. (2013) have defined the Absolute Moment Based Esti-
mator, AMBE.

The explanation of the estimator is beyond the purposes of this article
and an extensive discussion can be found in Bianchi et al. (2015). Here,
we will be content to recall that, given the time series Xn, n = 1, . . . , N ,
sampled in discrete time and with unit time variance equal toK, the AMBE
of order k and lag q is defined in terms of moving average of size δ as

hkδ,q,N,K(t) =
log
( √

π
δ−q+1

∑t−1
j=t−δ |Xj+q −Xj |k/

(
2k/2Γ

(
k+1
2

)
Kk
))

k log
(

q
N−1

) ,(6)

t = δ + 1, · · · , N + 1− q.

It can be proved that the estimator is normally distributed as

hkδ,q,N,K(t) ∼ N

(
αX(t),

πs2

δk2 log2 (N − 1) 2k
(
Γ
(
k+1
2

))2
)
,

where s2 is the limit variance (increasing with q) of a series of normalized
nonlinear functions of a stationary Gaussian sequence with slowly decaying
autocorrelation function. Toilsome computations show that, in the mar-
tingale case, the variance of the estimator – for q = 1 and K = 1 – can be
explicitly calculated and is given by

σ2 := V ar
(
hkδ,1,N,1(t)

)
=

√
π Γ
(
2k+1

2

)
− Γ2

(
k+1
2

)
δk2 log2(N − 1)Γ2

(
k+1
2

) (7)

Relation (7) deserves a few remarks:

• The optimal values minimizing (7) can be proved to be q = 1 and
k = 2;
• the distribution

Φ(z) := Φ(hkδ,q,N,K |αX(t)= 1
2 )

(z) =
1

σ
√

2π

∫ z

−∞
e−

(x−1/2)2

2σ2 dx, (8)

with variance provided by (7), remains the same through time, provided
that αX(t) = 1

2 ;
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• Even if the variance is calculated with respect to the case K = 1,
relation (7) holds in general, since different values of K only translate the
estimates, as pointed out in Bianchi and Pianese (2014);

• for αX(t) ∈
(
0, 34
)
, hkδ,q,N,K has a rate of convergenceO

(
δ−

1
2 (logN)

−1
)

.

This ensures reliable estimates even for small values of δ (typical values are
δ = 20 or δ = 30, see e.g., Frezza (2012)).

A natural choice to highlight the significant departures from the equilibrium
given by the martingale case is to compare hkδ,q,N,K(t) with the reference

threshold αX(t) = 1
2 . This is also a way to test the positive association

between liquidity and market efficiency, claimed to be amplified during
periods that contain new information (see e.g. Chung and Hrazdil (2010)),
that is periods in which the pointwise regularity deviates from 1

2 . Once the
significance level α has been fixed, denoting by Uα = (Φ−1(α/2),Φ−1(1−
α/2)) the confidence interval, the two functions

γh(t) = hkδ,q,N,K(t)1(0,1)\Uα(hkδ,q,N,K(t)) (9)

γI(t) = log ILLIQ(t)1(0,1)\Uα(hkδ,q,N,K(t)) (10)

filter out the values of AMBE lying outside the confidence interval (γh)
and associate the corresponding values of log ILLIQ (γI).

4. EMPIRICAL ANALYSIS

4.1. Data

The analysis concerned the daily closing price and volumes of Standard
& Poor’s (GSPC), Nasdaq 100 (NDX) and Dax (GDAXI) indexes from
September, 2006 to April 2016, for a total of 2,432 observations. Data,
whose main descriptive statistics are displayed in Table 1, were obtained
electronically from Bloomberg. No pre-filtering were considered necessary,
for two reasons: a) the data are stock indexes, therefore they are assumed as
portfolios representative of the whole market; b) for our purposes, outliers
can be as informative as small sigma events.

4.2. Methodology and analysis

In the first part of the analysis, we investigate the relationship between
the illiquidity (ILLIQt) and the pointwise Hölder regularity, measured by
the AMBE (ht)

7. In the second part, we show that both the measures
provide significant insights about the changes of the illiquidity premium.
In particular, we examine the behavior of the binomial liquidity-efficiency

7From here on, to keep notation simple, we set ht := hkδ,q,N,K(t)
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TABLE 1.

Main descriptive statistics of log-return.

GSPC NDX GDAXI

average∗ 1.8921 4.1585 −2.1845

stdev 0.0133 0.0142 0.0147

maximum 0.1096 0.1185 0.0743

minimum −0.0947 −0.1111 −0.1080

skewness −0.3221 −0.1758 −0.0295

kurtosis 12.7994 10.7313 8.5506

(×10−4)

TABLE 2.

Confidence intervals Uα for N = 2, 432.

δ = 16 δ = 21 δ = 32 δ = 64

α = 0.01 (0.4416, 0.5584) (0.4490, 0.5510) (0.4587, 0.5413) (0.4708, 0.5292)

α = 0.05 (0.4556, 0.5444) (0.4612, 0.5388) (0.4686, 0.5314) (0.4778, 0.5222)

α = 0.10 (0.4627, 0.5373) (0.4674, 0.5326) (0.4736, 0.5264) (0.4814, 0.5186)

The intervals are calculated as 1
2
± Φ−1(α/2)σ, where σ is the square root of relation (7).

TABLE 3.

FED monetary interventions (source Federal Open Market Committee)

Program Announcement date Targeted End Date Targeted Total Purchase

QE1 November 25, 2008 Over Several Quarters Agency Debt: Up to $100 bil

Agency MBSa : Up to $500 bil

QE1 March 18, 2009 March, 2010 Agency Debt: Additional $100 bil

Agency MBS: Additional $750 bil

Longer-Term Treasuries: $300 bil

QE2 November 3, 2010 June 30, 2011 $600 bil

MEPb September 21, 2011 June 30, 2012 $400 bil

MEP June 20, 2012 December 31, 2012 Amount limited by remaining

Shorter-Term Treasury Securitiesc

QE3 September 13, 2012 October 29, 2014 MBS: $40-$45 bil/month

(a): Mortgage Backed Securities
(b): Maturity Extension Program, also named Operation Twist
(c): Shorter-Term Treasury securities are sold or redeemed while an equal amount of longer-Term Treasury
securities are purchased resulting in no net increase in balance-sheet size

during the interventions of the Federal Reserve to face the global financial
crisis of 2007-2008.

