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A Modified Likelihood Approach for Models with

Parameter-Dependent Support

Yao Luo*

In structural models with parameter-dependent support, maximum likeli-
hood problems are nonregular. We reformulate these problems by parameter-
dependent transformations and propose modified likelihood estimators that
have regular asymptotic properties. We then describe several applications to
search models, auction models and frontier production functions and demon-
strate the performance of our method through Monte Carlo simulations. Lastly,
we apply the method to a Vuong non-nested test of additive v.s. multiplica-
tive separable auction-specific heterogeneity in Michigan Department of Trans-
portation procurements.
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1. INTRODUCTION

In structural models, when the decisions of economic agents are endo-
genized, their supports often change with respect to the parameters. For
instance, in auction models, the support of bidders’ bids depends on the
parameter values even if the support of the value distribution stays the
same. This violates the usual regularity conditions of maximum likelihood
estimation. Thus, maximum-likelihood estimation of auction models leads
to nonregular asymptotics (Donald and Paarsch (1993)). See, e.g., Donald
and Paarsch (1993), Hirano and Porter (2003), Chernozhukov and Hong
(2004) and Li (2010) for an important literature on studying the proper-
ties of the well-known maximum likelihood estimator (MLE) in auctions
and alternative estimators. Similar issues also arise in other models due to
parameter-dependent boundaries, such as the reserve wage in search mod-
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els, the maximum output in frontier production functions and the range of
prices and qualities offered in nonlinear pricing models.

The aim of this paper is to provide convenient likelihood-based estima-
tors for these models, known as “boundary models”. We demonstrate that
in many cases it is possible to make use of the usual maximum likelihood
estimation procedure with simple modifications. Thus, the contribution
of the paper is the convenience of our methods. In particular, we pro-
pose a simple transformation to the original maximum likelihood problem
in boundary models that leads to a root-N consistent and asymptotically
normal MLE. As a result, most practical issues, such as computing an ap-
propriate asymptotic variance, hypothesis testing, specification tests and
model selection, have readily available treatments within the framework of
maximum likelihood. As an illustration, we apply the proposed method to
a Vuong non-nested test of additive v.s. multiplicative separable auction-
specific heterogeneity using procurement data from Michigan Department
of Transportation.

Consider a random sample {x1, x2, . . . , xN} from a density function g(x; θ0),
where θ0 ∈ Θ ⊂ RK is an unknown vector of parameters in a given param-
eter space Θ. The loglikelihood function is defined as

L(θ) = ΣNi=1 log g(xi; θ).

The maximum likelihood estimator, i.e., ϑ̂ = arg maxθ∈Θ L(θ), is motivated
by the fact that the expected loglikelihood function is maximized at the
true parameter value, i.e.

E[log g(xi; θ)] ≤ E[log g(xi; θ0)].

In boundary models, the support of the random variable x ∼ g(x; θ)
depends on the parameter. For simplicity, consider the upper boundary
as an example. The support of x is [0, k(θ)]. With an arbitrary θ, the
support of the predicted bid distribution may not be covering all the data
points, i.e. k(θ) < maxi xi, which may lead to undefined loglikelihood due
to g(xi; θ) = 0 for some observation i. One solution is to use a constrained
MLE:

ϑ̂ = arg max
θ:k(θ)≥maxi xi

1

N

N∑
i=1

log g(xi; θ),

which introduces implementation difficulties. Another major difficulty arises
from the complication of the constrained MLE’s statistical properties, ren-
dering inference inconvenient.

To avoid such difficulties, we reformulate the maximum likelihood prob-
lem. In particular, we consider a new family of density functions, denoted
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by g(·; θ), which we call the induced-likelihood function because it is derived
from the original one g(·; θ). It is also parametrized by θ and satisfies two
conditions: (1) g(·; θ0) = g(·; θ0); (2) for all θ ∈ Θ, g(·; θ) has the same sup-
port as g(·; θ0). Under these two conditions, we can show that the expected
likelihood is also maximized at θ0, i.e. E[logg(xi; θ)] ≤ E[logg(xi; θ0)].
This motivates our modified likelihood estimator:

θ̂ = arg max
θ

1

N

N∑
i=1

logg(xi; θ),

which involves an unconstrained maximization problem. Moreover, the
new estimator has regular asymptotic properties.

Consider again the upper boundary problem. We transform x into a new
variable y = x · k(θ0)/k(θ). It is easy to see that the transformed variable
y has a density function

g(y; θ) =
k(θ)

k(θ0)
· g(

k(θ)

k(θ0)
y; θ),

if y ∈ [0, k(θ0)], and g(y; θ) = 0 otherwise. Note that y has the same
support for any parameter value. The next section shows that its expected
likelihood maximizes at the true parameter value θ0. In view of these, we
propose a modified likelihood estimator:

θ̂ = arg max
θ

1

N

N∑
i=1

[
log k(θ) + log g

( xi
maxi xi

k(θ); θ
)]
,

where k(θ0) is replaced by maxi xi to make the estimator feasible. The first
term in the brackets reflects a contribution of the varying boundary to the
likelihood. Moreover, the varying boundary is used to transform all data
points into the support of the predict random variable x at this parameter
value θ. Thus, the terms that we apply logarithm on are never zero.

Our modified likelihood approach has many applications in structural
models with parameter-dependent supports. In job search models, Flinn
and Heckman (1982) use the maximum likelihood method under the con-
straint that the predicted reserve wage equals the observed minimum wage.
This leads to a constrained maximization problem and hence introduces im-
plementation difficulties. On the contrary, our modified MLE involves an
unconstrained maximization problem. Assuming a special parameter that
is monotone in the bound of the support, Christensen and Kiefer (1991)
proposed a profile likelihood method. They use a super consistent estimate
of the boundary to concentrate out the special parameter and then estimate
the rest of the parameters via maximum likelihood. While our approach
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also contains a first-step estimation of the boundaries, it does not require
a special parameter.

Another important application of our method is structural analysis of
auction data. See, e.g., Paarsch (1992), Guerre, Perrigne, and Vuong (2000)
and Athey and Haile (2007). Our approach complements existing paramet-
ric approaches.1 Donald and Paarsch (1993) propose pseudo-maximum
likelihood estimation. Similar to the above-mentioned profile likelihood
approach, their idea is to concentrate out one parameter using a super-
consistent estimate of boundary. However, this requires all the exogenous
variables being discrete. On the other hand, simulation-based methods pro-
vide root-N asymptotically normal estimates in general. Laffont and Vuong
(1993) suggest simulated nonlinear least squares and simulated method of
moment for estimating descending price auctions. Li (2010) and Li and
Zhang (2015) propose the indirect inference approach for estimating sym-
metric and asymmetric first-price auctions, respectively. Recently, Aryal,
Gabrielli, and Vuong (2021) propose the method of moments using private
values that are estimated using local polynomial methods.

