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On the Interaction between Small Decay, Agent Heterogeneity

and Diameter of Minimal Strict Nash Networks in Two-way

Flow Model

Banchongsan Charoensook*

This paper studies the roles of value heterogeneity, that is, agents are het-
erogeneous in terms of information values that they possess, in determining the
shapes of two-way flow Strict Nash networks when a small amount of decay is
present. I do so by extending the two-way flow network with small decay of De
Jaegher and Kamphorst (J ECON BEHAV ORGAN, 2015). Results of this ex-
tension show that the effects of value heterogeneity resemble the effects of cost
heterogeneity found in the literature. Another surprising finding is that value
heterogeneity can extend diameters of Strict Nash networks without changing
other properties.
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1. INTRODUCTION

The seminal work of Goyal (2000a) proposes a model of network for-
mation that is noncooperative, in the sense that two agents do not need
to cooperate to form a link. This follows from two key assumptions: link
formation cost is borne solely by link sender and information possessed by
each agent is nonrival. Nash equilibrium and/or Strict Nash equilibrium
in pure strategies are then used to characterize properties of equilibrium
networks. These equilibrium networks are called Nash networks (NNs) and
Strict Nash networks (SNNs) respectively. The simplicity of this seminal
model means it can serve as a basis that allows researchers to study ef-
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fects of various assumptions on equilibrium networks in isolation of other
effects. Literature in this spirit abounds. Examples are imperfect commu-
nication through links (Bala and Goyal (2000b), Haller and Sarangi (2005)),
group identity (Dev (2014), Dev (2018)), agent heterogeneity (Galeotti et
al. (2006); Billand et al. (2011); Charoensook (2015)) and information
confirmation (Billand et al. (2017)).

Of particular interest to this paper is the literature on agent heterogene-
ity. Within this subbranch of the literature, much have been studied about
the roles of agent heterogeneity in terms of link formation cost (Galeotti
et al. (2006), Billand et al. (2011), Billand et al. (2012), Charoensook
(2015)). However, little is known about the role of heterogeneity in terms
of information value. For example, if we assume that agents differ in terms
of information value that they possess and communication via links is not
perfect, how would such an assumption influence the shapes and properties
of SNN ? This paper seeks to address this question. It does so by introduc-
ing various forms of value heterogeneity to another rigorous extension of
the seminal work of Bala and Goyal (2000a) described above — the mini-
mal two-way flow with small decay studied by De Jaegher and Kamphorst
(2015) (DJK), where the term ‘small decay’ here refers to the fact that
communication through links is not perfect but nearly so, and hence no
superfluous links are worth establishing since every agent who chooses to
form links for his best interest would find that the benefits from establish-
ing a superfluous link cannot cover the associated link formation cost 1 2.
More specifically, I state the questions, which have not yet been studied,
that this paper seeks to contribute to the literature below:

1. Compared to several models in the literature that study the impacts
of cost heterogeneity on the shapes of SNN (e.g., Galeotti et al. (2006);
Billand et al. (2011)), what are similarities and differences between the
roles of value heterogeneity and cost heterogeneities in SNN?

1The small decay assumption will soon be introduced in the next section. See also
Lemma 4 of DJK, which is included in Appendix A of this paper.

2There are at least two rationales for assuming small decay as opposed to any level
of decay. First, as explained in DJK “Information decay has two effects. First, ex-ante
homogeneous players become heterogeneous by their position in the network . . . Second,
decay may give the individual player an incentive to sponsor links to players he is
connected to, but indirectly.” My focus on small decay as opposed to all levels of decay,
therefore, makes it possible to study the interaction between the first effect mentioned
in DJK (2015) with value heterogeneity in isolation of the second effect. Second, small
decay implies that SNN is minimal (See Lemma 4 of DJK (2015), which is included in
Appendix A of this paper). So does no decay assumption. This in turn allows the results
of this paper, which assumes value heterogeneity and small decay, to be compared with
the existing literature that characterize SNN by assuming cost heterogeneity with no
decay (Galeotti et al. (2006), Billand et al. (2011)).
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2. Compared to the model of DJK, which assumes small decay and ho-
mogeneity in information value and link formation cost, how does the intro-
duction of value heterogeneity impact the shapes and properties of SNNs?

I elaborate briefly on the findings of this paper, the existing literature
and relationship between the two as follows. For the question (1), con-
cerning the roles of cost heterogeneity (denoted by cij , the link formation
cost that i pays if he wishes to form a link with another agent j), there
are three major forms: (i) player heterogeneity (cij = ci for every agent
i), i.e., link formation cost depends only on the identity of link sender, (ii)
partner heterogeneity (cij = cj for every agent j), i.e., link formation cost
depends only on the identity of link recipient, and (iii) general heterogene-
ity, which is such that cij depends on the identity of link sender as well
as link recipient, without any restriction. The roles these three forms of
cost heterogeneity on SNN, assuming no decay, are studied in Galeotti et
al. (2006) and Billand et al. (2011), with fine-detail equilibrium character-
ization given 3. For heterogeneity in information value, little is known. To
the knowledge of the author the only finding in the literature is that, given
no information decay and value heterogeneity assumes general form (Vij
being the information value of j that i receives without any restriction),
every non-empty component of SNN is a center-sponsored star, which is
identical to the shape of non-empty SNN when agent homogeneity is as-
sumed (c.f. Proposition 3.1 in Galeotti et al. (2006)) 4. Put differently,
what is known in the literature is that value heterogeneity has very little
to no effect on the shape of SNN. A simple intuition explains this result:
due to the assmumption of no decay every agent in the same component
receives the same amount of information. Therefore, from the point of view
of link sender all agents are homogeneous in the sense that they are equally
attractive as link recipients, which is not different from the original setting
of Bala and Goyal (2000a) that assumes value homogeneity. That is, under
no decay assumption value heterogeneity cannot cause agents in the same
component to be heterogeneous. Of course, if the assumption of no decay
is removed this line of reasoning is no longer valid. This raises the ques-
tion of whether value heterogeneity can have an impact on the properties
and shapes of SNNs if decay is assumed to be present. This is precisely a
primary motivation and the main research question of this paper. Indeed
to the knowledge of the author this paper is the first work in the literature
that finds that value heterogeneity has substantive impacts on the shapes
and properties of SNN. Specifically, the main analysis in section 3 provides
equilibrium characterizations of SNN, assuming that value heterogeneity

3There are also some other forms, which allows cij to depend on both link sender i
and recipient j. See, e.g., Charoensook (2015) and Billand et al. (2010).

4See the definition of center-sponsored star in the next section.
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takes three forms, namely player value heterogeneity (Vij = Vi), partner
value heterogeneity (Vij = Vj) and general value heterogeneity (Vij has no
restriction). Note that these three forms of value heterogeneity correspond
to the three forms of cost heterogeneity mentioned above. This allows for
the comparison between existing literature that studies the roles of cost
heterogeneity on SNNs mentioned above with the results in this paper that
studies the roles of value heterogeneity on SNNs. The last section of this
paper elaborates on this comparison.

Next, for the question (2), compared to the model of DJK, which assumes
small decay and homogeneity in information value and link formation cost,
the most surprising finding is that partner heterogeneity in information
value does not change the main properties of SNN, yet it largely extends
diameters of SNN (See Proposition 1 and Figure 3 in the main analysis
section). Indeed, a line network, which is the network with a maximum
diameter, can also be SNN. This is a sharp contrast to a major finding of
DJK, which finds that under the assumption of small decay the diameter
of SNN is relatively small compared to the population size. Since DJK
mention that this feature of SNN resembles small-world networks, a major
finding of this paper is that the introduction of partner value heterogeneity
into the model of DJK breaks away this resemblance. See the laste two
paragraphs of section 3.1 for further elaboration.

Lastly, I remark that this paper also fulfills some missing technical de-
tails in terms of equilibrium chracterization in DJK. Specifically, Lemma 1
in DJK states that a middle agent, if exists, is always a link recipient for
a small level of information decay in an SNN. Therefore, we do not know
the identity of the link recipient if a middle agent does not exist. More
generally, we also do not know the identity of the link recipient for a small
level of decay if value heterogeneity is assumed. In this paper, I fulfill these
missing pieces by establishing a new concept called ‘positionally optimal
agent,’ a concept that is closely related yet more general than the concept
of middle agent in DJK (see Remark 1 and Example 2 in this paper). I then
show that: (i) positionally optimal agent always exists and (ii) as decay
becomes very small a positionally optimal agent is always a link recipient.
These two key results are major building blocks for the equilibrium chrac-
terization and sufficiency result of SNNs in the main analysis section. The
definition of positionally optimal agent is given in Section 2.1. Lemma 1
in Section 3.1, which generalizes Lemma 1 of DJK to the case of partner
value heterogeneity, provides the formal statement of these results.

This paper proceeds as follows. I introduce the model and notations
in the next section (Section 2). Importantly, I introduce concepts that
generalize key concepts of DJK, namely positionally optimal agent and
generalized balancing condition in Section 2.1. They generalize the con-
cepts of middle agent and balancing condition in DJK respectively. The
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third section, which is the main analysis section, is then divided into three
subsections. First is the generalization of DJK’s model by allowing for
partner value heterogeneity. Proposition 1 in this subsection provides a
characterization of SNN under this assumption. I also discuss on some in-
terestingly intricate interaction between value heterogeneity, small decay,
and the diameter of SNNs. Specifically I point out that: (i) a balanced SNN
is not necessarily resilient to the changes in decreasing decay level and (ii)
consequently, for the two-way flow model to have properties that resem-
ble small-world network and serves as a micro-foundation of preferential
attachment, it has to be the case that heterogeneity among information
value possessed by each agent is sufficiently small. The next two sub-
sections then use analyses in the first subsection to establish equilibrium
characterizations for the cases of player value heterogeneity and general
value heterogeneity. Finally, in the concluding remarks section I compare
the effects of cost heterogeneity with no decay, as in Galeotti et al. (2006)
and Billand et al. (2011), and the effects of value heterogeneity with small
decay, found in this paper, on SNN. A major finding of this comparison is
that cost heterogeneity and value heterogeneity appear to have very similar
effects on SNN.