As to the first part of the analysis, we set the estimation windows δ =
16, 21, 32, 64, sizes which are intended to cover up to three trading months;
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in particular, the choice of δ = 21 (about one trading month) and δ = 64
(about one trading quarter) is motivated by the analysis of the changes
of the illiquidity premium over the whole period of interest. Furthermore,
allowing the window to change permits to appreciate the stability of the
results. For each fixed window, we regress ILLIQt versus ht, estimated
with parameters δ as above, q = 1, k = 2 and K (varying for each series
and δ) valued through the procedure described in Bianchi et al. (2013):

log ILLIQt = α0 + α1ht + ε
(α)
t . (11)

TABLE 4.

log ILLIQt = α0 + α1ht + εαt

α0 α1 Fst R2 sse rmse

GSPC δ = 16 −30.870∗∗∗ −7.552∗∗∗ 717.53 0.827 8.431 0.237

(−236.17) (−26.78)

δ = 21 −30.815∗∗∗ −7.358∗∗∗ 508.59 0.818 6.154 0.233

(−197.17) (−22.52)

δ = 32 −30.923∗∗∗ −7.540∗∗∗ 347.17 0.824 3.647 0.222

(−169.60) (−18.61)

δ = 64 −31.207∗∗∗ −7.508∗∗∗ 170.76 0.826 1.575 0.209

(−131.51) (−13.07)

NDX δ = 16 −28.966∗∗∗ −9.915∗∗∗ 459.61 0.754 17.360 0.340

(−121.37) (21.44)

δ = 21 −29.258∗∗∗ −9.621∗∗∗ 319.90 0.739 12.86 0.337

(−109.32) (−17.88 )

δ = 32 −29.370∗∗∗ −10.33∗∗∗ 202.98 0.733 8.291 0.335

(−89.86) (−14.25)

δ = 64 −29.006∗∗∗ −10.52∗∗∗ 93.67 0.722 3.955 0.332

(−56.32) (−9.67)

GDAXI δ = 16 −29.310∗∗∗ −6.567∗∗∗ 265.09 0.639 12.04 0.288

(−159.57) (−16.28)

δ = 21 −29.246∗∗∗ −6.427∗∗∗ 189.80 0.627 8.745 0.279

(−133.20) (−13.77)

δ = 32 −29.114∗∗∗ −6.441∗∗∗ 127.25 0.668 5.047 0.261

(−105.15) (−11.28)

δ = 64 −28.860∗∗∗ −6.381∗∗∗ 62.99 0.637 2.117 0.244

(−70.82) (−7.94)

t-statistics in parentheses. (∗∗∗), (∗∗) and (∗) indicate significance at the 1%, 5%, and
10% levels.

Not surprisingly, the results in Table 4 indicate a strong relationship. The
goodness of relation (11) becomes even stronger when regularity exponents
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significantly different from 1
2 are considered, as suggested in point b) of

Section 3. The evidence is obtained by the following regression8

γI(t) = θ0 + θ1γh(t) + ε
(θ)
t , (12)

once all the zeros from γI and γh are removed. Clearly, functions γ require
Uα to be determined in advance; for this, Table 2 summarizes the confidence
intervals for different values of δ and α, given the sample size N .

TABLE 5.

Out of Uα regression

θ0 θ1 Fst R2 sse rmse

GSPC δ = 16 ( α = 0.01) −30.915∗∗∗ −7.392∗∗∗ 381.43 0.862 3.07 0.224

(−196.7461) (−19.5303)

( α = 0.05) −30.921∗∗∗ −7.382∗∗∗ 515.05 0.869 3.60 0.215

(−221.82) ( −22.69)

( α = 0.10) −31.004∗∗∗ −7.172∗∗∗ 387.32 0.813 5.598 0.250

(−195.81) ( −19.68)

δ = 21 ( α = 0.01) −30.940∗∗∗ −6.960∗∗∗ 297.12 0.871 2.676 0.246

( −169.75) (−17.24)

( α = 0.05) −30.951∗∗∗ −6.980∗∗∗ 389.84 0.866 3.268 0.233

(−189.07) ( −19.74)

( α = 0.10) −30.879∗∗∗ −7.184∗∗∗ 429.42 0.856 3.992 0.235

( −190.48) (−20.72)

δ = 32 ( α = 0.01) −31.078∗∗∗ −7.091∗∗∗ 118.44 0.752 2.107 0.232

( −117.07) (−10.88)

( α = 0.05) −31.040∗∗∗ −7.214∗∗∗ 176.00 0.792 2.509 0.233

(−135.51) (−13.27)

( α = 0.10) −31.105∗∗∗ −7.056∗∗∗ 187.42 0.783 2.891 0.236

(−140.90) (−13.69)

δ = 64 ( α = 0.01) −31.065∗∗∗ −7.895∗∗∗ 184.40 0.844 1.318 0.197

( −132.10) (−13.58)

( α = 0.05) −31.065∗∗∗ −7.895∗∗∗ 184.40 0.844 1.318 0.197

(−132.10) (−13.58)

( α = 0.10) −31.065∗∗∗ −7.895∗∗∗ 184.40 0.844 1.318 0.197

(−132.10) (−13.58)

t-statistics in parentheses. (∗∗∗), (∗∗) and (∗) indicate significance at the 1%, 5%, and 10% levels.

Using the two measures as delayed regressors and regressands, we analyze
also the predictive power of one variable with respect to the other. The

8To make the notation clear, in place of the usual subscript, here we use the parenthesis
to indicate the dependence from time t.
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TABLE 5—Continued

θ0 θ1 Fst R2 sse rmse

NDX δ = 16 ( α = 0.01) −28.993∗∗∗ −9.857∗∗∗ 319.29 0.872 6.22 0.363

( −99.54) (−17.86)

( α = 0.05) −29.02∗∗∗ −9.786∗∗∗ 404.64 0.851 8.047 0.337

(−112.70) (−20.11)

( α = 0.10) −29.053∗∗∗ −9.734∗∗∗ 395.68 0.830 9.572 0.343

(−112.44) (−19.89)

δ = 21 ( α = 0.01) −29.314∗∗∗ −9.413∗∗∗ 265.96 0.875 4.245 0.334

( −103.94) (−16.30)

( α = 0.05) −29.314∗∗∗ −9.462∗∗∗ 250.62 0.845 5.878 0.358

( −99.53) (−15.83)

( α = 0.10) −29.298∗∗∗ −9.527∗∗∗ 261.34 0.826 7.103 0.359

(−100.49) (−16.17)

δ = 32 ( α = 0.01) −29.128∗∗∗ −10.954∗∗∗ 71.35 0.652 4.757 0.354

(−54.65) ( −8.45)

( α = 0.05) −29.284∗∗∗ −10.539∗∗∗ 71.02 0.640 5.028 0.354

(−56.607) (−8.428)

( α = 0.10) −29.073∗∗∗ −11.085∗∗∗ 102.24 0.690 5.963 0.360

(−62.755) (−10.11)

δ = 64 ( α = 0.01) −28.922∗∗∗ −10.688∗∗∗ 68.92 0.792 1.914 0.326

( −49.90) (−8.30)

( α = 0.05) −28.893∗∗∗ −10.808∗∗∗ 71.32 0.781 2.320 0.341

( −49.61) ( −8.45)

( α = 0.1) −28.893∗∗∗ −10.808∗∗∗ 71.32 0.781 2.320 0.341

( −49.61) ( −8.45)

results of the regressions

log ILLIQt = θ0 + θ1ht−j + vt, (13)

and

ht = θ′0 + θ′1 log ILLIQt−j + vt, (14)

show that ht is a better forecaster of ILLIQt than vice versa. Interestingly,
the goodness of fit changes remarkably with the considered time series (see
Table 6).