The literature of parametric deterministic frontier function considers a
linear model where the error has a one-sided distribution such as expo-
nential or half-normal.2 See Amsler, Leonard, and Schmidt (2013) for a
brief review of estimation and inference in deterministic frontier models.
Schmidt (1976) showed that the Aigner and Chu (1968) linear programming
estimator was the MLE under certain parametric assumptions. However,
he noted that the statistical properties were unknown due to violations of
the usual regularity conditions. Under the assumption that the density of
the error and its derivative are both zero at the boundary, Greene (1980)
showed that the problem becomes regular. When this assumption fails,
our approach provides a three-step estimator that has regular properties,
which complements Greene (1980).

Last but not least, there are papers that provide general treatments
to likelihood-based estimation in boundary models. Hirano and Porter
(2003) show that the maximum likelihood estimator is generally inefficient,
but that the Bayes estimator is efficient according to the local asymp-
totic minmax criterion for conventional loss functions. Chernozhukov and
Hong (2004) propose likelihood-based estimation and inference methods
for the general class of structural models with a jump in the conditional
density. By focusing optimal (Bayes) and maximum likelihood procedures,
they derive convergence rates and distribution theory. Despite its poten-

1Guerre, Perrigne, and Vuong (2000) propose a general nonparametric approach that
is based on the bidder’s first-order condition.

2Similar applications include Sutton’s bound test (Sutton (1991) and Bronnenberg,
Dhar, and Dubé (2011)) and auction models with separable auction-specific covariates
(Haile, Hong, and Shum (2003)).
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tial inefficiency relative to the Bayes one, our approach remains within the
likelihood framework but circumvents the difficulties of the classical MLE
arising from parameter-dependent support.

The rest of the paper is structured as follows. Section 2 introduces
the main idea and several methods of transformation. Section 3 describes
three applications in economics: search models, auction models and frontier
production functions. Section 4 contains some Monte Carlo experiments,
while Section 5 illustrates an empirical application to DOT procurement
auctions. Section 6 concludes.

2. MAIN IDEA

In this section, we consider the general parametric maximum likelihood
problems without covariates. We are interested in estimating the distri-
bution of a random variable x with unknown support [kL(θ), kR(θ)]. De-
note the distribution and density functions as G(·; θ) and g(·; θ), respec-
tively. The true value of the parameter is denoted by θ0 and the support
[kL(θ0), kR(θ0)]. Without loss of generality, hereafter, we assume that the
original loglikelihood function identifies the true parameter.

Consider a vector of population statistics µ. We define a transformed
variable

y = T (x;µ, θ),

such that the following two conditions are satisfies:
(1) g(·; θ0) = g(·; θ0), and
(2) y has the support [kL(θ0), kR(θ0)],

where g(·; θ) represents the density function of y.3 For example, in the up-
per boundary problem, we let µ = kR(θ0) and T (x;µ, θ) = x·kR(θ0)/kR(θ).

Under these two conditions, we have

E[log
g(x; θ)

g(x; θ0)
] < logE[

g(x; θ)

g(x; θ0)
] = log

∫ kR(θ0)

kL(θ0)

g(x; θ)

g(x; θ0)
g(x; θ0)dx

= log

∫ kR(θ0)

kL(θ0)

g(x; θ)

g(x; θ0)
g(x; θ0)dx = 0,

where we use the facts that g(·; θ0) = g(·; θ0). Therefore, we can transform
the original problem into a new maximum likelihood problem as summa-
rized in the following Theorem.

3There exists at least a linear transformation such that conditions (1) and (2) are
satisfied:

y =
kL(θ0)kR(θ)− kR(θ0)kL(θ)

kR(θ)− kL(θ)
+
kR(θ0)− kL(θ0)

kR(θ)− kL(θ)
x,

where the vector of population statistics is µ = (kL(θ0), kR(θ0))′.
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Theorem 1. The expectation of y’s loglikelihood function is maximized
at θ0, i.e.

E[logg(x; θ)] ≤ E[logg(x; θ0)].

Theorem 1 says that the expected loglikelihood is maximized at the true
parameter value. On the other hand, it is silent on whether we can identify
the same vector of parameters or a subvector of them. In later sections, we
will see a few examples in which the transformed likelihood only identifies
a subvector of the parameters.

2.1. Methods of Transformation

In this section, we discuss a few methods of transformation to gener-
ate new families of likelihood function g(·; θ) that satisfy the above two
conditions. The modified likelihood methods differ by: (1) the population
statistics µ that we obtain from data, e.g. minimum and maximum; (2) the
function form of the transformation T (·), e.g. scaling, shifting and power.

2.1.1. Scaling

The scaling transformation defines a new variable y = x · c(θ), where

c(θ0) = 1.

For example, the Pareto distribution has a density function

g(x; θ) =
θ2θ

θ2
1

xθ2+1
,

where θ1, θ2 > 0 and x ≥ θ1. Therefore, the likelihood problem here

involves a parameter-dependent support [θ1,+∞]. We have a left boundary

problem where kL(θ) = θ1.

We consider a transformed variable y = x·kL(θ0)/θ1, which has a density

function

g(y; θ) =
θ1

kL(θ0)
· g(

θ1

kL(θ0)
y; θ) =

θ2

kL(θ0)

kL(θ0)θ2+1

yθ2+1
,

and the expected loglikelihood function

log θ2 − (θ2 + 1)(log y − log kL(θ0)).

This gives the maximum likelihood estimator for θ2

θ̂2 =
1

1
N

∑N
i=1 log xi − log mini xi

,
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where kL(θ0) has been replaced by mini xi. Note that the new likelihood

function only identifies θ2. The scaling transformation separates the pa-

rameter vector θ into: (1) θ1 as the location parameter and (2) θ2 as the

shape parameter.

2.1.2. Shifting

The shifting transformation defines a new variable y = x + c(θ), where

c(θ0) = 0.

Consider again the Pareto distribution. The transformed variable is y =

x+ (kL(θ0)− θ1), which has a density function

g(y; θ) = g(y + θ1 − kL(θ0)),

which implies the expected loglikelihood function

log θ2 + θ2 log θ1 − (θ2 + 1)E[log(x− kL(θ0) + θ1)].

This suggests a modified maximum likelihood estimator for θ

θ̂ = arg max
θ

{
log θ2 + θ2 log θ1 −

1

N
(θ2 + 1)

N∑
i=1

[log(xi −min
i
xi + θ1)]

}
,

where kL(θ0) has been replaced by mini xi. Note that the shifting trans-

formation keeps both θ1 and θ2 as shape parameters.