2. THE MODEL

Since this paper is an extension of De Jaegher and Kamphorst (2015)
model by allowing for value heterogeneity, most notations here will also
follow this aforementioned model. Exceptions are the definitions of the
three specific forms of heterogeneity — partner heterogeneity, player het-
erogeneity and general heterogeneity. These definitions follow Galeotti et
al. (2006) and Billand et al. (2011).

Link establishment and individual’s strategy. Let N = {1, . . . , n}
be the set of all agents. An agent i ∈ N can form a link with another agent
j without j’s consent. ij denotes such a link. The set of all possible links
that i can form is Li = {ij : j ∈ N\{i}}. Let L = ∪i∈NLi. A strategy of
agent i, which is the set of links that he chooses to form, is denoted by gi.
The strategy space of agent i, denoted by Gi, is Gi ≡ 2Li . The strategy
space is G ≡ 2L. A strategy profile is, therefore, g = ∪i∈Ngi.

Network representation. A strategy profile can be visually repre-
sented by a network, where each node represents an agent and an arrow
from node i that points towards another node j represents a link ij ∈ gi 5.

5See Figure 2 in DJK for examples. Readers should also be noted of discrepancy
regarding network representation used in the literature. While this paper and DJK use
an arrow from i to j to represent the link ij ∈ gi, Bala and Goyal (2000a), Galeotti et
al. (2006) and Billand et al. (2011) uses the opposite, which is such that an arrow from
j to i represents the link ij ∈ gi.
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Therefore, following the literature, the term strategy profile g and network
g will be used interchangeably. In case that link sponsorship is not related
to the analyses, arrows are removed. Such a network is called an undirected
network6.

Information flow. Let NS
i {g} ≡ {j ∈ N : ij ∈ g} denote the set of

all agents i establishes a link with. We write īj ∈ g if and only if ij ∈ g
or ji ∈ g or both. Information flow is assumed to be two-way, hence the
term ‘two-way flow model.’ Specifically, let a path between i and j be
defined as Pij (g) =

{
i0i1, ..., ik−1ik

}
⊆ g such that i0 = i, ik = j. If there

is a path between i and j, we say that i and j are connected. A shortest
path between i and j is, of course, the path(s) between i and j with the
least amount of links. A distance between i and j is defined as the amount
of links of the shortest path(s). If j = i then we assume, following the
literature, that the distance of between i and himself is 0.

Value heterogeneity and cost heterogeneity. Let cij denote the
link formation that i bears to form a link with j. Let C = {cij}ij∈N×N,i6=j

be the cost structure. If cij = c for every i, j ∈ N , then C is said to satisfy
cost homogeneity. If cij = cj for every i 6= j then C is said to satisfy partner
cost heterogeneity. If cij = ci for every i 6= j then C is said to satisfy player
cost heterogeneity. If no restriction is imposed on C then we say that C
satisfies general cost heterogeneity 7 8.

Similarly, let Vij denote the value of information of j that arrives to i,
given that information flow is perfect. Let V = {Vij}ij∈N×N be the value
structure. If Vij = V for every i, j ∈ N , then V is said to satisfy value
homogeneity. If Vij = Vj for every i 6= j then V is said to satisfy partner
value heterogeneity. If Vij = Vi for every i 6= j then V is said to satisfy
player value heterogeneity. If no restriction is imposed on V then we say
that V satisfies general value heterogeneity.

Information quantity Let σ ∈ [0, 1] denote the decay factor, which
represents the assumption that the proportion that a piece of information
decays is (1− σ) per each link it traverses. That is, if the distance between
i and j is k then the information that i receives from j is σkVij . Naturally,
if σ = 1 then we say that there is no (information) decay. If σ < 1 then
there is (information) decay.

6See, for instance, Example 1 and Example 3 in section 2.1 and 3.1 of this paper
7The definitions of partner cost heterogeneity, player cost heterogenety and general

cost heterogeneity here follow Billand et al. (2011), Galeotti et al. (2006) and Galeotti
et al. (2006) respectively.

8At this point, I anticipate that readers may find these definitions to be awkward,
as agent homogeneity is enclosed as a special case of agent heterogeneity rather than
being two polarized concepts. However, these definitions have been used in several past
studies (see Billand et al. (2011); Galeotti et al. (2006) and Charoensook (2015)).
Consequently, to ease the comparison this paper follows suit.
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Small decay assumption Following the assumption above and assum-
ing a path between i and j exists, an agent i can improve the flow of
information from another agent j by establishing a link that leads to a
shorter path between i and j. Of course i has enough incentive to do so
only if the benefit from so doing covers the link establishment cost. How-
ever, if the decay is sufficiently small, i.e., σ is sufficiently close to 1, then
the decay incurred by each path becomes nearly identical and the incentive
to establish an extra path disappears. More rigorously, Lemma 4 in DJK
(See Appendix A) states that “there exists σM < 1 such that for all σ > σM
no player in any possible network wishes to sponsor a non-minimal link.”
As a result, there is at most only one path between any pair of agents.
This small decay assumption, which by Lemma 4 of DJK guarantees that
no agent finds an incentive to establish a non-minimal link, is assumed in
DJK and will be assumed throughout this paper.

Better-informed agent In a network g, let Ni (g) be the set of agents
with whom i is connected via a path including i himself and let Nd

i be
the set of all agents whose distance from i is d. Note that N0

i = {i}.
Define total ex-post information that i received in the network g as Ii (g) =∑n−1

d=0

∑
j∈Nd

i (g) σ
dVij

9. Consider M ⊆ N that is connected, ie., there is

a path between any distinct pair of agents in M . Let gM = {ij ∈ g : i, j ∈
M}. i is better-informed than j in the set M if Ii (gM ) ≥ Ij (gM ) and
best-informed in M if Ii (gM ) ≥ Ij (gM ) for all j ∈M .

Network-related notations A subnetwork of g is a network g′ such
that g′ ⊂ g. A subnetwork g′ of g is said to be induced by M ⊂ N if ij ∈ g′
whenever ij ∈ g and i, j ∈ M . A network is said to be connected if every
pair of agents in the network is connected. g′, a subnetwork of g, is said
to be a component of g if g′ is a maximal connected subnetwork of g. An
agent who has no link with any other agent is called a singleton. Note that
a singleton is also a component. Specifically we call a component that is a
singleton an empty component 10. A non-empty component of a network or
a network is minimal if there is at most one path among any pair of agents
in the network. A minimally connected network is a rooted directed tree
if every agent receives exactly one link except one agent that receives no
link. The agent that receives no link is called root. A minimally connected
network or a minimal component of a network is a center-sponsored star
(CSS) if it is a rooted directed tree such that every agent who receives a
link from the root establishes no link. A minimally connected network or

9Note that this definifion generalizes that of DJK in the following sense. If V
satisfies value homogeneity then Ii (g) =

∑n−1
d=0 σ

d|Nd
i (g) |, which is precisely the

same as in DJK. Note further that if V satisfies player value homogeneity then
Ii (g) =

∑n−1
d=0 σ

d|Nd
i (g) |Vi and if V satisfies partner value homogeneity then Ii (g) =∑n−1

d=0

∑
j∈Nd

i (g) σ
dVj .

10The definitions of singleton and empty component follow Bala and Goyal (2000a).
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a minimal component of a network is a periphery-sponsored star (PSS) if
there is precisely one agent who receives a link from every other agent, and
every other agent receives no links.

Next, I introduce some specific types of agents and links. A non-recipient
agent is an agent that receives no links. A multi-recipient agent is a re-
cipient who receives more than one link. Let Aij (g) where ij ∈ g be
the set of agents that i observes exclusively via the link ij. That is,
Aij (g) ∩ Ni (g\ij) = ∅ and Aij (g) ∪ Ni (g\ij) = Ni (g). In a minimal
connected network g, a link ii′ is said to point to agent j if j ∈ Aii′ (g)
and to point away from agent j if j /∈ Aii′ (g). Similarly, links ii′ ∈ g and
jj′ ∈ g are said to point to each other if i′ ∈ Ajj′ (g) and j′ ∈ Aii′ (g). A
link ii′ ∈ g is said to be an end link if Aii′ (g) = {i′}. For a link ii′ that is
an end link, i′ is an end recipient and i is an end sponsor.

Lastly, I introduce some notations concerning information flow. Let M ⊂
N be a set of agents and g′ be a network induced by M . Let g′ be minimally
connected. Due to the fact that there is only one path between every pair
of agents in g′, a removal of the link īj ∈ g′ further splits g′ into two
disconnected subnetworks - one containing i and the other one containing j.
Let Di (g′ − ij) and Dj (g′ − ij) denote these two subnetworks respectively.
Furthermore, let N

(
Di (g′ − ij)

)
and N

(
Dj (g′ − īj)

)
be the sets of agents

in these two sets respectively 11. We say that information of k flows to i
via j if k ∈ N

(
Dj (g′ − īj)

)
. Similarly, we say that information of k flows

to j via i if k ∈ N
(
Di (g′ − īj)

)
.

The payoffs. Let Vi (g) = f (Ii (g)) where f ′ > 0. The payoff of i is:

Ui (g) = Vi (g)−
∑
j∈NS

i

cij .

A special case of this is the so-called linear payoff, which is:

Ui (g) = Ii (g)−
∑
j∈NS

i

cij

Nash Networks and Strict Nash Networks. Consider a network g∗

such that a strategy of i is g∗i ⊂ g∗. Let g∗−i = g∗\g∗i so that g∗ = g∗i t g∗−i.
g∗i is said to be a best response of i if Ui (g∗) ≥ Ui

(
gi ∪ g∗−i

)
for every

gi 6= g∗i . If the inequality is strict, then g∗i is a unique best response of
i. g is said to be a NN if every agent chooses his best response. A SNN
is a network such that every agent chooses his unique best response. In
the main analysis section, SNN is used for equilibrium characterization
rather than NN in order to allow for the comparison between our models,

11These notations follow Charoensook (2019).
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which assume value heterogeneity, and existing models in the literature
that assumes cost heterogeneity such as Billand et al. (2011) and Galeotti
et al. (2006).

