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On the Range of Applicability of the First-order Approach to

Agency Problems
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This note examines the range of applicability of the first-order approach
to principal-agent problems under moral hazard. We show the existence of
parameter configurations where the solution given by Holmstrom (1979)-Jewitt
(1988) stops working to provide the second-best contract. The problem arises
when the agent’s reservation utility is below a certain threshold, which is
associated with the fact that the contract lacks a fixed component.
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1. INTRODUCTION

The principal-agent model under moral hazard describes a stylized situ-
ation where a principal hires an agent to perform a task on her behalf, but
the input provided by the agent is private information that is unverifiable
for the principal. By means of an incentives contract dependent on output
—i.e., a sharing rule— the principal induces the agent to perform the op-
timal level of effort according to her interests. The principal-agent model
has attracted much theoretical research attention, and has been successfully
used to justify a wide array of incentives practices observed in managerial
practice; see Ross (1973), Mirrlees (1976), Holmstrom (1979), Grossman
and Hart (1983), Rogerson (1985), Jewitt (1988), Basu et al. (1985), Raju
and Srinivasan (1994), Hemmer et al. (1999), Lambert (2001), Gutiérrez
and Salas (2008), et cetera.

A problem concerning the principal-agent model lies in the extreme
difficulty of obtaining solutions. The Mirrlees-Holmstrom formulation of
the model greatly simplifies the problem (see Holmstrom (1979)). In the
Mirrlees-Holmstrom formulation, the solution only requires the application
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of pointwise optimization to the Lagrangian (see Holmstrom (1979)), and
the solutions are readily obtained by invoking the so-called first-order ap-
proach (FOA henceforth). The approach consists of assuming that the
agent’s decision problem, characterized by an incentive compatibility con-
straint, has an interior solution, which allows us to replace the original
constraint by a relaxed one. The use of the FOA is not absent of techni-
cal problems, but given the great simplification that it entails, meritorious
efforts have been devoted to provide sufficient conditions justifying its valid-
ity; see Rogerson (1985), Jewitt (1988), Sinclair-Desgagné (1994), Conlon
(2009), Moroni and Swinkels (2014), Chade and Swinkles (2020), et cetera.

This note explores the range of applicability of the solution provided by
Holmstrom (1979) and Jewitt (1988) to principal-agent setups with contin-
uous output.1 By means of standard agency models, we characterize the
region where the Holmstrom-Jewitt framework cannot provide an admissi-
ble solution. The problem arises when the reservation utility falls below a
certain threshold. Intuitively, the problem can be described as follows: as
the reservation utility decreases, it also decreases the output-independent
part of the fee (or “fixed salary”). However, under the FOA the fixed salary
cannot be negative (see Section 3). This key fact limits the parameter space
where the FOA works (Section 4). For some utility functions, the region
where the FOA holds is explicitly given in terms of a simple expression
for the lower bound of the reservation utility. The limitations described
here may affect more sophisticated principal-agent models since the FOA
technique is also used in dynamic agency setups (Spear and Srivastava
(1987)).

2. THE FIRST-ORDER APPROACH

This section reviews the Mirrlees-Holmstrom formulation of the principal-
agent model. A risk-neutral principal (she) hires a risk-averse and effort-
averse agent (he) to perform an unobservable task on her behalf that in-
fluences an ex post signal X which we identify with output. The input
provided by the agent, a, has an opportunity cost C(a), with C ′(a) > 0
and C ′′(a) > 0; this input (say action or effort) is private information
for the agent (hidden action); principal and agent observe the output x
(strictly speaking X represents the random output and x an ex-post out-
put realization, but both terms will be used indistinctly if no confusion is
possible). The principal offers the agent an output-dependent compensa-
tion s(x) for the costly input in order to (partially) solve the moral hazard
problem due to the unobservable action. The total (or net) utility of the

1The advantages of Jewitt’s (1988) approach over Rogerson’s (1985) are exposed in
Conlon (2009).
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agent is additively separable: u(w, a) := U(w)− C(a), where w represents
the payment from the principal (which in our case corresponds to s(x))
and U(·) is an strictly increasing and strictly concave N-M utility function
(the agent is risk-averse): U ′(·) > 0, U ′′(·) < 0. If output is assumed to be
continuous, the optimization program for the principal is stated as follows:

max
s(x),a

∫
[x− s(x)]f(x, a)dx

s.t.