2.1.3. Power

The power transformation defines a new variable y = xc(θ), where c(θ0) =

1.

Example: suppose x is uniform distributed on [0, θ].4

While a scaling transformation seems a natural choice for the uniform

distribution on [0, θ], it does not work. The reason is that the only parame-

ter here is the scale parameter. In fact, the original density is g(x; θ) = 1/θ

for x ∈ [0, θ]. The transformed variable y = x · kR(θ0)/θ has a density

g(y; θ) = 1/kR(θ0). In other words, the density of the transformed variable

becomes flat or not informative of the parameter after our transformation,

i.e. E[log g(x;θ)
g(x;θ0) ] = 1,∀θ.

Instead, we consider a power transformation. In the first step, we add

one unit to every data point so that we can consider estimating θ for a

4This example is for demonstration purposes only. A more obvious estimator is
2
∑N
i=1 xi/N , which is root-N consistent and asymptotically normal.
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uniform distribution [1, 1 + θ] without loss of generality. In the second

step, we consider the transformation variable y = xlog kR(θ0)/ log(1+θ). Note

that log kR(θ0), log(1 + θ) > 0. Moreover, y has a distribution function

G(y; θ) = Pr[xlog kR(θ0)/ log(1+θ) ≤ y] = Pr[log x ≤ log y log(1 + θ)

log kR(θ0)
]

=
exp[ log y log(1+θ)

log kR(θ0) ]− 1

θ
,

and a density function

g(y; θ) =
exp[ log y log(1+θ)

log kR(θ0) ]

θ

log(1 + θ)

log kR(θ0)

1

y
,

which leads to expected loglikelihood function

− log θ + log log(1 + θ) +
E[log y] log(1 + θ)

log kR(θ0)
− E[log y],

and a modified likelihood estimator

θ̂ = arg max
θ

{
− log θ + log log(1 + θ) +

1

N

N∑
i=1

log xi ·
( log(1 + θ)

log maxi xi
− 1
)}
,

where kR(θ0) has been replaced by maxi xi. This transformation turns a

location parameter of the uniform distribution into a shape parameter of a

new distribution.

2.2. Discussion

It is well known that the likelihood is invariant to transformations of

data when the transformations are parameter independent. That is, the

likelihood of {yi = T (xi)} is

ΠN
i=1g(T−1(yi); θ)

∂T−1(y)

∂y
|y=yi = ΠN

i=1g(xi; θ)
∂T−1(y)

∂y
|y=yi ,

which is proportional to the likelihood of {xi}. Our transformations are dif-

ferent because they depend on the parameter θ so as to match the predicted

support with the true one. For the same reason, our proposed induced-

likelihood function is different from marginal likelihood, conditional likeli-

hood and partial likelihood.

Moreover, our modified likelihood methods are also different from the

profiled likelihood method of Christensen and Kiefer (1991) and Donald
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and Paarsch (1993). Take the latter as an example. In first-price auc-

tions, since the lower boundary of the bid equals the lower boundary of the

valuation, one could have a super consistent estimate of the latter using

the former. Donald and Paarsch (1993) use this estimate to concentrate

out a parameter and the maximum likelihood problem for the rest of the

parameters becomes regular. Under the assumption that the lower bound

kL = kL(θ1, θ2) is monotone in θ1, their pseudo-MLE solves the following

problem:

max
θ2

N∑
i=1

log g
(
bi; θ1(θ2, k̂L), θ2

)
,

where θ1(θ2, kL) is the inversion of the mapping from the parameter to the

lower bound kL = kL(θ1, θ2), and k̂L ≡ mini bi represents the minimum bid.

Obviously, this method is inapplicable to models with a single parameter,

such as auction models with power distributed valuations.

On the other hand, our method does not require a special parameter

that is monotone in the bound of the support. Instead of adjusting the

parameter vector to “profile” the likelihood function, we adjust the bids

to fit them in the predicted support of the bid distribution [0, k(θ)]. This

adjustment adds an extra term in the loglikelihood function to reflect the

change of support. Moreover, the method extends to the case when lower

bound changes with the parameters, for which we consider the transformed

variable y = x · k(θ0)/k(θ), where k(θ) is the lower bound of the variable x

when the parameter value is θ, and x ∈ [k(θ),+∞].5

3. APPLICATIONS

In this section, we describe a few applications of our method in eco-

nomics.

5It is interesting to point out that our estimator coincides with the pseudo MLE of
Donald and Paarsch (1993) in the Pareto case (see their subsection 4.2 on page 132). In

fact, k(θ) = θ1θ2I
θ2I−1

, and

log g(y; θ) = log k(θ) + [log(θ2(I + 1)) + θ2(I + 1) log k(θ)]− [θ2(I + 1) + 1] log[k(θ)y/b].

Maximizing its empirical counterpart leads to the transformed MLE:

θ̂2 =
1

(I + 1)( 1
N

∑N
i=1 log bi − log b)

.
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3.1. Search Models

In this subsection, we consider a simplified version of a search model.

In discrete time, workers live infinitely and discount future payoffs at rate

β. At each period, a worker can be either employed or unemployed. An

unemployed worker receives a wage offer, which is a random draw from

the density f(·; θ). If a job offer is accepted, the worker is employed for

forever. It is easy to see that the worker’s problem has a cutoff property:

there exists a cutoff value ξ such that the worker accept an offer if and only

if it is higher than ξ. Assume that the wage offer density function f(·; θ)
is time-invariant.

Denote the distribution of wage offers as F (·; θ). The probability of

observing a person unemployed for ti periods and then accepted a wage

offer wi is

F (ξ; θ)ti · [1− F (ξ; θ)] · f(wi; θ)

1− F (ξ; θ)
· 1(wi ≥ ξ)

where F (ξ; θ)ti · [1−F (ξ; θ)] is the probability that the person stays unem-

ployed for ti periods and then accepts an offer, and f(wi;θ)
1−F (ξ;θ) is the condi-

tional density of his/her wage conditional on wi ≥ ξ. The density function

is

g(w, t; θ, ξ) = F (ξ; θ)tif(wi; θ)1(wi ≥ ξ)

which has a support [ξ,+∞). To estimate θ, Christensen and Kiefer (1991)

proposed a profile likelihood method that requires the boundary is mono-

tone in a special parameter. A similar approach was adopted in some

auction papers such as Donald and Paarsch (1993).