Since it is well known that ILLIQt can be characterized as an AR(1) (see
e.g. Amihud (2002), Amihud et al. (2005)), we estimate the autoregres-
sive models for both log ILLIQt and ht (see (15) and (16), respectively)
because: (a) they constitute an additional way to assess the proximity of
the two measures; (b) they allow to analyze the relationship between ex-
cess returns and liquidity (efficiency). The sample partial autocorrelation
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TABLE 5—Continued

θ0 θ1 Fst R2 sse rmse

GDAXI δ = 16 ( α = 0.01) −29.39∗∗∗ −6.288∗∗∗ 64.87 0.515 7.377 0.348

(−92.27) (−8.054)

( α = 0.05) −29.25∗∗∗ −6.70∗∗∗ 118.66 0.594 8.524 0.324

(−112.50) (−10.89)

( α = 0.10) −29.280∗∗∗ −6.620∗∗∗ 152.80 0.619 8.983 0.309

( −126.97) ( −12.36)

δ = 21 ( α = 0.01) −29.276∗∗∗ −6.278∗∗∗ 74.74 0.619 5.177 0.335

(−92.33) ( −8.64)

( α = 0.05) −29.228∗∗∗ −6.416∗∗∗ 97.44 0.652 5.254 0.318

(−101.61) ( −9.87)

( α = 0.10) −29.19∗∗∗ −6.530∗∗∗ 127.01 0.672 5.756 0.305

(−111.72) (−11.26)

δ = 32 ( α = 0.01) −29.13∗∗∗ −6.35∗∗∗ 65.64 0.709 2.635 0.312

( −79.96) (−8.10)

( α = 0.05) −29.150∗∗∗ −6.313∗∗∗ 77.73 0.677 3.422 0.304

(−86.21) (−8.82)

( α = 0.10) −29.144∗∗∗ −6.347∗∗∗ 89.80 0.681 3.476 0.287

(−91.88) (−9.47)

δ = 64 ( α = 0.01) −29.02∗∗∗ −6.295∗∗∗ 56.90 0.760 1.084 0.245

(−67.86) (−7.54)

( α = 0.05) −28.887∗∗∗ −6.473∗∗∗ 49.34 0.692 1.656 0.274

(−61.11) (−7.024)

( α = 0.10) −28.893 −6.438 48.14 0.676 1.758 0.277

(−60.67) (−6.93)

t-statistics in parentheses. (∗∗∗), (∗∗) and (∗) indicate significance at the 1%, 5%, and 10% levels.

functions calculated for each δ and stock index indicate that just the one
lagged terms are useful predictors of both log ILLIQt and ht; therefore,
the first-order model suffices to account for the dynamics.

log ILLIQt = λ0 + λ1 log ILLIQt−1 + ε
(λ)
t (15)

ht = ρ0 + ρ1ht−1 + ε
(ρ)
t . (16)

Coherently with previous works, we expect a (significant) positive λ1,
as well as a (significant) positive ρ1. These findings would mean that
investors are assumed to predict both illiquidity and pointwise regularity
(or volatility) for current window based on information available in previous
one.

The second part of the analysis investigates the behavior of the changes
in the illiquidity premium before, during and after the global financial
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TABLE 6.

log ILLIQt = θ0 + θ1ht−j + vt. ht = θ′0 + θ′1 log ILLIQt−j + vt.

j θ0 θ1 R2 Fst sse θ′0 θ′1 R2 F sse

GSPC

δ = 16 1 −31.768∗∗∗ −5.609∗∗∗ 0.453 123.13 26.69−2.193∗∗∗ −0.077∗∗∗ 0.406 101.98 0.42

(−135.668) (−11.096) (−8.352) (−10.098)

2 −32.189∗∗∗ −4.689∗∗∗ 0.315 68.21 33.33−1.791∗∗∗ −0.065∗∗∗ 0.291 60.97 0.49

( −122.473) (−8.269) (−6.219) (−7.818)

3 −32.467∗∗∗ −4.080∗∗∗ 0.240 46.23 36.97−1.586∗∗∗ −0.060∗∗∗ 0.242 46.87 0.52

( −116.902) ( −6.799) (−5.314) (−6.846)

4 −32.502∗∗∗ −3.996∗∗∗ 0.229 43.36 37.45−1.348∗∗∗ −0.053∗∗∗ 0.190 34.31 0.55

( −115.62) (−6.585) ( −4.375) (−5.857)

5 −32.618∗∗∗ −3.736∗∗∗ 0.201 36.18 38.79−1.202∗∗∗ −0.048∗∗∗ 0.163 28.33 0.56

(−113.239) (−6.015) (−3.860) (−5.324)

δ = 21 1 −31.764∗∗∗ −5.360∗∗∗ 0.432 85.33 19.21−2.087∗∗∗ −0.075∗∗∗ 0.366 64.84 0.32

( −114.378) (−9.238) (−6.562) (−8.052)

2 −32.301∗∗∗ −4.218∗∗∗ 0.268 40.68 24.70−1.670∗∗∗ −0.062∗∗∗ 0.260 39.09 0.37

(−102.00) (−6.378) (−4.872) (−6.252)

3 −32.303∗∗∗ −4.209∗∗∗ 0.265 39.75 24.78−1.413∗∗∗ −0.055∗∗∗ 0.204 28.17 0.39

(−100.948) ( −6.305) (−3.978) (−5.308)

4 −32.687∗∗∗ −3.394∗∗∗ 0.173 22.75 27.89−0.987∗∗∗ −0.043∗∗∗ 0.125 15.57 0.42

(−95.748) (−4.770) (−2.671) (−3.946)

5 −32.963∗∗∗ −2.809∗∗∗ 0.118 14.51 29.64 −0.843∗∗ −0.038∗∗∗ 0.102 12.28 0.42

(−93.236) (−3.810) (−2.249) (−3.504)

δ = 32 1 −31.833∗∗∗ −5.506∗∗∗ 0.433 55.71 11.74−2.182∗∗∗ −0.076∗∗∗ 0.399 48.57 0.18

(−96.107) (−7.464) (−5.780) (−6.969)

2 −32.366∗∗∗ −4.297∗∗∗ 0.264 25.84 15.17−1.502∗∗∗ −0.057∗∗∗ 0.224 20.76 0.22

(−85.21) (−5.084) (−3.518) (−4.556)