2.1. Positionally Optimal Agent and Generalized Balancing Con-
dition: Definitions

This subsection establishes two new concepts - Positionally Optimal
Agent and Generalized Balancing Condition. They generalize two concepts
in DJK, namely middle agent and the balancing condition respectively by
allowing for partner value heterogeneity. These two new concepts will then
be used to generalize key results of DJK in the main analysis section, which
provide characterization and sufficiency result for SNN given that partner
value heterogeneity is assumed 12. In Sections 3.2 and 3.3, which are ex-
tensions of the main analysis section, these concepts will also be further
generalized to allow for other forms of value heterogeneity. Before doing so,
I first recall the definitions of middle agent and balancing condition from
DJK below.

Definition 2.1. (Middle Agent (DJK, Definition 2, p.224)) Consider
a minimal connected subset of players M , M ⊂ N . We say that player j
is in the middle of set M in network g if for each neighbor k of j in the
network g the following holds: in g more than half of the players in M
(including k and j) are closer to j than k 13.

Definition 2.2. (Balancing Condition and Balanced Network (DJK,
Definition 3, p.224)) A minimal network g satisfies the balancing condition
if for any ij ∈ g we have that j is in the middle of Aij (g). In that case, we
say that the network g is balanced 14.

Intuitively, a middle agent is an agent whose position or location is su-
perior to every other agents in the same minimal component, in the sense
that due to his location he suffers from information decay less than every
other agent does, given that the decay is sufficiently small. This causes him
to be a best-informed agent, which in turn makes him attractive as a link
recipient. This is the intuition behind Lemma 1 and Proposition 2 of DJK
(readers can refer to Lemma 1 and Proposition 2 of DJK in Appendix A
of this paper).

12This subsection is inspired by a comment from Christophe Bravard, to whom I wish
to express my gratitude.

13Figure 6 in DJK provide examples of middle agents.
14Figure 6 in DJK provide examples of balanced networks.
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At this point, two natural questions arise: (i) if V does not satisfy homo-
geneity (recall that DJK’s model assumes such), will a middle agent remain
attractive as a link recipient?; and (ii) regardless of whether V satisfies ho-
mogeneity or not, in case that a middle agent does not exist, which agent
is most attractive as a link recipient? I establish Lemma 1 in the main
analysis section to answer these questions. The first steps towards the es-
tablishment of this Lemma, though, is to build a concept that generalizes
the concept of middle agent of DJK, which I do so below by allowing for
partner value heterogeneity 15.

Definition 2.3. (Positional Superiority) In a network g, consider
a minimal connected subset of players M ⊂ N and let i, j ∈ M . Let
Xi,M (i, j; g) and Xj,M (i, j; g) be the set of agents that are closer to i than
to j (including i himself) and the set of agents that are closer to j than to
i (including j himself) respectively. Let V satisfies partner value hetero-
geneity. i is positionally superior to j in the set M if

∑
k∈Xi,M (i,j;g) Vk ≥∑

k∈Xj,M (i,j;g) Vk. We write i %M j for short. If the inequality is strict, we

write i �M j for short.

That is, to consider whether i is positionally superior to j, we first iden-
tify the set of all agents that are closer to i than to j (including i himself)
and the set of all agents that are closer to j than to i (including j himself),
we then identify the sum of information value of each of these two sets. If
the former is at least as much as the latter, then it is concluded that i is
positionally superior to j. Example 1 below illustrates this concept.

FIG. 1. Three undirected networks for Example 1.
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agents that are closer to j than to i (including j himself), we then identify the sum
of information value of each of these two sets. If the former is at least as much as
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Vj = 1

Vk = 1 V1 = 1

V2 = 1 V3 = 1 V4 = 1 V5 = 1

(a) Network 1

Vj = 6.49

Vk = 3.5 V1 = 1

V2 = 3 V3 = 3 V4 = 1 V5 = 1

(b) Network 2
V1 = 1 V2 = 1V3 = 1Vk = 1Vj = 4.5

(c) Network 3

Figure 1: Three undirected networks for Example 1.

Example 1. Consider the three (undirected) networks in Figure 1. Let M = N. Note that
V for the network 1 satisfies homogeneity while V for the network 2 and 3 satisfies partner
heterogeneity. In the network 1 , j is positionally superior to k because ∑l∈Xj,M(j,k;g) Vl =

1 + 1 + 1 + 1 = 4 ≥ ∑l∈Xk,M(j,k;g) Vl = 1 + 1 + 1 = 3. In the network 2 , k is positionally
superior to j because ∑l∈Xj,M(j,k;g) Vl = 6.49 + 1 + 1 + 1 = 9.49 < ∑l∈Xk,M(j,k;g) Vl = 3.5 +

3 + 3 = 9.5. In the network 3, j is positionally superior to k because ∑l∈Xj,M(j,k;g) Vl = 4.5 ≥
∑l∈Xk,M(j,k;g) Vl = 1 + 1 + 1 + 1 = 4.

Intuitions related to the above examples are elaborated here. First, if value ho-
mogeneity - as in the network 1 in Figure 1 - is assumed then the middle agent (if
exists) is always strictly positionally superior to every other agent. This is because
value homogeneity necessitates that i is positionally superior to j if the amount of
agents that are closer to i than j is more than the amount of agents that are closer to
j than i, which is precisely the definition of middle agent. Of course, if partner value
heterogeneity is assumed then this line of reasoning breaks down. Indeed, note that
in the second network in Figure 1 there are only three agents who are closer to k
than j while there are four agents who are closer to j than k. But k is positionally
superior to j because those three agents who are closer to k possess relatively higher

10

15Note that the concepts of positional superiority and generalized balancing condition
here assume partner value heterogeneity, since they are intended to be used in the
first part of the main analysis section, which also assumes partner value heterogeneity.
Afterwards, these concepts as well as the results in the main analysis section will be
further extended to accommodate other forms of heterogeneity in the second part of the
main analysis section.
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Example 2.1. Consider the three (undirected) networks in Figure 1.
Let M = N . Note that V for the network 1 satisfies homogeneity while V
for the network 2 and 3 satisfies partner heterogeneity. In the network 1 , j
is positionally superior to k because

∑
l∈Xj,M (j,k;g) Vl = 1 + 1 + 1 + 1 = 4 ≥∑

l∈Xk,M (j,k;g) Vl = 1+1+1 = 3. In the network 2 , k is positionally superior

to j because
∑

l∈Xj,M (j,k;g) Vl = 6.49+1+1+1 = 9.49 <
∑

l∈Xk,M (j,k;g) Vl =
3.5 + 3 + 3 = 9.5. In the network 3, j is positionally superior to k because∑

l∈Xj,M (j,k;g) Vl = 4.5 ≥∑l∈Xk,M (j,k;g) Vl = 1 + 1 + 1 + 1 = 4.

Intuitions related to the above examples are elaborated here. First, if
value homogeneity - as in the network 1 in Figure 1 - is assumed then the
middle agent (if exists) is always strictly positionally superior to every other
agent. This is because value homogeneity necessitates that i is positionally
superior to j if the amount of agents that are closer to i than j is more
than the amount of agents that are closer to j than i, which is precisely
the definition of middle agent. Of course, if partner value heterogeneity
is assumed then this line of reasoning breaks down. Indeed, note that in
the second network in Figure 1 there are only three agents who are closer
to k than j while there are four agents who are closer to j than k. But
k is positionally superior to j because those three agents who are closer
to k possess relatively higher information values. This line of reasoning
is further illustrated in the third network in Figure 1. Even though an
agent (agent k in this case) is located at an extreme end of the network he
is still positionally superior to every other agent because the information
that he possesses has a value that is relatively much higher than those of
others. In conclusion, whether an agent is positionally superior to another
agent depends not only on the relative locations of two agents but also
information value of other agents in the network. This intuition is used to
generalize the concept of middle agent in DJK as follows:

Definition 2.4. (Positionally Optimal Agent) In a network g, consider
a minimal connected subset of agents M ⊂ N . Let V satisfies partner value
heterogeneity. An agent i ∈ N (g) is said to be a positionally optimal agent

in the set M if i %M j for every j ∈M and j 6= i.

That is, an agent is positionally optimal in the set M if he is positionally
superior to every other agent in the set M .

Example 2.2. Consider the three networks in Figure 1. It is straight-
forward to verify that the middle agent j is positionally optimal in network
1, k is positionally optimal in network 2, and j is positionally optimal in
the line network 3.
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Remark 2.1. In a network g, consider a minimal connected subset of
players M ⊂ N . a middle agent (if exists) is a unique positionally opti-
mal agent in M given the specific assumption that value homogeneity is
assumed 16.

Finally, I generalize the balancing condition in DJK. Recall that the
balancing condition in DJK requires that every link recipient is a middle
agent, it naturally follows that the generalized balancing condition below
simply replaces the term middle agent by the term positionally optimal
agent, which is a more general term.

Definition 2.5. (Generalized Balancing Condition) Let V satisfies part-
ner value heterogeneity. A minimal network g satisfies the generalized bal-
ancing condition if for any ij ∈ g we have that j is a positionally optimal
agent in the set Aij (g) 17.

3. MAIN RESULTS

3.1. Generalization: Partner Heterogeneity and Small Decay

In this subsection, I generalize two key results of DJK - characterization
of all non-empty minimal Nash networks (Proposition 1) and sufficiency
(Proposition 2). I do so by allowing for both partner heterogeneity in
information value and small decay rather than small decay and value ho-
mogeneity as in DJK. This subsection will first provide a generalization of
Lemma 1 of DJK. I also elaborate on how this generalization fulfills some
technical details left unmentioned in DJK. Proposition 1 in this subsection
then uses this generalized Lemma 1 of DJK to provide characterization
and sufficiency results for SNN for the case of partner value heterogeneity.
Finally, this subsection concludes with some remarks on how partner value
heterogeneity impacts SNN compared to the case of value homogeneity in
DJK. All proofs of propositions and lemmata in this paper and the original
results of DJK, to which readers can refer for the sake of comparison with
my results, are relegated to the Appendix.