∫
U(s(x))f(x, a)dx− C(a) ≥ R (P1)

a ∈ arg max
a′

∫
U(s(x))f(x, a′)dx− C(a′),

where R represents the agent’s reservation utility (or outside option), and
f(x, a) denotes the output density function for a given effort a. The two
constraints in (P1) are respectively known as the participation constraint
(PC) and the incentive compatibility constraint (ICC).

The optimization program (P1) is usually difficult to solve, and here is
where the FOA plays its role. According to the FOA, the original constraint

(ICC) a ∈ arg max
a′

∫
U(s(x))f(x, a′)dx− C(a′) is replaced by the relaxed

constraint (ICC’): ∫
U [s(x)]fa(x, a)dx− C ′(a) = 0 (ICC’)

where fa ≡ ∂f/∂a. When the first-order approach can be invoked, see Je-
witt (1988) for sufficient conditions,2 the optimal sharing rule s(x) satisfies
the two following conditions:

1

U ′(s(x))
= λ+ µ

fa(x, a)

f(x, a)
(1a)

∫
[x− s(x)]fa(x, a)dx+ µ

[∫
U(s(x))faa(x, a)dx− C ′′(a)

]
= 0, (1b)

where λ and µ respectively denote the Lagrange multipliers associated to
(PC) and (ICC’). The second-best optimal contract is derived from Eq.
(1a) as a function of λ, µ and a∗, which are obtained from (PC) and (ICC’)

2In particular, Jewitt shows that if the density function can be expressed as f(x, a) =
θ(x)ϕ(a)eα(a)B(x), with B(x) and fa/f concave functions of output; expected output
concave in effort; and U(U−1(1/z)) concave for z > 0, then the FOA holds (see Jewitt’s
Cor. 1; a more relaxed set of conditions can be found in his Theorem 1).
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together with Eq. (1b). Next we explain, by means of a typical principal-
agent model, the reason why these conditions may not properly characterize
the correct solution to (P1).

3. ILLUSTRATING THE PROBLEM

Consider next the example given by Holmstrom (1979, p. 79): a ma-
chine repairman with utility function u(s, a) = 2

√
s − a2 receives a salary

contingent on the lapse of time that the repaired machine keeps work-
ing. In the example, the machine will keep working for a random time that
hinges on the agent’s effort, following an exponential distribution with den-
sity f(x) = (1/a)e−x/a (so E(X) = a). The agent’s reservation utlity is
not given; Holmstrom fixes instead the Lagrange multiplier associated to
constraint (PC), λ = 0.5, which is equivalent to assuming a reservation
utility of R = 0.75. In this model the Lagrange multipliers are given by
λ = (R + a2)/2 and µ = a3. The second-best contract, calculated using
Eq. (1a), Eq. (1b), (PC) and (ICC’), is s∗(x) = (0.25 + 0.5x)2. This
contract induces a second-best effort a∗ = 0.5, and the expected profit is
E[x− s∗(x)] = 0.188.

If we consider instead R = 0.25, the second-best contract obtained using
the expressions for λ and µ given above is s(x) = (−0.030 + 0.556x)2.
However, for relatively low outputs this contract does not fulfill condition
λ+µfa/f ≥ 0. This makes it non-admissible as second-best contract since
it implies that the agent’s marginal income utility U ′(s(x)) is negative
for low outputs; see Eq. (1a). In fact, the second-best contract must
ensure that condition λ + µfa/f ≥ 0 holds for the entire range of output
values. Although Jewitt et al. (2008) rule out the possibility of unbounded
likelihood ratios in order to avoid the existence of Mirrlees forcing contracts,
the inexistence of multipliers is a more fundamental reason to rule them
out.