3 −32.649∗∗∗ −3.646∗∗∗ 0.190 16.67 16.62−1.209∗∗∗ −0.048∗∗∗ 0.169 14.51 0.22

(−81.270) ( −4.083) (−2.790) (−3.808)

4 −32.949∗∗∗ −2.970∗∗∗ 0.126 10.10 17.92 −0.916∗∗ −0.039∗∗∗ 0.113 8.92 0.24

(−78.407) (−3.179) (−2.015) (−2.987)

5 −33.148∗∗∗ −2.518∗∗ 0.091 6.88 18.63 −0.593 −0.030∗∗ 0.066 4.85 0.25

( −76.789 ) ( −2.624) ( −1.263) (−2.203)

δ = 64 1 32.361∗∗∗ −4.652∗∗∗ 0.318 16.32 6.14 −1.705∗∗∗ −0.061∗∗∗ 0.264 12.58 0.10

( −68.601) (−4.040) (−2.867) (−3.546)

2 −32.906∗∗∗ −3.290∗∗ 0.159 6.46 7.53 −1.113∗ −0.044∗∗ 0.139 5.48 0.10

( −61.974) (−2.542) (−1.720) (−2.341)

3 −33.035∗∗∗ −2.950∗∗ 0.128 4.82 7.777 −0.584 −0.028 0.06 2.10 0.11

( −59.783) (−2.196) (−0.861) (−1.451)
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TABLE 6—Continued

j θ0 θ1 R2 Fst sse θ′0 θ′1 R2 F sse

4 −33.108∗∗∗ −2.795∗∗ 0.113 4.09 7.853 −0.465 −0.025 0.044 1.48 0.11

( −58.405) (−2.022) (−0.654) (−1.219)

5 −33.105∗∗∗ −2.827∗∗ 0.115 4.042 7.794 −0.488 −0.026 0.046 1.48 0.11

(−57.539) (−2.011) (−0.667) (−1.217)

NDX

δ = 16 1 −30.218∗∗∗ −7.481∗∗∗ 0.428 111.52 40.24−1.283∗∗∗ −0.052∗∗∗ 0.358 83.20 0.35

(−82.721) (−10.560) ( −6.517) (−9.122)

2 −30.610∗∗∗ −6.720∗∗∗ 0.345 77.90 46.09−1.017∗∗∗ −0.045∗∗∗ 0.258 51.48 0.40

( −77.989) (−8.826) (−4.771) (−7.175)

3 −30.941∗∗∗ −6.076∗∗∗ 0.282 57.75 50.48−0.878∗∗∗ −0.041∗∗∗ 0.212 39.45 0.43

(−75.067) ( −7.599) (−3.965) (−6.281)

4 −31.022∗∗∗ −5.914∗∗∗ 0.266 52.92 51.61−0.737∗∗∗ −0.036∗∗∗ 0.171 30.17 0.45

(−73.97) (−7.27) (−3.24) (−5.49)

5−31.031∗∗∗ −5.892∗∗∗ 0.261 51.32 51.93−0.650∗∗∗ −0.034∗∗∗ 0.149 25.36 0.45

(−73.06) (−7.16) (−2.819) (−5.036)

δ = 21 1 −30.344∗∗∗ −7.432∗∗∗ 0.440 88.13 27.50−1.271∗∗∗ −0.052∗∗∗ 0.332 55.86 0.26

(−77.081) (−9.387) ( −5.382) ( −7.474)

2 −30.751∗∗∗ −6.606∗∗∗ 0.346 58.89 32.10−1.037∗∗∗ −0.045∗∗∗ 0.250 36.98 0.29

(−71.801) (−7.674) (−4.120) (−6.081)

3 −30.873∗∗∗ −6.354∗∗∗ 0.317 51.16 33.51−0.818∗∗∗ −0.038∗∗∗ 0.183 24.74 0.32

(−69.762) (−7.152) ( −3.101) (−4.973)

4 −31.144∗∗∗ −5.806∗∗∗ 0.264 39.26 36.10 −0.632∗∗ −0.033∗∗∗ 0.136 17.15 0.33

(−67.445) (−6.265) (−2.326) (−4.141)

5 −31.423∗∗∗ −5.244∗∗∗ 0.215 29.70 38.51 −0.658∗∗ −0.034∗∗∗ 0.140 17.60 0.33

(−65.56) (−5.45) (−2.40) (−4.20)

δ = 32 1 −30.300∗∗∗ −8.268∗∗∗ 0.466 63.80 16.51−1.229∗∗∗ −0.049∗∗∗ 0.345 38.55 0.13

( −65.01) (−7.99) (−4.55) (−6.20)

2 −30.850∗∗∗ −7.030∗∗∗ 0.336 36.47 20.53−0.835∗∗∗ −0.037∗∗∗ 0.202 18.23 0.17

(−58.815) (−6.039) (−2.780) ( −4.269)

3 −31.110∗∗∗ −6.445∗∗∗ 0.280 27.59 22.28 −0.717∗∗ −0.034∗∗∗ 0.168 14.30 0.17

(−56.171) (−5.252) (−2.331) (−3.782)

4 −31.408∗∗∗ −5.784∗∗∗ 0.224 20.29 23.98 −0.582∗ −0.030∗∗∗ 0.128 10.24 0.18

(−54.231) ( −4.504) (−1.811) (−3.200)

5 −31.739∗∗∗ −5.044∗∗∗ 0.171 14.23 25.65 −0.373 −0.024∗∗ 0.081 6.05 0.19

(−52.60) (−3.77) (−1.12) (−2.46)

δ = 64 1 −30.276∗∗∗ −7.835∗∗∗ 0.402 23.51 8.50 −0.898∗∗ −0.040∗∗∗ 0.243 11.27 0.07

(−39.539) (−4.849) (−2.204) (−3.358)
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TABLE 6—Continued

j θ0 θ1 R2 Fst sse θ′0 θ′1 R2 F sse

2−30.955∗∗∗ −6.388∗∗∗ 0.266 12.33 10.43 −0.583 −0.031∗∗ 0.142 5.63 0.08

(−35.872) (−3.512) (−1.313) (−2.373)

3−31.087∗∗∗ −6.089∗∗∗ 0.237 10.29 10.82 −0.225 −0.021 0.062 2.20 0.08

(−34.45) (−3.21) (−0.482) (−1.485)

4−31.518∗∗∗ −5.206∗∗ 0.172 6.67 11.70 −0.166 −0.019 0.049 1.67 0.08

(−32.943) (−2.582) (−0.337) (−1.291)

5−31.707∗∗∗ −4.838∗∗ 0.147 5.375 11.93 −0.139 −0.018 0.044 1.41 0.08

(−32.087) (−2.318) (−0.272) (−1.189)

GDAXI

δ = 16 1−29.852∗∗∗ −5.359∗∗∗ 0.425 110.20 19.72−1.528∗∗∗ −0.061∗∗∗ 0.256 51.37 0.37