Consider now our modified likelihood methods. Consider a shifting trans-

formation and the resulting transformed variable y = w+ (w− ξ). y has a

density function

g(y, t; θ, ξ) = F (ξ; θ)tif(y − w + ξ; θ),

where w is the minimum wage offer that has been accepted. This leads to

a modified likelihood estimator:

θ̂ = arg max
(θ,ξ)

1

N

N∑
i=1

[
ti logF (ξ; θ) + log f(wi − ŵ + ξ; θ)

]
,

where ŵ = mini wi is the minimum accepted wage offer.
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On the other hand, one can consider a scaling transformation and the

resulting transformed variable y = xw/ξ, whose support is [w,+∞). Its

density function is

g(y; θ) =
ξ

w
· F (ξ; θ)t · f(

ξ

w
y; θ).

Thus, the transformed MLE can be defined similarly:

θ̂ = arg max
(θ,ξ)

1

N

N∑
i=1

[
ti logF (ξ; θ) + log f(wi · ξ/ŵ; θ) + log ξ

]
.

Normal Distribution

Consider the normal distribution with mean µ and standard deviation σ

as the wage distribution. Under a shifting transformation, y has a density

function

g(y; θ) = Φ
(ξ − µ

σ

)t
· φ
( (y − w + ξ)− µ

σ

)
/σ,

where Φ(·) and φ(·) are the distribution function and the density function

of the standard normal variable, respectively. It is obvious that ξ and µ

are not separately identified through g(·; θ) but their difference ξ − µ is.

Thus, we propose the following estimator for (µ, σ):

θ̂ = arg max
(µ,σ)

1

N

N∑
i=1

[
ti log Φ(

ξ̂ − µ
σ

) + log φ(
wi − µ
σ

)− log σ
]
,

where ξ̂ = mini wi.

A scaling transformation leads to a density function

g(y; θ) =
ξ/σ

w
· Φ
(ξ − µ

σ

)t
· φ
(y · ξ/w − µ

σ

)
.

It is obvious that the three parameters are not identified separately through

g(·; θ) but ξ/σ and µ/σ are. After some algebra, we obtain the same

estimator for (µ, σ) as the one obtained under a shifting transformation.

Standard derivations give the asymptotic distribution of θ̂:

√
N(θ̂ − θ) A∼ N(0,Σ),

where Σ represents the asymptotic variance.
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3.2. Auction Models

In this subsection, we introduce the first-price auction model. Consider

independent private value first-price auctions where I bidders are symmet-

ric and risk neutral. Their private values are i.i.d. draws from a common

distribution F (·; θ), which is determined by a (finite-dimensional or infinite-

dimensional) parameter θ. This distribution is absolutely continuous with

density f(·; θ). Assuming that there is no reserve price, a bidder with value

v solves the following problem:

max
b

(v − b)F (s−1(b; θ); θ)I−1,

where s−1(·; θ) is the inverse bidding strategy, (v− b) is the profit if he/she

wins, and F (s−1(b; θ); θ)I−1 is his/her probability of winning if he/she bids

b. The equilibrium bidding strategy is

b = s(v; θ) ≡ v − 1

F (v; θ)I−1

∫ v

0

F (x; θ)I−1dx,

which is increasing with respect to the value v.

Power distribution with known support [0, 1]

Consider independent private value auctions with zero reserve price and

risk neutral bidders. The value distribution is F (v) = vθ, where v ∈ [0, 1].

The bidding strategy is b(v) = k(θ)v, where k(θ) = [1− 1
θ(I−1)+1 ]. Thus, the

bid has a support of [0, k(θ)]. The bid distribution function is G(b; θ) =

(b/k(θ))θ and its density function is g(b; θ) = θ(b/k(θ))θ−1/k(θ), where

b ∈ [0, k(θ)]. Note that even though the support of the value distribution

stays the same [0, 1], the upper bound of the bid distribution k(θ) depends

on the parameter θ.

Consider reformulating the maximum likelihood problem. Define a trans-

formed variable as

y ≡ xb/k(θ),

where x ∈ [0, k(θ)]. The transformed variable has a density function

g(y; θ) = θ(y/b)θ−1/b, where y ∈ [0, b] ≡ [0, k(θ0)]. Now consider the

following expected loglikelihood function:

E[logg(b; θ)] = log θ + (θ − 1){E[log b]− log b} − log b

= log θ − log b− (θ − 1)/θ0,

which is maximized at θ = θ0. The expectation is taken with respect to the

true random variable b and we have replaced y with b in the loglikelihood
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function. Note that y has the same support for all parameter values and

its expected likelihood function is maximized at the true parameter value

θ0.

Maximizing the empirical counterpart of E[logg(b; θ)], i.e.,

max
θ

log θ + (θ − 1)((

N∑
i=1

log bi)/N − log max
i
bi),

leads to our new MLE

θ̂ =
1

log(maxi bi)− (
∑N
i=1 log bi)/N

,

where we have replaced b by maxi bi.
6 Note that the asymptotic distribu-

tion of θ̂ does not depend on that of the superconsistent estimator of the

upper bound maxi bi. It is easy to see that this new estimator is regular.

Thus, the usual asymptotic results apply.

We also remark that the first-order derivative of E[logg(b; θ)] is 1/θ −
1/θ0 and the second-order derivative is −1/θ2. So the Fisher information is

I(θ) = −E[−1/θ2] = 1/θ2 and the asymptotic variance of our transformed

MLE is 1/I(θ0) = θ2
0. In sum, the new MLE is root-N consistent and

asymptotically normal:

√
N(θ̂ − θ0)

A∼ N(0, θ2
0).

Power distribution with unknown support [0,m]

In empirical applications, it is unusual that the analyst knows ex ante the

support of the value distribution. So it is desirable to develop a feasible

estimator for θ when the support is unknown. Assume that the value

distribution is F (v) = (v/m)θ, where v ∈ [0,m].7 Following the same lines,

we can show that the bidding strategy is b(v) = k(θ)v, the bid distribution

is G(b; θ) = ( b
mk(θ) )θ, g(b; θ) = θ( b

mk(θ) )θ−1/(mk(θ)), where b ∈ [0,mk(θ)].

6Alternatively, we can exploit the fact that E[log b] = log b− 1/θ0, which leads to the

same estimator θ̂ = 1/[log(maxi bi)− (
∑N
i=1 log bi)/N ].

7If the value distribution has a unknown support, without loss of generality, assume
the valuation is generated by multiplying a valuation on [0, 1] by a scale parameter
m > 0. It is well known that this multiplicative separability passes to the bid distribution
as well. See Krasnokutskaya (2011). So the new generic variable becomes x̃ = mx.
Consider the new transformed variable ỹ = x̃b/(mk(θ)) = xb/k(θ) = y, where x̃ ∈
[0,mk(θ)]. Therefore, g = g̃ and E[log g(b; θ)] = E[log g̃(b; θ)].
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The transformed variable has a density function g(y; θ) = θ(y/b)θ−1/b,

where y ∈ [0, b] ≡ [0,m0k(θ0)]. Thus, the expected loglikelihood function

E[logg(b; θ)] = log θ+(θ−1){E[log b]−log b}−log b = log θ−log b−(θ−1)/θ0,

where E[log b] = log b− 1/θ0. Obviously, it is maximized at θ = θ0. Notice

that this function does not contain the scale parameter m.