Then, for some parameter configurations, constraint λ+µfa/f ≥ 0 must
be taken into account in the computation of the second-best contract; in
particular, when the reservation utility is relatively low. For such parameter
configurations, expressions λ = (R+ a2)/2 and µ = a3 are no longer valid,
and the integrations involved in their calculation should be constrained
to values compatible with condition λ + µfa/f ≥ 0. In particular, the
expression 4a3 + 2λa− 1 = 0 derived in Holmstrom (op. cit., p. 79) from
his Eq. (8) (our Eq. (1b)) does not hold if the reservation utility is below
0.71. Calculating numerically the correct values of the multipliers (i.e., by
imposing λ + µfa/f ≥ 0 ∀x), the second-best contract turns out to be
s(x) = max[0; (−0.033 + 0.559x)2]. It is important to note that condition
λ + µfa/f ≥ 0 applies to all output distributions (take into account that



ON THE RANGE OF APPLICABILITY 653

multipliers λ and µ are necessarily positive, and the likelihood ratio fa/f
is necessarily negative for low outputs since

∫
fadx = 0).

4. ON THE RANGE OF APPLICABILITY OF THE FOA

4.1. Main result

The caveat described in Section 3 is not serious since the FOA provides
the correct solution, a kinked contract, by simply imposing λ + µfa/f ≥
0 to the entire output range. However, for alternative specifications of
the principal-agent model, this condition can invalidate the FOA in some
regions of the parameter space. For the sake of illustration, consider that
the agent’s utility is given by u(s, a) = ln(s) − (k/2)a2 with k > 0, and
the output distribution follows a gamma distribution of parameters p and
a/p, with p > 0 and a > 0. This specification ensures E(X) = a, as
in the previous example, but the results do not depend on this choice.3

The corresponding density function is f(x) = 1
(a/p)pΓ(p)x

p−1e−(p/a)x, so the

likelihood ratio is fa/f = (p/a2)(x−a). For this mathematical specification
the second-best contract is expressible as s(x) = α+ βx with α and β real
numbers. However, and contrarily to the model of Section 3, we must rule
out kinked contracts of the form s(x) = (α + βx)+ ≡ max[0;α + βx] with
α < 0; in the example of Section 3, a null salary s(x) = (α + βx)+ = 0
for low outputs was admissible because the corresponding contribution to
Eu[s(x, a)] was 0, and consequently the agent’s expected utility remained
finite. The reason to rule out kinked contracts lies on the fact that the
income utility ln(·) is unbounded from below at 0+, which is inherited
by the agent’s expected utility: if the range of output values for which
s(x) = 0 (corresponding to the outcomes for which λ + µfa/f < 0) has
positive Lebesgue measure, then Eu[s(x), a] will diverge to −∞. Thus,
condition λ+µfa/f ≡ α+βx ≥ 0 (which in turn implies α ≥ 0) constrains
the choice contract set, and the FOA only holds in a region of the parameter
space. The problem described tends to arise when the reservation utility
R is relatively low.

The threshold value below which the FOA fails is calculated as fol-
lows: for many typical parameter configurations (see below), there ex-
ists a reservation utility for which the second-best contract adopts the
form s(x) = βx, i.e., the agent’s payment is proportional to output.4 For

3The gamma distribution encompasses the exponential as a particular case, and it
is appealing for the analysis of incentives practices; see Basu et al. (1985), Raju and
Srinivasan (1996), Hemmer et al. (1999).

4Decreasing R implies a decrease of component α in the contract. This regularity is
checked in all the simulations carried out in the present study, but its general fulfilment
is not crucial. For us, it suffices the existence of situations where the FOA fails when
the reservation utility falls below a certain threshold.
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this contract the agent’s optimal choice on effort is simply a∗ =
√

1/k,
which leads to β = 1/(1 + 2/p) ≡ β1; see Appendix 1. Assume that
the principal optimally issues a contract for which the participation con-
straint is binding: EU [s(x)] − C(a) = R. This condition leads to β =
(p/a∗) exp[−Γ′(p)/Γ(p) + 1/2 + R] ≡ β2, with Γ(·) the gamma function
(which generalizes the factorial); see Appendix 1. By imposing β1 = β2 we

obtain R̂ ≡ ln

(√
1/k

p+2

)
+ Γ′(p)/Γ(p)− 1/2, a threshold value of the reser-

vation utility below which α < 0. For the reasons given above, a contract
with α < 0 is not compatible with the FOA. Then, the FOA can only hold
if R ≥ R̂. The problem described for the logarithmic utility also arises
for isoelastic (or CRRA) utility functions with coefficient of relative risk
aversion below one.5 The result is summarized in Theorem 1.