( −128.70) (−10.497) (−5.537) (−7.167)

2−30.258∗∗∗ −4.444∗∗∗ 0.296 62.26 23.76−0.891∗∗∗ −0.042∗∗∗ 0.120 20.10 0.44

(−118.162) (−7.890) (−2.981) (−4.484)

3−30.548∗∗∗ −3.792∗∗∗ 0.215 40.29 26.40 −0.729∗∗ −0.036∗∗∗ 0.093 15.12 0.44

(−112.378) (−6.347) (−2.406) (−3.888)

4−30.582∗∗∗ −3.705∗∗∗ 0.207 37.99 26.34 −0.474 −0.028∗∗∗ 0.058 8.96 0.45

(−111.701) (−6.164) (−1.537) (−2.992)

5−30.540∗∗∗ −3.789∗∗∗ 0.215 39.73 25.98 −0.432 −0.027∗∗∗ 0.053 8.11 0.45

(−111.457) (−6.303) (−1.398) (−2.8477)

δ = 21 1−29.777∗∗∗ −5.281∗∗∗ 0.420 80.99 13.65−1.410∗∗∗ −0.058∗∗∗ 0.225 32.42 0.27

(−107.68) ( −8.910) (−4.277) (−5.694)

2−30.166∗∗∗ −4.435∗∗∗ 0.299 47.39 16.24−0.921∗∗∗ −0.043∗∗∗ 0.127 16.14 0.30

(−99.30) (−6.88) (−2.668) (−4.018)

3−30.341∗∗∗ −4.048∗∗∗ 0.250 36.45 17.22 −0.470 −0.029∗∗∗ 0.058 6.80 0.31

(−95.872) (−6.038) (−1.312) (−2.608)

4−30.367∗∗∗ −3.995∗∗∗ 0.242 34.885 17.38 −0.436 −0.028∗∗ 0.054 6.27 0.31

(−95.101) (−5.906) (−1.211) (−2.505)

5−30.712∗∗∗ −3.249∗∗∗ 0.162 20.84 19.04 0.043 −0.013 0.012 1.32 0.32

(−91.443) (−4.565) (0.116) (−1.149)

δ = 32 1−29.640∗∗∗ −5.335∗∗∗ 0.436 56.47 7.67 −1.253∗∗∗ −0.054∗∗∗ 0.197 17.88 0.16

(−86.02) (−7.51) (−3.05) (−4.228)

2−30.136∗∗∗ −4.289∗∗∗ 0.283 28.43 9.57 −0.679 −0.036∗∗∗ 0.091 7.17 0.18

(−77.100) (−5.332) (−1.569) (−2.678)

3−30.281∗∗∗ −3.979∗∗∗ 0.243 22.79 10.09 −0.051 −0.016 0.019 1.40 0.19

(−74.689) (−4.774) (−0.114) (−1.182)

4−30.556∗∗∗ −3.392∗∗∗ 0.182 15.60 10.56 0.100 −0.012 0.010 0.70 0.19

(−73.118) (−3.950) (0.222) (−0.837)
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TABLE 6—Continued

j θ0 θ1 R2 Fst sse θ′0 θ′1 R2 F sse

5−30.430∗∗∗ −3.637∗∗∗ 0.205 17.82 10.214 −0.004 −0.015 0.016 1.13 0.19

(−72.445) (−4.222) (−0.008) (−1.064)

δ = 64 1−29.468∗∗∗ −5.342∗∗∗ 0.454 29.08 3.07 −0.919 −0.044∗∗ 0.135 5.49 0.07

(−58.402) (−5.393) (−1.514) (−2.344)

2−30.065∗∗∗ −4.141∗∗∗ 0.279 13.16 3.95 −0.028 −0.017 0.020 0.68 0.08

(−51.658) (−3.627) (−0.044) (−0.826)

3−30.369∗∗∗ −3.506∗∗∗ 0.202 8.37 4.20 0.298 −0.006 0.003 0.10 0.08

(−49.015) (−2.893) (0.458) (−0.312)

4−31.219∗∗∗ −1.814 0.055 1.87 4.87 1.160 0.021 0.031 1.03 0.08

(−45.933) (−1.366) (1.783) (1.014)

5−31.962∗∗∗ −0.319 0.019 0.057 4.72 1.503 0.031 0.073 2.47 0.07

(−46.939) (−0.239) (2.354) (1.573)

t-statistics in parentheses. (∗∗∗), (∗∗) and (∗) indicate significance at the 1%, 5%, and
10% levels.

crisis of 2007-2008. The watershed represented by the financial turmoil is
of special interest to analyze whether a change occurred in the illiquidity
premium: indeed, reasonably the Quantitative Easing Program (QE) run
by the Federal Reserve (see Table 3) as a response to the liquidity crunch
could have produced a regime-switch revealed by the variations of premium
itself. This should not surprise, since it has been argued that the monetary
policy is transmitted through the stock market via the “wealth effect” of
private portfolios (Bernanke and Kuttner (2004)). In order to test the
regime-switching, we split the whole sample into two subsamples: from
September 2006 to October 2008 (for a total of N1 = 525 observations)
and from November 2008 (beginning of the QE1) to October 2014 (end of
the QE3), for a total of N2 = 1, 512 observations. During this span of time
the Federal Reserve implemented the QE1, QE2, QE3 and the Maturity
Extension Program, also named Twist Operation (TO).

To this aim, following a consolidated literature (see e.g., Amihud (2002),
Pastor and Stambaugh (2003)), we regress the excess returns (with respect
to the Treasury Bill) over both log ILLIQ and 1 − h (we recall that h ∈
(0, 1)) as (

R̄−Rf
)
t

= η0 + η1 log ILLIQt−1 + ε
(η)
t (17)

(
R̄−Rf

)
t

= κ0 + κ1(1− ht−1) + ε
(κ)
t (18)

where:



LIQUIDITY, EFFICIENCY 393

• t = 1, δ + 1, · · · , N1/δ, for the first subsample and t = (N1/δ) +
1, (N1/δ) + δ + 1, · · · , N1+N2

δ ), for the second subsample, with δ = 21 and
δ = 64;

• R̄ is the average percentage variation of the stock index in the given
window;

• Rf is the one/three-month Treasury Bill at the beginning of the win-
dow (data are downloaded from the U.S. Department of Treasury, through
http://www.treasury.gov).