Maximizing the empirical counterpart of E[logg(b; θ)] leads to the same

estimator for θ. Moreover, we estimate the scale parameter m by

m̂ =
maxi bi

k(θ̂)
=

maxi bi

1− 1

θ̂(I−1)+1

.

which is a multiplier that matches the observed maximum bid with the

predicted upper bound k(θ̂) at the estimated parameter value θ̂. Since

maxi bi is superconsistent and m̂ is a smooth function of θ̂, the estimator

for the scale parameter also has regular asymptotics. In particular,

√
N(m̂−m0)

A∼ N(0,
[ m0

θ0(I − 1) + 1

]2
).

3.3. Frontier Production Functions

In this subsection, we apply our method to estimation of parametric

frontier production function.8 We follow closely Schmidt (1976) for the

model part. Consider a Cobb-Douglas frontier production function in log

form:

xi = β0 + z′iβ1 − εi,

where xi is the log of plant i’s output, given the logs of the inputs zi =

(zi1, . . . , ziK)′. Since we interpret the “fitted value” x(zi) = β0 + z′iβ1 as

the maximum output, the disturbance εi is assumed to be positive. Thus,

the random error represents the factors that result in less than maximum

output. Thanks to our Cobb-Douglas structure, the total of all elements

of β1 = (β11, . . . , β1K)′, i.e.,
∑K
t=1 β1t, conveniently represents the return

to scale.

Following Smith (1985), we make the following assumption on the density

function of the disturbance ε, f(·).

8We remark that this method can be applied to auctions with covariates (Guerre,
Perrigne, Vuong (2000) and Haile, Hong, and Shum (2003)) and Sutton’s bound test
(Sutton (1991) and Bronnenberg, Dhar, and Dubé (2011)).
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Assumption 1. f(ε) ∼ αγεα−1 as ε ↓ 0, (α > 0, γ > 0).

This assumption, known as Paretian tail decay, is quite general. It al-

lows three-parameter Weibull, three-parameter gamma, three-parameter

beta and three-parameter log gamma. Note that the commonly assumed

distributions, such as exponential and half-normal, satisfy this assumption.

For α > 2, the usual maximum likelihood estimates are consistent, asymp-

totically efficient and asymptotically normal. See Greene (1980). However,

these properties are no longer valid for 0 < α ≤ 2. We seek to provide

an estimator with such properties when 0 < α ≤ 2. In particular, for

0 < α ≤ 2, our modified likelihood approach leads to a three-step estima-

tor that is root-N consistent and asymptotically normal. We use the two

commonly adopted distributions to illustrate the three steps.9

Exponential Distribution

Suppose that the error εi follows an exponential distribution

f(ε) = γ exp(−γε),

where ε > 0. Note that the exponential distribution is a special case of

the gamma distribution. The mean of this distribution is 1/γ. Given the

inputs z, the conditional density function of the output x is

g(x|z; (β, γ)) = γ exp
(
− γ(β0 + z′β1 − x)

)
.

In the first step, we obtain an estimate of the population statistic x(z).

Just for this step, following Smith (1994), we normalize the sum of the zi
to the zero vector for the estimation procedure, without loss of generality.

Exploiting the fact that the observed output is smaller than the maximum

one, i.e., xi < β0 + z′iβ1, we then propose a first-step estimator:

β̃ = arg max
β:xi<β0+z′iβ1

β0,

which is the linear programming estimator proposed by Aigner and Cuh

(1968). See Smith (1994) for asymptotic results for the linear programming

estimator β̃. It is worth mentioning that if εi are indepedent with common

9Economic theory may provide predictions on the associated tail index α, as well. For
instance, in first-price auctions with a binding reserve price, Hill and Shneyerov (2013)
find that α = 1/2 under private value, and = 1 under common value.
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density function that converges to αγεα−1 as ε ↓ 0, the linear program-

ming estimator is consistent at rate O(N1/α). In our case, the common

density function f(·) converges to γ > 0 as ε ↓ 0, which implies that α = 1.

Therefore, our first step estimator is consistent at rate O(N).10 Unfortu-

nately, its actual asymptotic distribution is complicated. In sum, the first

step mainly provides a superconsistent estimate for the maximum output

x̂(z) = β̃0 + z′β̃1.

In the second step, we propose a modified likelihood estimator for γ

based on the linear programming estimator β̃. In particular, we consider

a shifting transformation y1 = x − (β0 + z′β1) + x(z). The density of y1

becomes

g1(y1|z; (β, γ)) = g(y1 + (β0 + z′β1)− x(z)|z; (β, γ)),

which leads to the induced loglikelihood function

logg1(y1|z; (β, γ)) = log γ − γ
[
(β0 + z′β1)−

(
y1 + (β0 + z′β1)− x(z)

)]
= log γ − γ[x(z)− y1].

Thus, we can defined our modified likelihood estimator

γ̂ = arg max
γ

{
log γ − γ · 1

N

N∑
i=1

[x̂(zi)− xi]
}

=
1

1
N

∑N
i=1[β̃0 + z′iβ̃1 − xi]

,

which is exactly the same as the one in Schmidt (1976). It is easy to see

that
√
N(γ̂ − γ)

A∼ N(0, 1/γ2),

where γ represents the true parameter value.

In the third step, we propose an estimator for β by considering a scaling

transformation y2 = x · x(z)/(β0 + z′β1). The density of y2 becomes

g2(y2|z; (β, γ)) = g
(
y2 · (β0 + z′β1)/x(z)|z; (β, γ)

)
· (β0 + z′β1)/x(z),

which leads to a modified likelihood estimator for β:

β̂ = arg max
β

1

N

N∑
i=1

[
log
(
γ̂(β0 + z′iβ1)

)
− γ̂(1− xi

x̂(zi)
) · (β0 + z′iβ1)

]
.

10See subsection A.1 for Monte Carlo experiments that confirm this claim.