Lemma 1. (Generalization of Lemma 1 [De Jaegher and Kamphorst
(2015)]) Consider the case of small decay and V satisfying partner value

16This follows directly from the definition of middle agent, which is an such that more
than half of the agents is closer to him than to every other agent.

17Recall, from the previous subsection, that Aij (g) is the set of all agents that i
observes exclusively via the a link ij.
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heterogeneity. There exists a σB < 1 such that the following property holds
for any minimal Nash network g. Consider any ij ∈ g:

1.In Aij (g), a positionally optimal agent always exists .

2.Let k be a positionally optimal agent in Aij (g), then j = k for all
σ ∈ [σB , 1)

Importantly, not only does Lemma 1 above generalize Lemma 1 in DJK
but also fulfills a missing piece not mentioned in DJK, which is the existence
of link recipient in a NN18. Specifically Lemma 1 in DJK only guarantees
that a link recipient is a middle agent, ‘if exists’. Lemma 1 in DJK, there-
fore, does not answer who the link recipient is if a middle agent does not
exist. My Lemma above fulfills this missing piece by guaranteeing that
a positionally optimal agent always exists, and that he is always a link
recipient in a NN given that information decay is sufficiently small 19.

In addition to the above technical differences, worth mentioning is also
some intuitive comparison between Lemma 1 in DJK and my generalized
Lemma 1 of DJK above. First, consider Lemma 1 of DJK. Since the scope
of Lemma 1 of DJK, which assumes value homogeneity, limits to the fact
that a middle agent is a link recipient, an impression is that a middle agent
is an agent who is ‘resilient’ to the changes in decreasing decay level. That
is, so long as σ > σB a middle agent is always a link recipient. A corollary
of this line of reasoning is that results of DJK also give an impression that
a balanced network, in which every link recipient is a middle agent, is also
resilient to the changes in decreasing decay level. On the contrary, my
generalized Lemma 1 above does not give such an impression. What my
generalized Lemma 1 above suggests is that it is not sufficient to consider
merely an external appearance of a network if our objective is to find out
whether a link recipient is resilient to the changes in decreasing decay
level, since the external appearance of a network alone cannot determine
whether a link recipient is also a positionally optimal agent as required
in Lemma 1. Rather, one has to consider an intricate interplay between
network structure, information value possessed by each agent and location
of each agent, relative to one another, to determine such. Example 1 below
illustrates this intuition.

Example 3.1. Consider the (undirected) network g1 in Figure 2.
Which agent would i want to form a link with? For σ = 0.99 it is straight-
forward to show that the middle agent j is best-informed in the set of all

18for the sake of reference, see the original Lemma 1 of DJK in Appendix A.
19This results from the fact that an positionally optimal agent is always the best-

informed agent so long as the decay is sufficiently small. Indeed this is the key intuition
of the proof of this Lemma (see Appendix B).
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FIG. 2. Networks with six agents

an external appearance of a network if our objective is to find out whether a link
recipient is resilient to the changes in decreasing decay level, since the external
appearance of a network alone cannot determine whether a link recipient is also
a positionally optimal agent as required in Lemma 1. Rather, one has to consider
an intricate interplay between network structure, information value possessed by
each agent and location of each agent, relative to one another, to determine such.
Example 3 below illustrates this intuition.

Vj = 6.49

Vk = 3.5 V1 = 1

V2 = 3 V3 = 3 V4 = 1 V5 = 1

i

(a) network g1

Vj = 5

Vk = 7.45 V1 = 1.5

V2 = 1 V3 = 1 V4 = 1.5 V5 = 1.5

i

(b) network g2

Figure 2: Networks with six agents

Example 3. Consider the (undirected) network g1 in Figure 2. Which agent would i want
to form a link with? For σ = 0.99 it is straightforward to show that the middle agent j is
best-informed in the set of all agents in this network, hence for a sufficiently low c agent i’s
best response is to establish a link with j. However, for σ ≥ 0.997 we have that the agent k
replaces agent j as the best-informed agent. Note that k is also a positionally optimal agent
among the set of all agents except i. This fact is in line with the generalized Lemma 1 of
DJK above.

Next, consider the (undirected) network g2 in Figure 2, which looks identical to the
network g1 above except that information value of each agent is changed. Which agent
would i want to form a link with? We now have a surprising result that is opposite of that
in network g1 above. For σ = 0.99, k is the best-informed agent. But for σ ≥ 0.997 the
agent j is the best-informed agent and also a positionally optimal agent 20.

At this point, a natural question that arises is how a positionally optimal agent
can be identified in a network. Remark 2 below answers this question.

Remark 2. Let V satisfy value partner heterogeneity and g be a minimal network. Consider
a minimally connected set of agents M ⊂ N and the (sub-)network g′ induced by M. A
positionally optimal agent denoted by i∗ in M is an agent such that, assuming no decay,
the information that flows to j via i∗ is at least as much as the information that flows to
i∗ via j for every agent j that is one-link away from i∗ 21. Specifically, i∗ is a positionally

20This example is inspired by Example 1 in DJK.
21This Remark 2 benefits from an editorial comment of an anonymous referee, whom the author

would like to thank.
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agents in this network, hence for a sufficiently low c agent i’s best response
is to establish a link with j. However, for σ ≥ 0.997 we have that the
agent k replaces agent j as the best-informed agent. Note that k is also a
positionally optimal agent among the set of all agents except i. This fact
is in line with the generalized Lemma 1 of DJK above.

Next, consider the (undirected) network g2 in Figure 2, which looks
identical to the network g1 above except that information value of each
agent is changed. Which agent would i want to form a link with? We now
have a surprising result that is opposite of that in network g1 above. For
σ = 0.99, k is the best-informed agent. But for σ ≥ 0.997 the agent j is
the best-informed agent and also a positionally optimal agent 20.

At this point, a natural question that arises is how a positionally opti-
mal agent can be identified in a network. Remark 3.1 below answers this
question.

Remark 3.1. Let V satisfy value partner heterogeneity and g be a min-
imal network. Consider a minimally connected set of agents M ⊂ N and
the (sub-)network g′ induced by M . A positionally optimal agent denoted
by i∗ in M is an agent such that, assuming no decay, the information that
flows to j via i∗ is at least as much as the information that flows to i∗ via
j for every agent j that is one-link away from i∗ 21. Specifically, i∗ is a
positionally optimal agent in the set M if for every j ∈ N1

i∗ (g′) it holds
true that

∑
l∈N(Di∗ (g′− ¯i∗j)) Vl ≥

∑
l∈N(Dj(g′− ¯i∗j)) Vl

22.

This remark suggests that to identify whether an agent i is positionally
optimal is rather simple: we only need to verify that information that flows

20This example is inspired by Example 1 in DJK.
21This Remark 2 benefits from an editorial comment of an anonymous referee, whom

the author would like to thank.
22This remark is a straightforward corollary of Prelemma 1 (See Appendix B). Hence,

the proof is omitted.
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from i to j is never less than the information that flows from j to i for every
j that has a link with i. I illustrate this through an example below.

FIG. 3. Example 3.2

optimal agent in the set M if for every j ∈ N1
i∗ (g′) it holds true that ∑l∈N(Di∗(g′− ¯i∗ j)) Vl ≥

∑l∈N(Dj(g′− ¯i∗ j)) Vl
22.

This remark suggests that to identify whether an agent i is positionally optimal
is rather simple: we only need to verify that information that flows from i to j is
never less than the information that flows from j to i for every j that has a link with
i. I illustrate this through an example below.

Vj = 6.49

Vk = 3.5 V1 = 1

V2 = 3 V3 = 3 V4 = 1 V5 = 1

Figure 3: Example 4

Example 4. Consider the (undirected) network g in Figure 3. I claim that k is a positionally
optimal agent. To do so first note that k has three links - k̄j, k̄3 and k̄2. For the link k̄j we
have ∑l∈N(Dk(g−k̄j)) Vl = 3.5 + 3 + 3 = 9.5 > ∑l∈N(Dj(g−k̄j)) Vl = 6.49 + 1 + 1 + 1 = 9.49.

For the link k̄3 and k̄2 we have ∑l∈N(Dk(g−k̄3)) Vl = 3.5 + 3 + 6.49 + 1 + 1 + 1 = 15.99 >

∑l∈N(D3(g−k̄3)) Vl = 3 and ∑l∈N(Dk(g−k̄2)) Vl = 3.5 + 3 + 6.49 + 1 + 1 + 1 = 15.99 >

∑l∈N(D2(g−k̄2)) Vl = 3. Thus, information that flows from k to each of his direct neighbor

is bigger than information that flows from each of his direct neighbor to k. It is concluded,
therefore, that k is a positionally optimal agent.

In the same way, it is straightforward to prove that j is not a positionally optimal agent.
This is because for the link k̄j we have ∑l∈N(Dj(g−k̄j)) Vl = 6.49 + 1 + 1 + 1 = 9.49 !
∑l∈N(Dk(g−k̄j)) Vl = 3.5 + 3 + 3 = 9.50.

Two important implications of the concept of positionally optimal agent and
Lemma 1 are as follows. First, in a minimally connected subnetwork g′ ⊂ g any
agent can become a positionally optimal agent if the information value of his own
is set to be sufficiently high. This is due to the fact that an agent is always closest
to himself than any other agent in the network. Since by Lemma 1 we know that
for a range of decay sufficiently small a positionally optimal agent is always a link
recipient, then it follows that we can cause any agent to be a link recipient by
setting the information value of this agent to be high enough that he becomes a
positionally optimal agent. Second, consider three agents i, i′ and j in a SNN g.
Let ij ∈ g but i′ j /∈ g. Then suppose we fictitiously remove the link ij and further

22This remark is a straightforward corollary of Prelemma 1 (See Appendix B). Hence, the proof is
omitted.
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Example 3.2. Consider the (undirected) network g in Figure 3. I
claim that k is a positionally optimal agent. To do so first note that k has
three links - k̄j, k̄3 and k̄2. For the link k̄j we have

∑
l∈N(Dk(g−k̄j)) Vl =

3.5+3+3 = 9.5 >
∑

l∈N(Dj(g−k̄j)) Vl = 6.49+1+1+1 = 9.49. For the link

k̄3 and k̄2 we have
∑

l∈N(Dk(g−k̄3)) Vl = 3.5+3+6.49+1+1+1 = 15.99 >∑
l∈N(D3(g−k̄3)) Vl = 3 and

∑
l∈N(Dk(g−k̄2)) Vl = 3.5+3+6.49+1+1+1 =

15.99 >
∑

l∈N(D2(g−k̄2)) Vl = 3. Thus, information that flows from k to

each of his direct neighbor is bigger than information that flows from each
of his direct neighbor to k. It is concluded, therefore, that k is a positionally
optimal agent.