Theorem 1. Assume that output follows a gamma distribution of pa-
rameters p and a/p, and the agent’s total utility is given by u(s, a) =
U(s) − (k/2)a2, where U(s) = ln(s) or U(s) = (1/γ)sγ with γ < 1. The
relative risk aversion (RRA) of U(·) is ≥ 1. Assume also that (P1) can be
solved so that the participation constraint is binding.

If the reservation utility is below a certain threshold R̂, then the Holmstrom-
Jewitt set of sufficient conditions fails to provide the solution to (P1). In

particular, for U(s) = ln(s), R̂ = ln

(√
1/k

p+2

)
+ Γ′(p)/Γ(p)− 1/2, with Γ(·)

the gamma function.

Proof. See the explanation above and Appendix 1.

Remark: If the RRA of U(·) is < 1, there exists a certain threshold R̂
below which the FOA solution is a kinked contract (as in the example of

Section 3). In particular, for U(s) = 2
√
s, R̂ = (k/2)

(
2

k2(1+2/p)

)2/3

; see

Appendix 2.

4.2. Discussion

(1) Theorem 1 sets bounds on the range of applicability of the FOA when
the reservation utility is relatively low. By characterizing the threshold R̂
of the reservation utility under which the FOA holds we constrain the pa-
rameter space, which splits into a region where the FOA holds and another
one where it does not. These regions are fully delimited in terms of the
threshold of the reservation utility, which represents a novel insight in the

5It is remarkable that the agency specification with u(s, a) = ln(s) − (k/2)a2, X ∼
Gamma, and the reservation utility equal to threshold R̂, is completely solvable in
closed-form, something unusual in principal-agent models.
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agency literature. A graphical image can be useful to grasp the intuition:
by diminishing sufficiently the reservation utility, the second-best solution
approaches a contract that lacks a fixed part (i.e., it entirely depends on
output), which is in turn linked to the necessary condition λ+ µfa/f ≥ 0.
Below the threshold, the FOA does not hold. Hence, the FOA can fail
because an implicit restriction of economic nature constrains the mathe-
matical agency problem for some parameter configurations. Given that
the fixed salary α helps attain a higher reservation utility — which reflects
the agent’s bargaining power —, the failure of the FOA will be typically
associated to situations where the labor market for executives is relatively
competitive.

(2) In those regions where λ+µfa/f = α+βx < 0, imposing α ≥ 0 does
not solve the problem. First, although a contract of the form s(x) = βx
fulfils all the Holmstrom-Jewitt requirements, a kinked contract s(x) =
max[δ;α+βx] with α < 0 and δ positive but negligible — which represents
a slight variation of the former contract — makes the principal better off
(than issuing a contract of the form s(x) = βx). Second, the principal can
always improve the former contract s(x) = max[δ;α + βx] by making δ
slightly lower (but positive). In sum, for reservation utilities below R̂ the
FOA is unable to provide the second-best contract by no means.

(3) Frequently, observed incentives are justified in efficiency terms by
comparison with second-best contracts derived from the FOA; Basu et al.
(1985), Raju and Srinivasan (1994), Hemmer et al. (1999), Gutiérrez and
Salas (2008), et cetera.6 The fact that the FOA stops working in some
regions of the parameter space may suggest the optimality of contracts
well different from those obtained from the FOA (for example discontinuous
contracts; see e.g. Weinschenk (2010)).