TABLE 7.

log ILLIQt = λ0 + λ1 log ILLIQt−1 + ε
(λ)
t . ht = ρ0 + ρ1ht−1 + ε

(ρ)
t

λ0 λ1 R2 Fst sse ρ0 ρ1 R2 F sse

GSPC

δ = 16 −10.008∗∗∗ 0.709∗∗∗ 0.491 143.99 24.80 0.136∗∗∗ 0.703∗∗∗ 0.495 145.95 0.3537

(−4.93) (12) (5.047) (12.08)

δ = 21 −10.336∗∗∗ 0.699∗∗∗ 0.479 102.96 17.64 0.157∗∗∗ 0.669∗∗∗ 0.451 92.09 0.2769

(−4.37) (10.15) (4.70) (9.60)

δ = 32 −9.455∗∗∗ 0.7244∗∗∗ 0.505 74.48 5.44 0.140∗∗∗ 0.685∗∗∗ 0.474 65.64 0.1542

(−3.29) (8.63) (3.6844) (8.1021)

δ = 64 −12.270∗∗∗ 0.642∗∗∗ 0.396 22.98 21.69 0.188∗∗∗ 0.533∗∗∗ 0.302 15.17 0.08666

(−2.68) (4.79) (3.3427) (3.8949)

NDX

δ = 16 −6.805∗∗∗ 0.800∗∗∗ 0.634 257.94 25.76 0.188∗∗∗ 0.634∗∗∗ 0.401 99.58 0.3241

(−4.01) (16.06) (5.72) (9.98)

δ = 21 −5.878∗∗∗ 0.827∗∗∗ 0.676 233.64 15.92 0.193∗∗∗ 0.610∗∗∗ 0.371 66.01 0.2472

(−3.19) (15.28) (5.17) (8.12)

δ = 32 −5.461∗∗∗ 0.840∗∗∗ 0.688 161.21 9.65 0.163∗∗∗ 0.637∗∗∗ 0.403 49.18 0.1271

(−2.43) (12.70) (3.98) (7.01)

δ = 64 −7.144∗∗∗ 0.790∗∗∗ 0.605 53.66 5.61 0.222∗∗∗ 0.527∗∗∗ 0.281 13.67 0.06609

(−1.95) (7.33) (3.29) (3.70)

GDAXI

δ = 16 −9.049∗∗∗ 0.720∗∗∗ 0.520 160.13 16.54 0.142∗∗∗ 0.684∗∗∗ 0.472 132.95 0.2661

(−4.93) (12.64) (5.27) (11.52)

δ = 21 −9.885∗∗∗ 0.693∗∗∗ 0.4721 102.62 12.27 0.159∗∗∗ 0.657∗∗∗ 0.433 85.45 0.2001

(−4.47) (10.13) (4.75) (9.25)

δ = 32 −8.919∗∗∗ 0.723∗∗∗ 0.528 81.25 6.439 0.176∗∗∗ 0.631∗∗∗ 0.412 51.04 0.1189

(−3.45) (9.01) (4.11) (7.14)

δ = 64 −8.701∗∗∗ 0.729∗∗∗ 0.547 42.32 2.54 0.244∗∗∗ 0.512∗∗∗ 0.281 13.70 0.0599

(−2.411) (6.504) (3.46) (3.70)

t-statistics in parentheses. (∗∗∗), (∗∗) and (∗) indicate significance at the 1%, 5%, and 10%
levels.
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Since models (17) and (18) estimate the market’s sensitivity to the illiq-
uidity factor, we expect to find significantly positive η1 (κ1) in the former
subsample and close to zero η1 (κ1) in the latter subsample; indeed, the
assumption we want to check is whether the heavy injection of liquidity
provided by the monetary authorities has reduced or eliminated at all the
illiquidity premium. Tables 8 and 9 exhibit the results. To reinforce the
analysis we also investigate more in detail the dynamics through time of
the coefficients η1 and κ1; since even before the start of QE several ac-
tions were taken to face the liquidity crunch9, we run the regressions (17)
and (18) assuming a moving window of length N1, with increment of one
trading month. In this way, we expect to emphasize the behavior of the
changes of the illiquidity premium over the whole period; more specifically,
we expect to observe the changes of the premium to decay as the interven-
tions get stronger. This is reasonable under the assumption that markets
start perceiving the interventions of the central banks as a sort of warranty
of liquidity. In other words, no additional reward is required for holding
illiquid assets, since the Federal Reserve ensures an “acceptable” level of
liquidity in the market. Figure 2 displays the dynamics of the coefficients
η1 (κ1).

4.3. Discussion of results.

The first point we address is the relationship between the illiquidity
(ILLIQt) and the pointwise Hölder exponent (ht). For each index, Figure
1 displays the estimates of the pointwise regularity (top-left panels), the
illiquidity (bottom-left panels) and the comparison of the three measures

9See in this regard the punctual review provided by Brunnermeier (2009), “The first
illiquidity wave” on the interbank market started on August 9. At that time, the per-
ceived default and liquidity risks of banks rose significantly, driving up the LIBOR. In
response to the freezing up of the interbank market on August 9, the European Central
Bank injected 95 billion in overnight credit into the interbank market. The U.S. Federal
Reserve followed suit, injecting 24 billion. To alleviate the liquidity crunch, the Federal
Reserve reduced the discount rate by half a percentage point to 5.75 percent on August
17, 2007, broadened the type of collateral that banks could post, and lengthened the
lending horizon to 30 days. [· · · ] On September 18, the Fed lowered the federal funds
rate by half a percentage point (50 basis points) to 4.75 percent and the discount rate
to 5.25 percent. [· · · ] Also, various sovereign wealth funds invested a total of more than
38 billion in equity from November until mid-January 2008 in major U.S. banks (IMF,
2008). But matters worsened again starting in that an earlier estimate of the total loss
billion, had to be revised upward. [· · · ] The TED spread widened again as the LIBOR
peaked in mid December of 2007 [· · · ]. This change convinced the Fed to cut the fed-
eral funds rate by 0.25 percentage point on December 11, 2007. [· · · ] On December
12, 2007, the Fed announced the creation of the Term Auction Facility (TAF), through
which commercial banks could bid anonymously for 28-day loans against a broad set of
collateral, including various mortgage-backed securities.[· · · ] At its regular meeting on
January 30, the Federal Open Market Committee cut the federal funds rate another 0.5
percentage point. [· · · ] A second event was that of March 11, 2008, when the Federal
Reserve announced its 200 billion Term Securities Lending Facility.
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TABLE 8.

Excess return with respect to illiquidity and pointwise regularity (monthly data).