In the same way, it is straightforward to prove that j is not a positionally
optimal agent. This is because for the link k̄j we have

∑
l∈N(Dj(g−k̄j)) Vl =

6.49 + 1 + 1 + 1 = 9.49 �
∑

l∈N(Dk(g−k̄j)) Vl = 3.5 + 3 + 3 = 9.50.

Two important implications of the concept of positionally optimal agent
and Lemma 1 are as follows. First, in a minimally connected subnetwork
g′ ⊂ g any agent can become a positionally optimal agent if the information
value of his own is set to be sufficiently high. This is due to the fact that
an agent is always closest to himself than any other agent in the network.
Since by Lemma 1 we know that for a range of decay sufficiently small a
positionally optimal agent is always a link recipient, then it follows that we
can cause any agent to be a link recipient by setting the information value
of this agent to be high enough that he becomes a positionally optimal
agent. Second, consider three agents i, i′ and j in a SNN g. Let ij ∈ g
but i′j /∈ g. Then suppose we fictitiously remove the link ij and further
ask i′ ‘with whom do you want to choose, among agents in Aij (g), do you
wish to establish a link with?’ The answer from i′ would also be j since,
by Lemma 1, ij ∈ g necessitates that j is a positionally optimal agent and
hence a best-informed agent in Aij (g). Note that this line of reasoning
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is what partner value heterogeneity case and value homogeneity have in
common. These two implications prompt us to establish the sufficiency
and characterization result below.

Proposition 1. (Partner Value Heterogeneity: Characterization and
Sufficiency of SNN)

Let V satisfy partner value heterogeneity and let g be a non-empty min-
imal SNN of the two-way flow model with decay. Then g has similar char-
acteristics to those of SNNs under the assumption of value homogeneity
as in Proposition 1 of De Jaegher and Kamphorst (2015), which we quote
below:

1.g has one of the following two configurations

(1a)g is a rooted directed tree with all links pointing away from its root:
the unique non-recipient player. Each best-informed player in g is either
the root player, or receives a link from the root player;

(1b)g is a directed tree with a unique multi-recipient player. Any link
not received by this player points away from him. Moreover, this player is
the unique best-informed player in g.

2.for all σ ∈ (σM , 1), any non-empty SNN of the two-way flow model
with decay has one of the two configurations above.

Conversely, any minimally connected network whose properties are as de-
scribed in (1.a) or (1.b) above can be supported as SNN for a range of σ, c
and V that satisfies partner value heterogeneity.

Figure 4 below illustrates three networks that can be supported as SNNs
according to the above proposition.

FIG. 4. Examples of SNNs that can be supported by V that satisfies partner value
heterogeneity, c = 0.98, σ ≥ 0.997 and a linear payoff.

Vj = 1

Vk = 1 V1 = 1

V2 = 1 V3 = 1 V4 = 1 V5 = 1

Vi = 1

(a)

Vj = 6.49

Vk = 3.5 V1 = 1

V2 = 3 V3 = 3 V4 = 1 V5 = 1

Vi = 1

(b)
V1 = 1 V2 = 1V3 = 1Vk = 1Vj = 4.5

(c)

Figure 4: Examples of SNNs that can be supported by V that satisfies partner value hetero-
geneity, c = 0.98, σ ≥ 0.997 and a linear payoff.

supported as SNN and Proposition 6 of DJK shows that the maximal diameter of a balanced
network d is relatively smaller than the population size n, the last part of Proposition 1
above guarantees that even a line network whose diameter is d = n − 1 can be supported as
SNN if partner value heterogeneity is assumed.

Finally, I end this main analysis section by relating my results to discussions on
two network concepts - small-world network and preferential attachment - men-
tioned in DJK. First, recall that DJK mentions that the role of small decay in their
model provides a micro-foundation to the small-world properties of network be-
cause “preferential attachment is key to understanding small world networks. Pref-
erential attachment means that ‘new’ players are more likely to form links with players
who have many links than with players who have few links. The two-way flow model
with decay offers a micro-foundation for preferential attachment. Given that you
care about the distance to other players, it is typically more attractive to sponsor a
link to a player with many links, than to a player with few links.” In contrast, my result
shows that once small decay interacts with partner heterogeneity in information
value then it is not necessarily the case that a link sender finds an agent that has
many links to be more attractive than agents that have few inks. Indeed, network
3 in Example 1 shows that an agent with just one link can also be attractive as a
link recipient. This is given that he possesses information whose value is much
larger than those of other agents. In conclusion, my results show that for the role
of small decay to serve as a micro-foundation to the small-world network the value
of information possessed by each agent is required to be identical or nearly so 23.

Lastly, it is worth mentioning that while SNN given the presence of parter het-
erogeneity in information value may no longer resemble small-world network, each

23‘Nearly so’ in the sense that if heterogeneity in information value is present yet the extent to
which values are different across agents is very small, then the effects of value heterogeneity become
negligible. Consequently a link sender finds that an agent with many links is more attractive as a
link recipient than agents with few links, like the case of value homogeneity.

16
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In conclusion, compared to Proposition 1 and 2 of DJK, which are re-
spectively characterization and sufficiency of SNN for the case of value
homogeneity and small decay, my Proposition 1 above shows that partner
value heterogeneity influences SNN in a surprisingly specific way: partner
value heterogeneity extends diameters of SNNs without changing any other
properties. I formally state this comparison as a remark below.

Remark 3.2. [Comparison between the roles of partner value heterogene-
ity and value homogeneity on SNN with small decay] The introduction of
partner value heterogeneity into the two-way flow model with small de-
cay of DJK, which asssumes value homogeneity, does not change the main
properties of SNN. Specifically properties 1 and 2 of the characterization
part above are identical to those of Proposition 1 in DJK. However, part-
ner value heterogeneity allows SNN to have a diameter that is longer than
value homogeneity does. That is, while Proposition 2 of DJK only guaran-
tees that any balanced network can be supported as SNN and Proposition
6 of DJK shows that the maximal diameter of a balanced network d is
relatively smaller than the population size n, the last part of Proposition
1 above guarantees that even a line network whose diameter is d = n − 1
can be supported as SNN if partner value heterogeneity is assumed.

Finally, I end this main analysis section by relating my results to dis-
cussions on two network concepts - small-world network and preferential
attachment - mentioned in DJK. First, recall that DJK mentions that the
role of small decay in their model provides a micro-foundation to the small-
world properties of network because “preferential attachment is key to un-
derstanding small world networks. Preferential attachment means that
‘new’ players are more likely to form links with players who have many
links than with players who have few links. The two-way flow model with
decay offers a micro-foundation for preferential attachment. Given that you
care about the distance to other players, it is typically more attractive to
sponsor a link to a player with many links, than to a player with few links.”
In contrast, my result shows that once small decay interacts with partner
heterogeneity in information value then it is not necessarily the case that a
link sender finds an agent that has many links to be more attractive than
agents that have few inks. Indeed, network 3 in Example 1 shows that an
agent with just one link can also be attractive as a link recipient. This is
given that he possesses information whose value is much larger than those
of other agents. In conclusion, my results show that for the role of small
decay to serve as a micro-foundation to the small-world network the value



348 BANCHONGSAN CHAROENSOOK

of information possessed by each agent is required to be identical or nearly
so 23.

Lastly, it is worth mentioning that while SNN given the presence of
parter heterogeneity in information value may no longer resemble small-
world network, each link recipient still serves the same pivotal function in
the network. Specifically, each link recipient is an agent upon which other
agents rely for the sake of information flow in the following senses. First,
it is the agent that, from the point of view of a link sender, minimizes
the information loss due to small decay. This holds true whether the link
recipient has many links or few links. In case that the link recipient has few
links, the information loss is minimized because - roughly speaking - those
few links are links that a large amount of information flows through. In case
that the link recipient has a many links, the information loss is minimized
because the link recipient is in the middle and hence the distance from most
agents are also minimized. In addition, consider Remark 3.1. It says that a
positionally optimal agent denoted by i∗ is an agent such that information
flows via i∗ to each of his direct neighbor more than the other way round.
Therefore, if a link between i∗ and a direct neighbor is removed so that the
communication between the two agents is disabled, his neighbor will suffer
more information loss than i∗ does. As such, each link recipient - be it the
case of value homogeneity and or partner value heterogeneity - is a pivotal
agent in the sense that he serves as an agent through which a relatively
large amount of information flows to other agents.

3.2. Further Extension 1: Player Value Heterogeneity and SNN

In the previous section, I generalize the two-way flow model with small
decay of DJK by allowing for partner value heterogeneity. Key results of
this generalization rests upon the definitions of positionally optimal agent
and generalized balancing condition that I established in section 2.1, which
generalize the definition of middle agent and balancing condition in DJK.
Quite interestingly, by further generalizing these two concepts, character-
ization and sufficiency result of SNNs can be achieved for other forms of
value heterogeneity, namely player value heterogeneity and general value
heterogeneity. This subsection, therefore, begins with an introduction of
some new notations.

23‘Nearly so’ in the sense that if heterogeneity in information value is present yet the
extent to which values are different across agents is very small, then the effects of value
heterogeneity become negligible. Consequently a link sender finds that an agent with
many links is more attractive as a link recipient than agents with few links, like the case
of value homogeneity.
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First, define the total ex-post information that i′ receives from the per-
spective of i in g as:

Ii→i′ (g) =

n−1∑
d=0

∑
k∈Nd

i′ (g
′),k 6=i

σdVik

Note that, suppose that i and i′ are disconnected and i forms a link with
i′, then i receives σIi→i′ (g) =

∑n−1
d=0

∑
k∈Nd

i′ (g
′),k 6=i σ

d+1Vik
24. Consider a

minimally connected set of agents M ⊂ N and the network g′ induced by
M . i′ is said to be better-informed than j′ from the perspective of i (such
that i 6= i′, j′) in the set M if Ii→i′ (g

′) ≥ Ii→j′ (g
′) and i′ is best informed

from the perspective of i in the set M if Ii→i′ (g
′) ≥ Ii→j′ (g

′) for every
agent j′ ∈M 25.