A MODIFIED LIKELIHOOD APPROACH 691

It worths mentioning that γ is replaced by the second step estimator γ̂

because we can only identify (γβ0, γβ1) through g2(·).
Note that the first step estimator is consistent at rate O(N). See Smith

(1994) for details. Thus, it does not affect the asymptotic distributions of

the later two estimators γ̂ and β̂. This renders our problem similar to a

standard two-step maximum likelihood estimation. Following Murphy and

Topel (2002), we obtain

√
N(β̂ − β)

A∼ N(0,Σ),

where β represents the true parameter vector,

Σ = R−1
2 +R−1

2 [R′3R
−1
1 R3 −R′4R−1

1 R3 −R′3R−1
1 R4]R−1

2 ,

and

R1 =− E
[
∂2 logg1

∂γ∂γ′

]
, R2 =− E

[
∂2 logg2

∂β∂β′

]
,

R3 =− E
[
∂2 logg2

∂γ∂β′

]
, R4 =E

[
∂ logg1

∂γ

∂ logg2

∂β′

]
.

Half-Normal Distribution

Another example is half-normal distributions whose density functions

f(ε) =
2√
2πσ

exp(− ε2

2σ2
)

if ε ≥ 0, and f(ε) = 0 otherwise. Note that the half-normal distribution

is a special case of the gamma distribution. Thus, the conditional density

function of output is

g(x|z; (β, σ)) =
2√
2πσ

exp(− (β0 + z′β1 − x)2

2σ2
).

In the first step, we can use the same linear programming estimator β̃

and obtain a preliminary estimate of the maximum output x̂(z) = β̃0+z′β̃1.

In this case, the common density function f(·) converges to 2√
2πσ

> 0 as

ε ↓ 0, which implies that α = 1. Therefore, our first step estimator is

consistent at rate O(N).

In the second step, a shifting transformation leads to a density function

g1(y1|z; (β, σ)) = g(y1+(β0+z′β1)−x(z)|z; (β, σ)) =
2√
2πσ

exp(− (x(z)− y1)2

2σ2
).
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After some algebra, we obtain a simple modified likelihood estimator for σ

σ̂ =

√√√√ 1

N

N∑
i=1

[(x̂(zi)− xi)2].

In the third step, a scaling transformation leads to a density function

g2(y2|z; (β, σ)) = g
(
y2 ·

β0 + z′β1

x(z)
|z; (β, γ)

)β0 + z′β1

x(z)
.

After some algebra, we obtain a modified likelihood estimator for β

β̂ = arg max
β

1

N

N∑
i=1

[
log(β0 + z′iβ1)− 1

2σ̂2
[(β0 + z′iβ1) · (1− xi

x̂(zi)
)]2
]
.

Again, σ is replaced by the second step estimator σ̂ because we can only

identify (σβ0, σβ1) through g2(·). The asymptotic distributions of σ̂ and β̂

can be derived similarly.

4. MONTE CARLO EXPERIMENTS

To demonstrate the performance of our proposed methods, we run a list

of Monte Carlo experiments using the above mentioned structural models

with parameter-dependent support.

4.1. Search Models

Consider the normal distribution with mean µ and standard deviation

σ as the wage distribution. Under a shifting transformation (see Section

3.1). Let (µ, σ) be (1, 1), the reserve wage be ξ = 0.5 and the number of

observations be N ∈ {100, 400, 1600}. For every experiment, the number

of repetition is 1000. Table 1 shows the finite sample performance of our

modified likelihood estimator with the shifting transformation as well as

a maximum estimator ξ̂ = mini wi. When we quadruple the sample size

(from 100 to 400, or from 400 to 1600), the modified likelihood estimator

reduces the standard deviation by half, which is consistent with the reg-

ular asymptotic properties of our estimator. On the other hand, ξ̂ shows

evidence of superconsistency.

4.2. Auction Models

Consider the Power distribution F (v) = vθ in first-price auctions, where

v ∈ [0, 1]. Let the number of bidders be I = 3, and the parameter be
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TABLE 1.

Monte Carlo Results: Search Models

N = 100 N = 400 N = 1600

mean std mean std mean std

µ̂ 1.0089 0.0900 1.0050 0.0457 1.0007 0.0220

σ̂ 0.9907 0.0759 0.9956 0.0378 0.9988 0.0191

ξ̂ 0.5185 0.0186 0.5048 0.0051 0.5013 0.0012

θ ∈ {0.5, 1, 2}, and the number of observations be N ∈ {100, 400, 1600}.
For every experiment, the number of repetition is 10, 000. Table 2 shows

the finite sample performance of our modified likelihood estimator with the

scaling transformation. When we quadruple the sample size (from 100 to

400, or from 400 to 1600), the modified likelihood estimator reduces the

standard deviation by half, which is consistent with the regular asymptotic

properties of our estimator.

TABLE 2.

Monte Carlo Results: Auction Models

θ 0.5 1 2

N = 100 mean 0.5103 1.0190 2.0377

std 0.051 0.1034 0.2059

N = 400 mean 0.5024 1.0038 2.0107

std 0.0255 0.0501 0.1008

N = 1600 mean 0.5006 1.0008 2.0022

std 0.0125 0.0254 0.0499

4.3. Frontier Production Functions

Consider two inputs: capital and labor. Their logs are i.i.d. draws from a

uniform distribution on [0, 2]. Let the true parameters be θ = (1, 0.5, 0.5)′

and γ = 1. Thus, the production function has constant return to scale.

Table 3 shows the finite sample performance of our estimator. When we

quadruple the sample size (from 100 to 400, or from 400 to 1600), the

modified likelihood estimator reduces the standard deviation by half, which

is consistent with the regular asymptotic properties of our estimator.
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TABLE 3.

Monte Carlo Results: Frontier Production Functions

N=100 N=400 N=1600

mean std mean std mean std

θ0 1.0266 0.4143 1.0041 0.1983 0.9996 0.1009

θ1 0.4884 0.3286 0.5011 0.1605 0.4965 0.0802

θ2 0.4940 0.3194 0.4975 0.1600 0.5047 0.0814

γ 1.0368 0.1042 1.0105 0.0509 1.0025 0.0245

5. AN EMPIRICAL APPLICATION TO DOT
PROCUREMENTS

In this section, we apply our method to data from Michigan Department

of Transportation (MDOT) procurements. Up to now, we have assumed

away covariates in auctions. In empirical applications, we may observe

auction-specific covariates, such as engineer estimate, project type and du-

ration et al., that may shift the distribution of bidder’s private information.

Therefore, we need to adapt our method to allow covariates. Guerre, Per-

rigne, and Vuong (2000) propose standard kernel smoothing over covariates.

However, a fully nonparametric estimation approach may not be practical

due to curse-of-dimensionality.