η0 η1 R2 Fst sse κ0 κ1 R2 Fst sse

GSPC

Sep06−Oct08 0.998∗∗∗ 0.030∗∗∗ 0.494 22.48 0.0026−0.122∗∗∗ 0.168∗∗∗ 0.584 32.24 0.0022

(4.58) (4.74) (−7.818) (5.677)

Nov08−Oct14 0.007 0.0002 0.001 0.12 0.0004 −0.002 0.0031 0.005 0.2036 0.0004

(0.35) (0.35) (−0.48) (0.45)

NDX

Sep06−Oct08 1.149∗∗∗ 0.035∗∗∗ 0.682 49.36 0.0017−0.153∗∗∗ 0.230∗∗∗ 0.645 41.83 0.0019

(6.82) (7.03) (−8.27) (6.47)

Nov08−Oct14 0.01 0.001 0.0052 0.36 0.0004 −0.002 0.004 0.007 0.33 0.0004

(0.62) (0.60) (−0.53) (0.58)

GDAXI

Sep06−Oct08 0.927∗∗∗ 0.030∗∗∗ 0.332 11.43 0.0032−0.131∗∗∗ 0.189∗∗∗ 0.423 16.85 0.002

(3.25) (3.38) (−5.54) (4.10)

Nov08−Oct14 0.023 0.001 0.015 1.05 0.0006 −0.005 0.009 0.021 0.98 0.0004

(1.02) (1.02) (−1.05) (0.99)

t-statistics in parentheses. (∗∗∗), (∗∗) and (∗) indicate significance at the 1%, 5%, and 10% levels.

TABLE 9.

Excess return with respect to illiquidity and pointwise regularity (quarterly data).

η0 η1 R2 Fst sse κ0 κ1 R2 Fst sse

GSPC

Sep06−Oct08 1.844∗∗∗ 0.055∗∗∗ 0.768 19.87 0.0004 −0.189∗∗∗ 0.265∗∗∗ 0.758 18.83 0.0004

(4.38) (4.46) (−5.22) (4.33)

Nov08−Oct14 0.029∗ 0.0009∗ 0.144 3.36 2.06e-05 −0.005∗∗ 0.008∗ 0.173 4.21 1.99e-05

(1.83) (1.84) (−2.11) (2.05)

NDX

Sep06−Oct08 1.98∗∗∗ 0.060∗∗∗ 0.807 25.09 0.0003 −0.238∗∗∗ 0.384∗∗∗ 0.825 28.33 0.0003

(4.93) (5.01) (−6.14) (5.32)

Nov08−Oct14 0.022 0.0006 0.102 2.29 2.41e-005 −0.006∗∗ 0.011∗∗ 0.198 4.95 2.15e-05

(1.52) ( 1.51) (−2.20) (2.22)

GDAXI

Sep06−Oct08 0.969∗∗∗ 0.031∗∗∗ 0.773 20.40 0.0004 −0.164∗∗∗ 0.275∗∗∗ 0.720 15.19 0.0005

(4.37) (4.52) (−4.83) (3.90)

Nov08−Oct14 0.013 0.0004 0.064 1.38 2.69e-05 −0.003 0.006 0.0523 1.11 2.73e-05

(1.14) (1.18) (−1.18) (1.05)

t-statistics in parentheses. (∗∗∗), (∗∗) and (∗) indicate significance at the 1%, 5%, and 10% levels.

(right panels), properly normalized to ease the visual inspection. It is quite
evident that, once the scale is accounted for, the pointwise regularity and
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FIG. 1. Estimation of ILLIQ(t) and h(t). Top-left panel: Estimation of the point-
wise Hölder regularity h(t); Bottom-left panel: Estimation of the illiquidity measure,
ILLIQ(t) ; right-panel: normalized measures: ILLIQ(t)(red-dotted line) and 1 − h(t)
(blue line). From the left panels it is remarkable the burst of the increasing illiquid-
ity with the simultaneous decreasing pointwise regularity just before November 2008,
probably ascribable to the “panic selling” due to Lehman Brother collapse.)

Figure 1: Estimation of ILLIQ(t) and h(t). Top-left panel: Estimation of the pointwise Hölder regularity h(t); Bottom-left panel:
Estimation of the illiquidity measure, ILLIQ(t) ; right-panel: normalized measures: ILLIQ(t)(red-dotted line) and 1− h(t) (blue
line). From the left panels it is remarkable the burst of the increasing illiquidity with the simultaneous decreasing pointwise
regularity just before November 2008, probably ascribable to the ”panic selling” due to Lehman Brother collapse.)
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the illiquidity change accordingly, indicating that — even if with different
sensitivities — both capture the same market behavior, bringing out the
connection between efficiency and liquidity. In Figure 1 the interventions
of the Federal Reserve aiming at increasing the liquidity in the markets are
identified by the shaded areas. Notice that:
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FIG. 2. Changes in the slopes of regressions (17) and (18) when data belong to a
monthly sliding window of size 25 trading months, starting from September 2006 and
terminating on February 2014. The shaded areas correspond to the interventions of the
Federal Reserve and the intensity of grey scale is increasing with the time elapsed from
the beginning of each operation.

Figure 2: Changes in the slopes of regressions (17) and (18) when data belong to a monthly sliding window of size 25 trading
months, starting from September 2006 and terminating on February 2014. The shaded areas correspond to the interventions of the
Federal Reserve and the intensity of grey scale is increasing with the time elapsed from the beginning of each operation.
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• soon before the start of the QE1 a sudden burst of illiquidity corre-
sponds to a large downward movement of ht, which is pushed far away from
its physiological value 1

2 . Both the estimates capture the effect of the panic
selling triggered by the collapses of Lehman Brothers (September 15, 2008)
and the insurance firm AIG (September 16, 2008), two of the catalysts of
the volatility explosion;

• at the end of each intervention (QE1, QE2, TO, QE3), not only the
liquidity appears to be recovered, but even more informative to us is the
fact that ht is again in a neighborhood of 1

2 , regardless its pre intervention
level. This happens systematically at the end of each injection of liquidity
for the three indices;

• a difference can be observed between the QE1/TO, on the one side,
and QE2/QE3, on the other side. The former two interventions effectively
seem to have contributed to increase the liquidity and to push markets
back towards efficiency. This effect is particularly pronounced for the QE1,
for which the announcement of the Federal Reserve to initiate a program
to purchase substantial quantities of mortgage-backed securities surprised



398 SERGIO BIANCHI AND MASSIMILIANO FREZZA

the markets Hancock and Passmore (2012), to the extent that the S&P500
grew of 4.5% in two days, before the profit taking of the weekend. On
the contrary, the latter two interventions have had a minor impact on the
U.S. stock market, which was already efficient when they were launched (ht
fluctuates around 1

2 at the beginning of QE2 and QE3) and liquidity was
not that low. As it will be observed later, these two programs could have
provided an excess of liquidity, much to the advantage of abnormal extra
returns, as stressed by the values of ht lying persistently above 1

2 during
the programs themselves. This is also in accordance with Bayoumi and
Bui (2011), who analyze the impact of the 2008/2009 and 2010 monetary
stimulus packages across a selection of G20 countries and conclude that
the QE1 announcements had a strong initial impact on financial condi-
tions, including commodity prices and U.S. and foreign equities. They also
find that the effects of QE2 announcements were generally not statistically
significant;

• finally, we observe that soon after the end of QE3, ht restarts slightly
decreasing for the three indices, which indicates that markets mean-revert
and overreact more than what one would expect if they were efficient.