Remark 3.3. Let g be a minimal network. Consider a minimally con-
nected set of agents M ⊂ N and the network g′ induced by M . For any
j, j′ ∈ M j is better informed than j′ in M , assuming V satisfying value
homogeneity, if and only if j is better-informed than j′ in M from the
perspective of i for every i 6= j, j′, assuming V satisfying player value het-
erogeneity. Consequently, Lemma 1 in DJK, which assumes V satisfying
value homogeneity, also holds true if V is assumed to satisfy player value
heterogeneity.

That is, there is almost no difference between the case of value homo-
geneity and the case of player value heterogeneity in SNN with small decay.
This is because for player value heterogeneity, which is such that Vij = Vi
for every j 6= i, from the perspective of i every other agent is homogeneous
in terms of information value 26. Thus, similar to the case of value homo-
geneity, what matters from the perspective of a link sender is to make sure
that the link that is established shortens the overall distance, and hence
minimize information decay, between him and other agents. This in turn
guarantees that a middle agent is always a best-informed agent. However,
there is still a difference between the case of value homogeneity and the
case of player value heterogeneity. While in the case of value homogeneity

24The term ‘from the perspective’ here reflects the fact that Ii→i′ (g) can be different
from Ij→i′ (g) for any i, j that are not in the same component as i′, which in turn is
due to the fact that each Vxy depends on the identity of the agent x and y.

25Intuitively, Ii→i′ (g) is the information that i receives if he were fictitiously located
where i′ is in the network.

26Another way to observe that there is almost no difference between these two cases
is to observe the term Ii (g). Suppose that g is minimally connected, then Ii (g) =∑n−1

d=0 σ
d|Nd

i (g) | for the case of value homogeneity and Ii (g) =
∑n−1

d=0 σ
d|Nd

i (g) |Vi for
the case of value player heterogeneity. That is, the only difference is the term Vi found
the lattter case.
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as in DJK SNN is minimally connected, in the case of player value homo-
geneity SNN can contain singletons. The intuition is very straightforward:
if a singleton i has Vi that is very small, say almost zero, then it is possible
that i finds that the benefits from link establishment cannot cover the as-
sociated link formation cost. In addition, consider an end link and an end
recipient in a non empty component. If this end link is removed then an
end recipient becomes a singleton. Thus, an end sponsor is always indif-
ferent between the existing end recipient and a singleton. It follows that
an SNN in the case of player value heterogeneity and small decay contains
no singleton unless the unique non-empty component is PSS, which has
no end link. This leads to the following characterization and sufficiency
results for the case of player value homogeneity.

Proposition 2. (Player Value Heterogeneity: Characterization and Suf-
ficiency of SNN)

1.(Characterization) Given the small decay assumption, σ ∈ (σM , 1), and
V satisfying player value heterogeneity, a non-empty SNN g is minimal and
consists of a unique non-empty component, which has similar characteris-
tics as those of SNN when V satisfies value homogeneity as in Proposition
1 of De Jaegher and Kamphorst (2015), which is quoted below:

(1a)a rooted directed tree with all links pointing away from its root: the
unique non-recipient player.

(1b)a directed tree with a unique multi-recipient player. Any link not
received by this player points away from him.

Moreover, if the unique non-empty component of SNN is not a PSS, then
g is connected.

2. (Sufficiency) Any minimally connected network g that is balanced and
satisfies the properties (1a) or (1b) stated above can be supported by a range
of σ, c and V that satisfies player value heterogeneity.

3.3. Further Extension 2: General Value Heterogeneity and
Small Decay

Finally, I turn to establish the characterization and sufficiency result for
the case of general value heterogeneity, which is the most general case.
To do so, I extend key definitions - positional superiority and positionally
optimal agent - as well as Lemma 1 in the main analysis section to allow
for the case of general value heterogeneity below.

Definition 3.1. (Positional superiority for general value heterogeneity)
In a network g, consider a minimal connected subset of players M ⊂ N .
Let V satisfies general value heterogeneity. Consider agents i, j ∈ M
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and x /∈ M . i is positionally superior to j from the perspective of x if∑
k∈Xi,M (i,j;g) Vxk ≥

∑
k∈Xj,M (i,j;g) Vxk. We write i %M

x j for short. If the

inequality is strict, we write i �M
x j for short.

Definition 3.2. (Positionally optimal agent for general value hetero-
geneity) In a network g, consider a minimal connected subset of players
M ⊂ N . Let V satisfies general value heterogeneity. Let i ∈ M and
x /∈M . i is said to be a positionally optimal agent from the perspective of
x in M if i %M

x j for every j ∈M and j 6= i.

Definition 3.3. (Generalized Balancing Condition for general value
heterogeneity) Let V satisfies general value heterogeneity. A minimal net-
work g satisfies the generalized balancing condition if for any ij ∈ g we
have that j is a positionally optimal agent from the perspective of i in the
set Aij (g).

Note that to generalize the definitions for partner value heterogeneity
case to the case of general value heterogeneity, the only words added to
each definition above are ‘from the perspective of...’ This follows from the
assumption of general value heterogeneity, which allows for Vij 6= Vi′j for
any i 6= i′. Thus, from the perspective of i an agent j could be positionally
optimal but not so from the perspective of i′. This prompts us to generalize
Lemma 1 in the main analysis section as follows.

Lemma 2. (Generalization of Lemma 1 (De Jaegher and Kamphorst
(2015)) for the case of general value heterogeneity) Consider the case of
small decay and V satisfying general value heterogeneity. There exists a
σB < 1 such that the following property holds for any minimal NN g.
Consider any ij ∈ g:

1.In Aij (g), a positionally optimal agent from the perspective of i always
exists .

2.Let k be a positionally optimal agent from the perspective of i in Aij (g),
then j = k for all σ ∈ [σB , 1).

Since this lemma is a straightforward extension of Lemma 1, the proof for
this lemma is omitted. A major consequence of this Lemma is as follows.
In a minimal non-empty component g′ of a network g, consider a link ij
in this component. By setting Vij to be sufficiently high above Vij′ for
any j′ 6= j in g′, then j becomes a positionally optimal agent from the
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perspective of i. In turn, by Lemma 2 above j is guaranteed to be the link
recipient if the agent i wishes to form a link with an agent in Aij (g′), given
that c is sufficiently low and σ is sufficiently high. By the same analogy if
Vij and Vji are set to be sufficiently low then i and j will have no incentive
to establish a link with each other, which follows that by doing so we can
make sure that any pair of agents i and j are not in the same component.
As a result, we have that: (i) in an SNN any agent can become a link
recipient and (ii) minimal SNN can have multiple non-empty components.
More formally,

Proposition 3. Any minimal network can be supported as SNN by a
range of c, σ and V that satisfies general value heterogeneity.

The proof is omitted since it straightforwardly follows from the intuition
above 27.

4. CONCLUDING REMARKS

In this paper, I generalize the two-way flow model of network with small
decay studied by DJK by allowing for heterogeneity in information value. I
provide characterization of SNNs by assuming three forms of value hetero-
geneity - partner heterogeneity, player heterogeneity and general hetero-
geneity. My results show that (i) partner heterogeneity extends diameters
of SNNs without changing any other properties, (ii) player heterogeneity
ha almost no effect on SNN except that SNN can contain singletons if the
unique non-empty component is a periphery-sponsored star and (iii) gen-
eral heterogeneity allows any minimal network to be SNN. In the main
analysis section, I relate the assumption of partner value heterogeneity to
the concepts of preferential attachment and small-world network discussed
in DJK. The conclusion is that the two-way flow with small decay pro-
vides a micro-foundation for preferential attachment, and hence resulting
in SNNs that resemble small-world network, only if value is assumed to be
homogeneous or nearly so. This is due to the fact that once partner value
heterogeneity is introduced then it is no longer the case that an agent that
has many links is more attractive as a link recipient than agents that have
fewer links.

27Note that the existence of σ and c that supports a minimal network to be SNN
follows precisely the same analogy as Generalized Lemma 1 of DJK and Proof of Propo-
sition 1 in Section 3.1. Intuitively, if σ is set to be sufficiently close to 1 then in an SNN
every link ij is such that j is a positionally optimal agent from the perspective of i. Also
if c is set to be sufficiently low then every agent who wishes to form a link does find that
the benefits from link formation covers the cost c.
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In addition, since these three forms of heterogeneity studied in this paper
are also studied in the existing literature in terms of link formation cost, it
is worth comparing the effects of value heterogeneity on SNN found in this
paper with the effects of cost heterogeneity on SNN found in the existing
literature. I do so as follows.

Player heterogeneity To see the effects of player cost heterogeneity
(no decay) on SNN, we compare Proposition 4.2 of Bala and Goyal (2000a)
(homogeneity in value and cost with no decay) against Proposition 3.1
of Galeotti et al. (2006) (player cost heterogeneity with no decay). In
both cases SNN has precisely the same shape, which is a connected center-
sponsored star. Therefore, player cost heterogeneity has no effects on the
shape of SNN. Next, to observe the effects of player heterogeneity with
small decay, we compare Proposition 2 in this paper (player value het-
erogeneity with small decay) against Proposition 1 and 2 in DJK (value
homogeneity with small decay). SNNs in both cases have precisely the same
shape, except that in the case of player value heterogeneity singletons can
exist if the unique non-empty component of SNN is PSS. In conclusion,
player heterogeneity - be they in terms of cost or value - has little to no
effects on SNN.