(4) Rogerson (1985) provides another set of sufficient conditions validat-
ing the FOA. In his framework, output is a discrete variable. The contin-
uous version of Rogerson’s setup is neither absent of problems. To see it,
consider that the output distribution is given by F (x; a) = xa, with x > 0,
which is the continuous version of the example provided in Rogerson (1985).
We can check that the likelihood ratio is logarithmic (fa/f = 1/a+ ln(x));
given that Rogerson (1985) demands an unbounded agent’s utility for the
FOA to hold, a (Mirrlees) forcing contract can be constructed and the FOA
is not applicable.

4.3. Example

6This represents the optimal contracting approach, a normative approach that follows
Jensen and Meckling (1976). According to the managerial power approach, the contract
design is part of the agency problem, so actual incentives are explained taking into
account managerial rent-seeking practices; see Bebchuk and Fried (2003).
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Take u(s, a) = ln(s) − (k/2)a2; output follows a gamma distribution of
parameters p and a/p. For the parameter configuration p = 3, k = 0.02 and
R = 1, the second-best contract (calculated using Eqs. (1a) and (1b) and
conditions (PC) and (ICC’)) is s∗(x) = α+βx = 0.50+0.65x, which induces
an effort a∗ = 6.56; the principal’s expeced profit is E[x − s∗(x)] = 1.79;
the agent’s expected utility is R = 1. If R = R̂ ∼= 0.77, the FOA leads to
s∗(x) = 0.60x, with a∗ =

√
1/k = 7.07; the principal’s expeced profit is

E[x − s∗(x)] = 2.83. For reservation utilities below R̂, the FOA does not
work.

Consider now u(s, a) = 2
√
s− (k/2)a2. For the parameter configuration

p = 3, k = 0.5 and R = 1, the second-best contract is s∗ = (α + βx)2 =
(0.179+0.4x)2, which induces an effort a = 1.60. If we lower the reservation

utility to R̂ = (k/2)
(

2
k2(1+2/p)

)2/3

= 0.711, then α = 0 and the second-

best contract is s(x) = β2x2 = (0.421x)2, which induces an effort of a =
1.68. For R < R̂ = 0.711, the second-best contract is a kinked one.

4.4. Other Utilities

For utility functions in the CARA class, the problem is similar to the
logarithmic case. Consider that the income utility of the agent is U(s, a) =
− exp(−rs) with r > 0, i.e., CARA utility with risk-aversion coefficient r.
It must be noted that the CARA utility is bounded-from-below if output
X is restricted to be positive, but condition λ + µfa/f ≥ 0 must hold as
well. If output follows a gamma distribution, the second-best contract is
s∗ = (1/r) ln(λ + µfa/f) = (1/r) ln(α + βx) with α ≥ 0, β > 0. The
expected income utility of the agent is then:

E[U(s, a)] = −
∫

exp[−r(1/r) ln(α+βx)]f(x, a)dx = −
∫

1

(α+ βx)
f(x, a)dx.

Then expression λ+µfa/f ≡ α+βxmust be strictly positive (in all intervals
with positive measure) in order to ensure that the last integrand does not
explode near 0. As in the logarithmic case, this limits the application of the
FOA. In Appendix 3 we derive the value of the reservation utility threshold.

5. SUMMARY AND CONCLUDING REMARKS

In principal-agent models under moral hazard it is typically assumed
that the agent chooses the action that maximizes his expected utility. The
incentive compatibility constraint characterizes the utility-maximizing be-
havior of the agent, giving the optimal response to the contract issued
by the principal. When the first-order approach to principal-agent prob-
lems holds, the agent’s problem has an interior solution and the incentive
compatibility constraint can be substituted by a relaxed constrained. The
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shortcut is extremely useful in agency modelling as it provides an easy way
to find second-best incentive contracts, thus reducing a hard problem to
a much more manageable one. This makes the question of validating the
FOA to principal-agent problems a cornerstone of the theoretical incentives
literature.