As an alternative, Haile, Hong, and Shum (2003) proposes a homoge-

nization approach for incorporating covariates that became popular due

to its convenience. See, e.g., Krasnokutskaya (2011), Bajari, Houghton,

and Tadelis (2014), An (2017) and Liu and Luo (2017). In particular,

they assume two competing models: an additive or multiplicative separa-

ble structure of the private information.11 These structures are convenient

because they are preserved by equilibrium bidding. However, the choice of

structure has been mostly based on judgment calls rather than a formal

model selection procedure. Note that this is a Vuong non-nested test of

model selection. See Vuong (1989). As an illustration of the usefulness of

our method, we consider a Vuong non-nested test of additive v.s. multi-

plicative separable observable heterogeneity in MDOT procurements.12

11Recently, Gimenes and Guerre (2022) propose a novel quantile regression approach,
which is more flexible but does not suffer from curse-of-dimensionality.

12An existing alternative is the simulation-based selection method proposed in Li
(2009). A formal comparison of the two methods is left for future research.



A MODIFIED LIKELIHOOD APPROACH 695

5.1. Data Sample

We collect data on the highway construction and maintenance procure-

ments from MDOT during the first half of 2017.13 For each auction, the

data include the engineer’s estimate, the number of bidders and the win-

ning bid. We exclude auctions with a single bidder. Table 4 presents some

summary statistics of the variables. The project size, measured by engineer

estimate, ranges from about 40 thousands to over 60 millions. Therefore,

it is important to incorporate covariates in our estimation.

We run a simple OLS regression of the logarithm of bid on the logarithm

of the engineer estimate and the number of bidders. Consistent with the

literature, we find that the fitting is very well with an R2 of 98%. The

coefficient on the logarithm of the engineer estimate shows that an 1%

increase leads to 0.99% increase in the bid. On the other hand, the level

of competition significantly reduces the bid.

TABLE 4.

Summary Statistics

Variable Obs Mean Std. Dev. Min Max

Number of Bidders 382 4.47 2.52 2 17

Winning Bid 382 1.34E+06 3.55E+06 3.81E+04 5.99E+07

Engineer Estimate 382 1.48E+06 3.69E+06 3.94E+04 6.13E+07

5.2. Additive v.s. Multiplicative Separable Covariates

In this subsection, we introduce two estimators for the two competing

parametric procurement auction models with additive and multiplicative

separable auction-specific covariates, respectively. We maintain the as-

sumption that the cost distribution belongs to the exponential family, which

is commonly adopted for estimating a parametric auction model. See, e.g.,

Donald and Paarsch (1993) and Li (2010).

Multiplicative Separable Covariates

We first consider multiplicative separable covariates. Note that if x has

an exponential distribution with rate γ > 0, y = kx has an exponential

distribution with rate γ/k, where k > 0. This motivates to consider the

13Procurement data from state deparment of transportation are widely used in the
literature. See, e.g., Li and Zheng (2009), Krasnokutskaya (2011), Luo and Takahashi
(2022), Gentry, Komarova, and Schiraldi (2023) and Kroft, Luo, Mogstad, and Setzler
(2023).
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exponential family of distributions for the cost in procurement auctions

f(c|z;β) = γ(z;β) exp(−γ(z;β)c),

where c > 0, γ(z;β) = exp(β0 + z′β1) > 0 and z represents auction-specific

covariates. The winning bid is linear in the lowest cost b(c) = c+ 1
γ(z;β)(I−1)

and exponentially distributed

gm(b;β) = γ(z;β)I · exp
(
− γ(z;β)Ib+

I

I − 1

)
,

where b > 1
γ(z;β)(I−1) . This support implies that log b + log(I − 1) >

− log γ(z;β) = −β0 − z′β1.

We propose a two-step procedure to adapt our method. In the first step,

we exploit the identification power of the support of the bid [ 1
γ(z;β)(I−1) ,+∞).

In particular, we propose a first-step estimator as a simple linear program-

ming estimator for the parameters β:

β̃ = arg max
β:log bi+log Ii≥−β0−z′iβ1,∀i

β0,

See Smith (1994) for its properties.

In the second step, we propose a modified likelihood estimator based on

the linear programming estimator β̃. In particular, we consider a shifting

transformation y = x− 1
γ(z;β)(I−1) + b(z). The density of y becomes

gm(y;β) = gm

(
y +

1

γ(z;β)(I − 1)
− b(z);β

)
,

which leads to the induced loglikelihood function

loggm(y;β) = log(γ(z;β)I)− γ(z;β)I(y − b(z)).

Thus, we can define our modified likelihood estimator:14

β̂m = arg max
β

1

N

N∑
i=1

[
(β0 + z′iβ1)− Ii · exp(β0 + z′iβ1) · (bi − b̂i)

]
,

14Absence of auction heterogeneity, the expected likelihood becomes E[log g(b; γ)] −
const = log γ − γIE[b + 1/(γ(I − 1)) − b], which leads to a simple MLE γ̂ =

1/I
1
N

∑N
i=1 bi−mini bi

.
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where b̂i = 1

exp(β̃0+z′iβ̃0)·(Ii−1)
is an estimate of the lower bound of the bid for

auctions with covariates zi based on the linear programming estimates.15

Additive Separable Covariates

An alternative specification of the model is to consider a benchmark

model where

f(ε) = γ exp(−γε),

and introduce additive separable covariates so that the cost satisfies

c = β0 + z′β1 + ε.

Note that this additive separable structure is also preserved by equilibrium

bidding. Moreover, the winning bid is exponentially distributed

ga(b; (β, γ)) = γI exp
{
− γI

[
b− (β0 + z′β1)

]
+

I

I − 1

}
,

where

b > β0 + z′β1 +
1

γ(I − 1)
.

In sum, the unknown vector of parameters is θ ≡ (β, γ)′.

Exploiting this lower boundary condition, we can also propose a first-step

estimator as a simple linear programming estimator for the parameters:

(β̃, γ̃) = arg max
(β,γ):bi≥β0+β1·zi+ 1

γ(Ii−1)
,∀i
β0,

In the second step, we can also propose a modified likelihood estima-

tor based on the linear programming estimator (β̃, γ̃). In particular, we

consider a shifting transformation y = x− k(β, γ) + b(z), where k(β, γ) =

β0 + z′β1 + 1
γ(I−1) . The density of y becomes

ga(y; (β, γ)) = g(y + k(β, γ)− b(z); (β, γ)),

which leads to the induced loglikelihood function

logga = log(γI)− γI(b− b(z)).

15The determination of this MLE can be simplified by successive maximization. In

particular, for any given β1, the optimal β0 is logN − log
[
Ii
∑N
i=1 exp(z′iβ1) · (bi− b̂i)

]
.
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Note that only γ is identified through the induced likelihood. Thus, we can

define our modified likelihood estimator:

γ̂a = arg max
γ

1

N

N∑
i=1

[
log γ − γIi · (bi − b̂i)

]
=

1
1
N

∑N
i=1[Ii · (bi − b̂i)]

,

where b̂i = β̃0+z′iβ̃1+ 1
γ̃(Ii−1) is an estimate of the lower bound of the bid for

auctions with covariates zi based on the linear programming estimates.16

5.3. Estimation Results and Vuong Test

Table 5 presents our structural estimation results. We report both the

linear programming estimates as well as the proposed maximum induced-

likelihood estimator. Standard errors for the linear programming estimates

are complicated to obtain, but the ones for the modified likelihood estimates

are in parenthesis.