Partner heterogeneity To see the effects of partner cost heterogeneity
(no decay) on SNN, we compare Proposition 4.2 of Bala and Goyal (2000a)
(homogeneity in value and cost with no decay) against Proposition 1 of
Billand et al. (2011) (partner cost heterogeneity with no decay). The only
non-empty SNN in Proposition 4.2 of Bala and Goyal (2000a) is center-
sponsored star whose diameter is 2, while the class of non-empty SNNs in
Proposition 1 of Billand et al. (2011) is a large class that includes line
networks whose diameter is n − 1. We conclude that partner cost hetero-
geneity extends diameters of SNN to be as long as the population size.
Similarly, to see the effects of partner value heterogeneity (with decay) on
SNN, we compare Proposition 1 and 2 of DJK (homogeneity in value and
cost with decay) against Proposition 1 in this paper (partner value hetero-
geneity with decay). As mention in Remark 3 partner value heterogeneity
also allows SNN to have a diameter that is as long as the population size.
Therefore, we can conclude that partner heterogeneity - be they in terms
of value or cost - extends diameters of SNN 28.

General heterogeneity Both general cost heterogeneity with no decay
(Proposition 3.2 in Galeotti et al. (2006)) and general value heterogeneity
with small decay (Proposition 3 in this paper) have precisely the same
result: any minimal network can be supported as SNN.

28Indeed, the set of all possible SNNs in Proposition 1 of Billand et al. (2011) and
Proposition 1 in this paper are identical. This is albeit the fact that the terminologies
used in these two propositions are different. Lemma 3 in Charoensook (2019) reconciles
the terminological discrepancy through an equivalent statement.
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Finally, while this paper contributes to the literature in agent heterogene-
ity by allowing for the comparisons between the roles of cost heterogeneity
(with no decay) and the roles of value heterogeneity (with small decay) in
SNN, we still do not know how value heterogeneity impacts properties of
efficient networks. Such a study could be useful, since it would allow for
the comparison between the effects of value heterogeneity and the effects
of cost heterogeneity on efficient networks, which has recently been studied
by Unlu (2018). This is a future matter that this author plans to explore.

APPENDIX A

Preliminary Lemmata and Propositions from DJK (2015)

In this paper, lemmata and propositions are generalization of those in
DJK. Hence, for the sake of reference and ease of comparison this subsec-
tion contains lemmata and propositions in DJK that are mentioned in this
paper.
Lemma 1 (from DJK). Consider the case of small decay. There exists
a σB < 1 such that the following property holds for any minimal Nash
network g. Consider any ij ∈ g such that Aij (g) has a middle player, say
k. Then j = k for all σ ∈ [σB , 1).

Lemma 3 (from DJK).1 In the absence of decay, no player in any
network g prefers to sponsor non-minimal links

Lemma 4 (from DJK). For any c > 0, n ≥ 4, and f (I), there exists
σM < 1 such that for all σ > σM no player in any possible network wishes
to sponsor a non-minimal link.

Lemma 5 (from DJK). Let network g be a non-empty Nash network.
Then g has no singleton component.

Lemma 6 (from DJK). Let network g be a non-empty Nash network.
Then g is connected.

Corollary 1 (from DJK). Let c < f (1 + σ) − f (1). Then any Nash
network is connected.

Lemma 7 (from DJK). Let g be a minimal connected Nash network. For
all ij ∈ g, it must be the case that, among the players in set M = Aij (g),
j is a best-informed player in network gM , and that j is the unique best-

1Note that Lemma 2 of DJK is not included here, since it pertains to the analysis of
stochastically stable network rather than SNN.
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informed player in gM if g is a SNN. Moreover, among the players in set
M , player j is the unique best-informed player in g.

Lemma 8 (from DJK). Let g be a minimal connected Nash network. If
g contains links ii′ and jj′ which point towards each other, then i′ = j′

Corollary 2 (from DJK). Let g be a minimal connected Nash network.
Then g is either a PSS or g contains at least one end link.

Lemma 9 (from DJK). Let network g be a non-empty minimal Nash
network. Then g contains either a unique non-recipient player and no
multi-recipient players, or a unique multi-recipient player and multiple non-
recipient players.

Proposition 1 (from DJK). Let g be a non-empty minimal Nash net-
work of Two-way flow model with decay. Then

1. g has one of the following two configurations:

(i) g is a rooted directed tree with all links pointing away from its
root: the unique non-recipient player. Each best-informed player in g is
either the root player, or receives a link from the root player;

(ii) g is a directed tree with a unique multi-recipient player. Any link
not received by this player points away from him. Moreover, this player is
the unique best-informed player in g;

2. In both configurations of part 1, for any path of links in g pointing in
the same direction, say {j0j1, j1j2, . . . , jk−1jk, }, we have Ij1 (g) > Ij2 (g) >
, . . . , > Ik−1 (g) > Ik (g)

3. In both configurations of part 1, for ij ∈ g if |Aij(g)| = 2, then g is
not a SNN; if |Aij(g)| ≥ 3, then there exists j̄k, ¯jk′ ∈ g such that k 6= k′;

4. for all σ ∈ (σM , 1), any non-empty Nash network of the two-way flow
model with decay satisfies Parts 1-3.

Proposition 2 (from DJK). Consider any balanced, minimal network
g that satisfies the properties of Proposition 1. Then network g is a SNN
for a range of σ and c

APPENDIX B

Proof of Lemma 1 in this paper

In this subsection, I prove Lemma 1 in this paper, which is a gener-
alization of Lemma 1 in DJK (see Appendix A). This proof rests upon a
prelemma, which I establish below. Before so doing, the following notations
regarding locations of agents in a network are introduced.
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Locations of agents. Consider a minimally connected subnetwork g′ ⊆
g and three agents i, j, i′ in g′. Consider a path Pii′ (g

′). Let N (Pii′ (g
′))

be the set of all agents in Pii′ (g
′). We say that i observes i′ via j if

j ∈ N (Pii′ (g
′)). We say that k is to the side of j in Pij (g′) if i observes k

via j. We say that k is to the side of i in Pij (g′) if j observes k via i. We
say that k is between i and j in Pij (g′) if k ∈ N (Pij (g′)). Lastly, we say
that k is within i and j in Pij (g′) if there exists another agent k′ that is
between i and j such that i and j observe k via k′.

FIG. 1. Locations of agents.

i i′j

(a) i observes i′

via j

i kj

(b) k is to the side of j
in Pij (g′)

ik j

(c) k is to the side of i
in Pij (g′)

i jk

(d) k is be-
tween i and j in
Pij (g′)

i jk′

k

(e) k is within i
and j in Pij (g′)

Figure 5: Locations of agents.

than to i and are between i and j in Pij (g′), Xwithin
j,M (i, j; g) is the set of agents

that are closer to j than to i and are within i and j in Pij (g′). Hence, we have

Xj,M (i, j; g) = Xside
j,M (i, j; g) " Xbetween

j,M (i, j; g) " Xwithin
j,M (i, j; g) " {j} . Next, recall that

Pij (g′) = ¯ij so that Xwithin
j,M (i, j; g) = Xbetween

j,M (i, j; g) = ∅. Consequently, Xj,M (i, j; g) =

Xside
j,M (i, j; g) " {j} and:

(1)∑
k ∈Xj(i,j;g)

Vk = ∑
k∈Xside

j (i,j;g)
Vk + Vj

Next, consider an agent j′ that is to the side of j in Pij (g).
Since the sequence of agents in Pij′ (g) is i, j, ..., j′ we have

Xside
j′,M (i, j′; g) , Xwithin

j′ ,M (i, j; g) , Xbetween
j′,M (i, j; g) , {j′} ⊂ Xside

j (i, j; g) " {j}. There-

fore, we have:

∑
k ∈Xj,M(i,j;g)

Vk = ∑
k∈Xside

j,M(i,j;g)
Vk + Vj

≥ ∑
k∈Xside

j′ ,M(i,j′;g)
Vk + ∑

k∈Xwithin
j′ ,M (i,j′;g)

Vk + ∑
k∈Xbetween

j′ ,M (i,j′;g)
Vk + Vj′

Note that the equality on the left is due to Eq.1. Note further that the right-
hand side of the inequality is nothing else but ∑k∈Xj′ ,M(i,j′;g) Vk. Therefore, the above

expression is reduced to:

(2)∑
k ∈Xj,M(i,j;g)

Vk ≥ ∑
k∈Xj′ ,M(i,j′;g)

Vk

Next, we turn to describe Xi,M (i, j; g). By the same analogy as the above we have
Xi,M (i, j; g) = Xside

i,M (i, j; g) " Xwithin
i,M (i, j; g) " Xbetween

i,M (i, j; g) " {i} = Xside
i,M (i, j; g) " {i}

26

Prelemma. In a network g, let M ⊂ N be a minimal connected subset of
agents. Consider gM = {kl ∈ g; k, l ∈M} and let īj ∈ gM . If i %M j then
i %M j′ for every j′ ∈M that is to the side of j in the path Pij (g) = īj.

Proof of Prelemma 1. First, recall that Xj,M (i, j; g) is the set of agents,
including j himself, that is closer to j than to i. I introduce three disjointed
subsets of Xj,M (i, j; g) as follows. Xside

j,M (i, j; g) is the set of agents that

are closer to j than to i and are to the side of j in Pij (g), Xbetween
j,M (i, j; g)

is the set of agents that are closer to j than to i and are between i and
j in Pij (g′), Xwithin

j,M (i, j; g) is the set of agents that are closer to j than
to i and are within i and j in Pij (g′). Hence, we have Xj,M (i, j; g) =
Xside

j,M (i, j; g) tXbetween
j,M (i, j; g) tXwithin

j,M (i, j; g) t {j} . Next, recall that

Pij (g′) = īj so that Xwithin
j,M (i, j; g) = Xbetween

j,M (i, j; g) = ∅. Consequently,

Xj,M (i, j; g) = Xside
j,M (i, j; g) t {j} and:∑

k∈Xj(i,j;g)

Vk =
∑

k∈Xside
j (i,j;g)

Vk + Vj (B.1)

Next, consider an agent j′ that is to the side of j in Pij (g). Since the se-
quence of agents in Pij′ (g) is i, j, . . . , j′ we haveXside

j′,M (i, j′; g) , Xwithin
j′,M (i, j; g) ,

Xbetween
j′,M (i, j; g) , {j′} ⊂ Xside

j (i, j; g) t {j}. Therefore, we have:
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∑
k∈Xj,M (i,j;g)

Vk =
∑

k∈Xside
j,M (i,j;g)

Vk + Vj

≥
∑

k∈Xside
j′,M (i,j′;g)

Vk +
∑

k∈Xwithin
j′,M (i,j′;g)

Vk +
∑

k∈Xbetween
j′,M (i,j′;g)

Vk + Vj′

Note that the equality on the left is due to Eq.B.1. Note further that
the right-hand side of the inequality is nothing else but

∑
k∈Xj′,M (i,j′;g) Vk.