This note explores the range of applicability of the first-order approach
to agency formulated by Holmstrom (1979) and Jewitt (1988). We show
the existence of bounds in the set of parameter configurations for which
the FOA works. For standard agency models, the validity of the FOA
requires a non-negative fixed salary in order to fulfill the basic requirement
of the salary having a positive marginal utility. The fact that the fixed
salary α must be non-negative sets a threshold for the reservation utility
below which the FOA fails. For some typical agency setups this threshold
can be given in closed-form, which gives a simple characterization of the
region where the FOA holds. Given that the problem described arises when
the agent’s reservation utility is relatively low, we point out that the FOA
tends to fail in situations where managers lack market power. Although
some previous contributions remark the role of the reservation utility in the
validity of the FOA (Gutiérrez (2012), Moroni and Swinkles (2014)), none
of them relates it to the fact that the contract lacks a fixed, non-contingent
on output, component. Also, we make explicit the way in which a low
reservation utility makes the FOA fail, giving the threshold in closed-form
for some utility functions.

The appearance of limits in the range of applicability of the FOA may
suggest a rationale for incentives practices alternative to those the FOA
can justify. This question is left for further research.

APPENDIX 1

Logarithmic income utility

If the agent’s utility is u(s, a) = ln(s) − ka2/2 and output follows a
gamma distribution (in our case of parameters p and a/p), the second-
best contract is s(x) = α + βx with α and β real numbers. There exist
a threshold reservation utility R̂ such that s(x) = βx. Then, α < 0 for
reservation utilities below R̂ (which must be ruled out as it implies α+βx ≡
λ+ µfa/f < 0 for relatively low outputs).

Let us calculate the threshold R̂. For the second-best contract s(x) = βx,
condition (ICC’) leads to∫

U(s(x))fa(x, a)dx− C ′(a) = β(∂/∂a)

∫
ln(x)f(x, a)dx− ka = 0

(the mathematical specification allows us to differentiate through the in-
tegral). The integral term can be written as ln(β) + E[ln(X)]; the term
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E[ln(X)] is equal to ln(a) plus other terms that only depend on parameter
p (in particular E[ln(X)] = ln(a)− ln(p)+Γ′(p)/Γ(p), with Γ(·) the gamma
function, a generalization of the factorial function). Thus, the derivative of
E[ln(X)] with respect to a is simply (∂/∂a)E[ln(X)] = ∂(ln(a))/∂a = 1/a,
and the optimal effort for the agent reduces to a∗ =

√
1/k, valid whenever

the second-best contract adopts the form s∗(x) = βx. On the other hand,
Eq. (1b) can be written as:

0 =

∫
[x− s(x)]fa(x, a)dx+ µ

[∫
U(s(x))faa(x, a)dx− C ′′(a)

]
=(∂/∂a)

∫
[x− s(x)]f(x, a)dx+ µ

[
(∂2/∂a2)

∫
U(s(x))f(x, a)dx− C ′′(a)

]
s(x)=βx

=== (∂/∂a)

∫
(x− βx)f(x, a)dx+ µ

[
(∂2/∂a2)

∫
U(βx)f(x, a)dx− C ′′(a)

]
=(∂/∂a)E[(1− β)x] + µ

{
(∂2/∂a2)

[
lnβ + E(ln(X))− (k/2)a2

]}
=1− β + µ

(
− 1

a2
− k
)
a∗=
√

1/k
=== 1− β − 2kµ = 0

⇒µ = (1− β)/2k.

Finally, making equal µ = (1 − β)/2k and µ = βa2/p (derived from the
identity λ+µfa/f ≡ α+βx), we obtain β = (1+2/p)−1. On the other hand,
if the principal sets β to ensure that the agent’s expected utility exactly
reaches the reservation utility R, then β = (p/a) exp[−Γ′(p)/Γ(p) + 1/2 +
R], using the expression for E[ln(X)] given above. Hence, for reservation

utilities below R̂ ≡ ln

(√
1/k

p+2

)
+Γ′(p)/Γ(p)−1/2, the FOA does not provide

the second-best contract.