Table 4 displays the results of the regression (11): a very strong relation-
ship exists between the two measures on all the δ’s that have been taken
into consideration. This is particularly true for the U.S. market, for which
the R2 ranges from 0.827 to 0.722, with coefficients always significant and
stable for the different windows. The relation continues to be significant
even when lagged observations are considered (see Table 6 summarizing
regressions (13) and (14). In this case, although the the two measures are
mutually forecasting to some extent, ht displays a better goodness of fit in
forecasting log ILLIQt than the opposite, as shown by the values of R2.
This is particularly true for the German DAX, index for which the value of
R” of ht as regressor almost double the corresponding value of log ILLIQt.

As shown in Table 5, the relationship between log ILLIQt and ht appears
even stronger when one removes the data belonging to the region Uα, which
includes the efficient phases of the stock market. Focusing on the inefficient
periods, the t-statistics, the standard errors and the p-values all improve;
the R2’s of the three indices increase on the average of about 0.024. We
ascribe this improvement in the quality of fits to the removal of the noisy
information which induces non substantial variations in the stock prices
when markets change in a purely random way.

Table 7 summarizes the results of regressions (15) and (16), which test
the autoregressive model AR(1) for both the measures. As expected, for all
the windows δ, the parameters λ1 are positive, significant and very close to
those estimated in Amihud (2002). Consistently, we also observe a positive
and significant ρ1 for all δ’s. These findings confirm that investors predict
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both illiquidity and pointwise regularity (or volatility, if one changes per-
spective) for future window, based on information available in the current
one.

Tables 8 and 9 summarize the behavior of the variations of the excess
returns (with respect to the Treasury Bill) on a monthly and quarterly ba-
sis, respectively. The effects generated by the interventions of the Federal
Reserve are quite evident. Before the large-scale asset purchases, namely
in the period September 2006-October 2008, all the values of η1 and κ1 are
positive and statistically significant, whereas they change dramatically and
fall to zero in the whole period November 2008-October 2014. Notice that
in this period the relationship between the excess returns and the illiquidity
does not hold any longer, as revealed by all the statistics reported in the
tables. This indicates that the premium for illiquidity is completely inelas-
tic during the quantitative easing programs and this result sounds quite
reasonable, if one considers that markets perceived that Federal Reserve
was acting as a lender of last resort able to provide as much liquidity as
needed. This behavior can be appreciated more in detail looking at Figure
2, which displays the evolution of η1 and κ1 into a window of 25 points,
about two trading years, starting from September 2006 (the shaded areas
indicate the interventions). Several remarks can be formulated:

• from September 2006 to October 2008, the increment of illiquidity
causes an increment in the excess return, that is lower stock prices10.

• the impact of QE1 is strong and more pronounced for the two U.S.
indexes than for the DAX. This is reasonable in view of the fact that the
interventions of the Fed obviously have had a deeper spillover on the U.S.
economy and, only by contagion, have caused variations in the European
economy. Interestingly, at the end of the QE1, η1 is zero for both the
S&P500 and the NASDAQ, indicating that the intervention indeed worked
to the extent that the variation of the excess return with respect to the
illiquidity was reduced to zero;

• as of the beginning of the Maturity Extension Program (September
2011) until the end of QE3, the slope is statistically equal to zero for all
the indexes (the premium for illiquidity is therefore constant), even if for
the German DAX the values are reasonably slightly larger;

10The mechanism is well described by Amihud and Mendelson (2015): “[...] The
general decline in illiquidity over the recent decades may explain in part the rise in
the stock market prices. By the Amihud and Mendelson (1986) theory, investors require
lower expected returns on equity claims (relative to Treasury bills, which have the great-
est liquidity) when the illiquidity of these claims is lower. This means that for any given
cash flows that the stocks generate — in terms of level, risk and growth expectations —
the stock value should be higher when illiquidity falls. This is what we have generally
witnessed since the end of the early 1980s.”
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• as of the end of QE3 the slopes increase for the S&P500 and the NAS-
DAQ and become significantly larger than zero at 5% starting from De-
cember 2014. It seems very consistent the different behavior of the DAX,
whose η1 remains at zero long after the end of QE3, as a presumable con-
sequence of the two Longer-Term Refinancing Operations (LTRO), which
meanwhile the European Central Bank (ECB) had launched11;
• κ1 evolves in perfect accordance with η1 to the point that the Pearson’s

correlation coefficient estimated between η1 and κ1 is equal to 0.9930 for
the S&P500, 0.9870 for the NASDAQ and 0.9608 for the DAX, denoting
that the two measures indeed characterize the premium for illiquidity al-
most identically. Furthermore, the positive relationship between the excess
return and (1−ht) means that we can expect higher returns as ht decreases.
This result confirms previous empirical evidence on the U.S. stock market
(see e.g. Bianchi et al. (2015)).

The overall behavior of the regressions parameters looks strongly consis-
tent; indeed, starting from a situation where the illiquidity was perceived
by financial markets as the main obstacle to their proper functioning (high
slope of the excess returns with respect to the illiquidity), the exogenous
intervention of the Federal Reserve has had the (hoped) effect to lubricate
markets to such an extent to reduce to zero the perceived risk of illiquidity
(zero slope). Once the interventions expired, the premium for illiquidity
has started growing again, even if at an acceptable level (low slope).

5. CONCLUSIONS

In this paper we have examined the relationship between liquidity and
efficiency. When the latter is calculated following a new, topology-based
approach, the two notions appear to be intimately related and their re-
lation becomes even stronger when markets experience inefficient periods.
We also provide evidence that the efficiency measure is a better forecaster,
in terms of its goodness of fit, of the illiquidity measure even when observa-
tions lagged up to five days are considered. We have used both the measures
to analyze how three main stock indices (S&P500, Nasdaq and DAX) have
responded to the unconventional stimuli launched by the Federal Reserve
to control the liquidity crunch triggered by the 2007-2008 global financial
crisis. Our findings reveal that the variation of the illiquidity premium
demanded by investors has become statistically not significant with the in-

11The first LTRO program was announced on December 20, 2011, with allotment date
on December 21, settlement date on December 22, early repayment date on January
30, 2013 and maturity date set on January 29, 2015; the second LTRO program was
announced on February 28, 2012, with allotment date on February 29, settlement date on
March 1, early repayment date on February 27, 2013 and maturity date set on February
26, 2015.
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crease of the amount of monetary interventions. Consistently with previous
studies, we also find that this effect, as it is reasonable, is lagged for the
German DAX with respect to the U.S. indices; it is also lightly less pro-
nounced during the Twist Operation and the QE3 and, differently from the
behavior of the two U.S. indices (whose variations start increasing a little
bit since the end of QE3), becomes statistically zero in the same period,
what is ascribable to the LTRO run by the European Central Bank. The
relation between the liquidity and the efficiency measures that we use in
this work is confirmed by the behavior that we observe for the changes of
the premium with respect to the pointwise volatility.
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