Therefore, the above expression is reduced to:∑
k∈Xj,M (i,j;g)

Vk ≥
∑

k∈Xj′,M (i,j′;g)

Vk (B.2)

Next, we turn to describeXi,M (i, j; g). By the same analogy as the above
we have Xi,M (i, j; g) = Xside

i,M (i, j; g)tXwithin
i,M (i, j; g)tXbetween

i,M (i, j; g)t
{i} = Xside

i,M (i, j; g) t {i} because Pij (g) = ij so that Xwithin
i,M (i, j; g) =

Xbetween
i,M (i, j; g) = ∅. Recall that j′ is to the side of j in Pij (g) so that the

sequence of Pij′ (g
′) is i, j, ..., j′. Hence, Xside

i,M (i, j; g) = Xside
i,M (Pij′ ; g

′) so

that Xi,M (i, j; g) = Xside
i,M (i, j; g) t {i} ( Xi,M (i, j′; g). It follows that:∑

k∈Xi,M (i,j′;g)

Vk ≥
∑

k∈Xi,M (i,j;g)

Vk (B.3)

Finally, recall that i %M j if and only if
∑

k∈Xi,M (i,j;g) Vk ≥
∑

k∈Xj,M (i,j;g) Vk.

Thus, we if we suppose that i %M j then a combination of Equations B.2
and B.3 leads to: ∑

k∈Xi,M (i,j′;g)

Vk ≥
∑

k∈Xi,M (i,j;g)

Vk

≥
∑

k∈Xj,M (i,j;g)

Vk

≥
∑

k∈Xj′,M (i,j′;g)

Vk

Note that the first inequality from the left is precisely Equation B.3 and
the first inequality from the right is precisely Equation B.2. The inequality
in the middle is due to the definition of i %M j. If we consider only the
first term and the last term from the left, the above inequality is reduced
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to: ∑
k∈Xi,M (i,j′;g)

Vk ≥
∑

k∈Xj′,M (i,j′;g)

Vk

Note that the above inequality is precisely the definition of i %M j′, which
is what we intend to prove.

We use this prelemma to prove Lemma 1 in this paper below.

Proof (Proof of Lemma 1).
Part 1: a positionally optimal agent always exists. First, note

that a corollary of Prelemma 1 is that if an agent k is such that k %Aij(g) j′

for every j′ that is one-link away from k, i.e., j′ ∈ N1
k (g) , Aij (g) , then k

is a positionally optimal agent in Aij (g). Thus, to prove by contradiction
we assume that every agent k is such that there exists j′ ∈ N1

k (g) , Aij (g)
such that j′ �Aij(g) k. Now let us consider any agent and call him i1.
Let another agent i2 ∈ N1

i1
(g) , Aij (g) be such that i2 �Aij(g) i1. Again,

we know that there exists i3 ∈ N1
i2

(g) , Aij (g) such that i3 �Aij(g) i2.
Consequently, we can construct a path whose sequence is i1, i2, i3, ... such
that i1 �Aij(g) i2, i2 �Aij(g) i3, .... Note that this line of reasoning can be
repeated infinitely. Hence, the amount of agents in this path is infinite. A
contradiction.

Part 2: Let k be a positionally optimal agent in Aij (g), then
j = k. The proof follows precisely that of Lemma 1 of DJK, except that a
few terms have to be replaced. First, replace |Nd

i

(
g, j1

)
| by

∑
k∈Nd

i (g,j1) Vk

and |Nd
i

(
g, j2

)
| by

∑
k∈Nd

i (g,j2) Vk in Equation (4) and (5) in DJK. Note

that these replacements are intuitive. In DJK |Nd
i (g, j) | is the sum of

information that i receives from observing j since every agent’s information
value is 1. Here this term becomes

∑
k∈Nd

i (g,j) Vk due to the assumption

of partner value heterogeneity.
By the same analogy, in the last paragraph of proof of Lemma 1 in

DJK we replace |Nd
i (g′, jp) | by

∑
k∈Nd

i (g′,jp) Vk and |Nd
i

(
g′, jp+1

)
| by∑

k∈Nd
i (g′,jp+1) Vk. Lastly, we replace the word ‘middle player’ by the word

‘positionally optimal agent’.

APPENDIX C

Proofs of Propositions

Proof (Proof of Proposition 1). Part 1: Characterization. The
proof follows precisely Lemma 1 to 9 and Proof of Proposition 1 of DJK,
specifically part 1a, 1b and 4, without any modification.

Part 2: Sufficiency. First, I establish the following remark: in a
minimal network g, let g′ ⊆ g be a minimally connected subnetwork of g
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and M be the set of agents in g′. Let g′ be supported by (any arbitrary)
V that satisfies partner value heterogeneity. For any agent j ∈ M there
exists V̄j such that whenever Vj is replaced by V ′j > V̄j while holding Vk
constant for every k 6= j, then j becomes a positionally optimal agent in
M 1.

Next, let us first assign an arbitrary V such that Vj = V > 0 for every
agent j in this network g. Onward I divide the proof into two cases: rooted
directed tree case and directed tree with a unique multi recipient case. For
the rooted directed tree case, let agent i∗ be the root. Let id denote an
agent whose distance from i∗ is d. Let d̄ denote the longest distance between
i∗ and an agent in this network. Note that since this network is a directed
tree rooted at i∗ we know that id receives exactly one link from id−1 for any
d ≥ 1.Thus, beginning from the distance d̄− 1, consdider by the remark in
the above paragraph it suffices that we change Vid̄−1 = V to be Vid̄−1 >>
Vl = V for every agent l ∈ Aid̄−2id̄−1 (g). Similarly, for the distance d̄ − 2,
by the remark in the above paragraph it suffices that we change Vid̄−2 =
V to be Vid̄−2 >> Vl for every agent l ∈ Aid̄−3id̄−2 (g), which in turn

guarantees that id̄−2 is a positionally optimal agent in Aid̄−2id̄−1 (g).Thus
by repeating precisely this process until the distance d = 1 we are able
to identify V satisfying partner value heterogeneity that guarantees that
every link recipient is a positionally optimal agent, which is a necessary
condition for a minimal network to be Nash for a range of σ sufficiently
close to 1. Note that this proof is for the rooted directed tree case. For
the case of directed tree with a unique multi recipient, the proof is nearly
identical. The only additional step is that we need to set Vi∗ >> Vj where
i∗ is the unique multi recipient and for every j 6= i∗. Again, in so doing by
the remark in the above paragraph and by Lemma 1 i∗ is guaranteed to
be a positionally optimal agent and hence a link recipient for a range of σ
sufficiently close to 1.

Finally, we need to prove for the existence of the range of c and σ that
support the network g is SNN. The proof here follows precisely the proof of
Proposition 2 in DJK (pp.232-233). The only modification is that the term
‘balancing condition’ has to be replaced by the term ‘generalized balancing

condition.’

Proof (Proof of Proposition 2).
Part 1: Characterization. Let g′ ⊂ g be a minimally connected com-

ponent in g. All proofs follow the proofs of Lemma 3, 4, 6 - 9 and Proposi-
tion 1 part 1a and 1b, except that the following modifications are needed.
First, the statement of Lemma 6 of DJK becomes ‘Let g be a non-empty

1The proof of this remark follows from the fact that j is positionally superior to j′ in
M if

∑
k∈Xj,M (j,j′;g) Vk ≥

∑
k∈Xj′,M (j,j′;g) Vk, which implies that the left-hand side

of inequality,
∑

k∈Xj,M (j,j′;g) Vk, can be increased by increasing Vj .
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Nash network, then g has exactly one non-empty component,’ which follows
that the first line of the proof in DJK can be removed. Next, replace the
inequalities in the fourth line by Ii→i′ (g\ii′) > Ii→j′ (g) > Ii→j′ (g\jj′) and
the inequalities in the fifth line by Ij→j′ (g\jj′) > Ij→i′ (g) > Ij→i′ (g\ii′) ⇐⇒
εIj→j′ (g\jj′) > εIj→i′ (g) > εIj→i′ (g\ii′) ⇐⇒ Ii→j′ (g\jj′) > εIj→i′ (g) >
Ii→i′ (g\ii′).

For Lemma 7 and 8, in the first sentence of each of these two lemmata
replace the term ‘let g be a minimal connected Nash network’ by ‘let g
be a non-empty minimal Nash network with g′ ⊂ g being the unique non-
empty component in g.’ For every other sentences replace every g by g′. In
addition, note that the proofs of these two lemmata also hold for the case
of player value heterogeneity because of Remark 4 (see section 3.2)

Next, as a corollary of Lemma 8 in DJK, we have that either g′ has at
least one end link or g′ is a PSS. In case that g′ has at least one end link,
then there can be no singleton in g ⊇ g′. Otherwise, g is not an SNN since
the agent that sponsors an end link is indifferent between the recipient of
the end link and a singleton. Consequently, unless g′ is PSS then g′ is a
minimally connected component that contains all agents in the network,
ie., g′ = g.

For Lemma 9, in the first sentence the term ‘let g be a minimal connected
Nash network’ by ‘let g be a non-empty minimal Nash network with g′ ⊂ g
being the unique non-empty component in g.’ Also replace the term (n− 1)
by (|N (g′) | − 1).

Finally, for the Proof for Proposition 1 part 1a and part 1b, simply note
that the second paragraph of each part is not related to the proof of my
Proposition 2 since my Proposition 2 mentions nothing about the identity
of best-informed agent.

Part 2: Sufficiency. The proof follows Proposition 2 of DJK without

any modification.
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