APPENDIX 2

Square root utility

If the agent’s utility is u(s, a) = 2
√
s− (k/2)a2, (ICC’) leads to:

∫
U(s(x))fa(x, a)dx− C ′(a) = 2β(∂/∂a)

∫
xf(x, a)dx− C ′(a)

=2β(∂/∂a)E(x)− C ′(a) = 2β(∂/∂a)a− ka = 2β − ka = 0.
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The agent chooses his effort according to the best-response function a =
2β/k. If s(x) = β2x2, the expected utility of the agent is:

E[u(s, a)] =E[2
√
s(x)]− C(a)

=2β

∫
xf(x, a)dx− (k/2)a2 = 2βa− (k/2)a2

=4β2/k − (k/2)4β2/k2

=2β2/k = ka2/2 = C(a).

Following similar steps as above, Eq. (1b) leads to:

0 =

∫
[x− s(x)]fa(x, a)dx+ µ

[∫
U(s(x))faa(x, a)dx− C ′′(a)

]
=(∂/∂a)

∫
[x− s(x)]f(x, a)dx+ µ

[
(∂2/∂a2)

∫
U(s(x))f(x, a)dx− C ′′(a)

]
s(x)=β2x2

=== (∂/∂a)

∫
(x− β2x2)f(x, a)dx+ µ

[
(∂2/∂a2)

∫
2βxf(x, a)dx− C ′′(a)

]
=(∂/∂a)[a− β2a2(1 + 1/p)] + µ

{
(∂2/∂a2)(2βa)− [(k/2)a2]′′

}
=1− 2β2a(1 + 1/p) + µ(−k).

Given that a = 2β/k and µ = ka3/2p (calculated from (ICC’)), Eq. (1b)

leads to a∗ =
(

2
k2(1+2/p)

)1/3

. Imposing that β is chosen so as to ensure

that the expected utility equals the reservation utility, and recalling that
E[u(s, a)] = C(a), the threshold R̂ turns out to be R̂ = E[u(s(x))] =

C(a) = ka2/2 = (k/2)
(

2
k2(1+2/p)

)2/3

.

APPENDIX 3

CARA utility

For U(s, a) = − exp(−rs) with r > 0, and output density f(x) =
1

(a/p)pΓ(p)x
p−1e−(p/a)x, the second-best contract is s∗(x) = (1/r) ln(λ +

µfa/f) = (1/r) ln(α + βx) with α > 0, β > 0. For contracts of the form
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s(x) = (1/r) ln(βx), the agent’s expected utility is:

E[u(s, a)] =−
∫

exp[−r(1/r) ln(α+ βx)]f(x, a)dx− ka2/2

=−
∫

1

α+ βx
f(x, a)dx− ka2/2

α=0
== − 1

β

∫
x−1f(x, a)dx− ka2/2

=− 1

β

p

(p− 1)a
− ka2/2.

For the last equality, we use the first negative moment of the gamma dis-
tribution; see Cressie et al. (1981). The derivative of the last expression
is 1

β
p

(p−1)a2 − ka, and making it equal to zero (optimality condition for

the agent’s problem, ICC’) we obtain the agent best response function:

a∗ =
(

1
β

p
(p−1)k

)1/3

. Taking this into account and µ = a2β/p we use Eq.

(1b) to obtain β:

0 =

∫
[x− s(x)]fa(x, a)dx+ µ

[∫
U(s(x))faa(x, a)dx− C ′′(a)

]
=
∂

∂a

∫
[x− s(x)]f(x, a)dx+ µ

∂2

∂a2

[∫
U(s(x))f(x, a)dx− C(a)

]
=
∂

∂a
[a− (1/r) ln(βa)] + µ

∂2

∂a2

[
− p

β(p− 1)a
− ka2/2

]
(we have ignored terms that vanish after differentiation)

=

(
1− 1

ra

)
+ µ

(
− 2

β

p

p− 1

1

a3
− k
)

=

(
1− 1

ra

)
+ µ

[
− 2

β

p

p− 1

(
1
p

βk(p−1)

)
− k

]

=

(
1− 1

ra

)
− µ3k =

(
1− 1

ra

)
− a2β

p
3k = 0

⇒β =
p

(p− 1)k
/

(
1

r
+

3

p− 1

)3

,

and the threshold value is R̂ = −(3k/2)
(

1
r + 3

p−1

)2

.
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