Under the multiplicative separable structure, note that the mean of the

cost density function is 1/γ(z), and its logarithm equals (−β0−β1z). For in-

terpretability of the estimated coefficients, we let z = log(Engineer Estimate).

Thus, θ1 represents the percentage change of the expected cost correspond-

ing to a 1% change of Engineer Estimate.

An important benefit of our estimator is that we can calculate the stan-

dard errors in a familiar way: ŝe = diag(
√

Hessian−1), where Hessian−1 is

the inverse of the Hessian matrix, i.e. second derivatives of the objective

function for the unconstrained likelihood maximization problem. Our es-

timation results show that a 1% increase in the Engineer Estimate leads

to approximately 1% increase in the expected cost, as well. The standard

error of β̂1 indicates a strong significance.

We also estimate the model under the additive separable structure. The

first-step and second-step estimates are reported in columns 3 (LP2) and

16Alternatively, we consider a scaling transformation y = xb(z)/k(β, γ), where
k(β, γ) = β0 + z′β1 + 1

γ(I−1)
. The density of y becomes

g(y; (θ, γ)) = g(yk(β, γ)/b(z); (β, γ)) · k(β, γ)/b(z),

which leads to a modified likelihood estimator:

β̂ = arg max
β

1

N

N∑
i=1

[
log
(
γ̃(β0 + β1zi) +

1

(Ii − 1)

)
− Ii(

bi

b̂i
− 1) · γ̃(β0 + z′β1)

]
,

where b̂i = β̃0 + z′iβ̃1 + 1
γ̃(Ii−1)

is an estimate of the lower bound of the bid for auctions

with covariates zi based on the linear programming estimates. Note that only the
coefficients for the covariates β = (β0, β1)′ are identified through this induced likelihood
so we have replaced γ by the linear programming estimate γ̃.
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TABLE 5.

Estimated Structural Parameters

LP1 ML1 LP2 ML2

β0 1.7648 -1.0068 -99,284

(0.7183)

β1 -1.0934 -1.0088*** 0.5816

(0.0528)

γ 1.11E-05 4.40E-07***

(2.25E-08)

Note: *** p < 0.01

4 (ML2). For interpretability of the estimated coefficients, we let z =

Engineer Estimate. Note that the two competing structures have the same

distributional assumption but different functional forms. Thus, they are

strictly non-nested models. Following Vuong (1989), we can calculate the

non-nested model selection test statistics. Define

L̂RN =

N∑
i=1

log
gm(bi|zi; θm)

ga(bi|zi; θa)
= −27.43,

where θm = β̂m and θa = (β̃a, γ̂a)′.

First, the variance can be estimated as

ω̂2
N =

1

N
[

N∑
i=1

log
gm(bi|zi; θm)

ga(bi|zi; θa)
]2 − [

1

N

N∑
i=1

log
gm(bi|zi; θm)

ga(bi|zi; θa)
]2 = 1.69,

which is clearly not zero. Second, since the two models are strictly non-

nested, we calculate the test statistic

T̂N = N−1/2 · L̂RN/ω̂N = −1.07.

Note that Φ(T̂N ) = 14%, where Φ(·) is the standard normal distribution.

This suggests that both models explain the data equally well.

6. CONCLUSION

In boundary models, we propose a new estimator that maximizes an

induced-likelihood function that is derived from the family chosen for the

original likelihood function. In particular, we propose a simple transfor-

mation such that the transformed variable has the same support as the
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true distribution of the date generating process for any parameter value

and has an expected likelihood function that maximizes at the true param-

eter value. As a result, our modified likelihood estimator has the regular

asymptotic properties. We illustrate our method using three sets of mod-

els: search models, auction models and deterministic frontier production

functions. Lastly, we apply our method to data from Michigan Depart-

ment of Transportation procurements during the first half of 2017. After

estimating the first-price auction model under additive and multiplicative

separable observed heterogeneity, respectively, we implement a Vuong non-

nested test of model selection. The test seems to suggest that both models

explain the data equally well.

APPENDIX

A.1. MONTE CARLO RESULTS: INCORPORATING
COVARIATES

We consider first-price procurement auctions where only winning bids

are observed to the analyst and follow Li (2010) for the data generating

process: the number of bidders is I = 6 and the auction-specific covariates

z`, ` = 1, 2, . . . , L, are i.i.d. draws from a uniform distribution on [0, 2]. At

the `-th auction, the bidders draw their private costs from an exponential

distribution with the density function

f(c|z`) = γ(z`; θ) exp(−γ(z`; θ)c),

where c > 0, γ(z`; θ) = exp(β0 + β1z`) > 0. The true parameter value is

θ0 = (1, 0.5)′.

Table 6 reports the results on the estimates of θ = (β0, β1)′ using the

three estimators: the linear programming estimator, the modified MLE and

the indirect inference estimator (using OLS as the auxiliary model). For the

indirect inference estimator, we follow closely Li (2010): (1) the first-stage

OLS is regressing bid on a constant and auction-specific covariates z`; (2)

the number of simulations is 1. Since the number of auxiliary parameters

is equal to the number of the structural parameters, the indirect inference

estimator is the solution to a nonlinear equation system.17

17We use the bid quantile function to simulate bids, i.e., b(α|z`; θ) = [ I
I−1
− log(1−

α)]/[I exp(β0 + β1z`)]. For each sample, we redraw a sample of i.i.d. draws from a
standard uniform distribution and use the same draws to calculate the simulated bids
when the parameter varies. As a result, the simulated bids become smooth functions of
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TABLE 6.

Comparing the Performance of Different Estimators

N = 100 N = 400 N = 1600

mean std mean std mean std

β̃LP0 0.9839 0.0311 0.9966 0.0077 0.999 0.002

β̃LP1 0.5006 0.029 0.4997 0.0072 0.5001 0.0018

β̂mMLE
0 1.0261 0.211 1.0044 0.1046 1.0007 0.0505

β̂mMLE
1 0.4978 0.1796 0.5025 0.0893 0.5016 0.0457

β̂II0 0.9961 0.1308 1.0033 0.0651 0.9987 0.0324

β̂II1 0.5053 0.1197 0.4978 0.0560 0.5011 0.0288

Since all three estimators are computationally efficient here, the compu-

tational advantage of the modified MLE is not significant. The indirect

inference estimator seems to have some advantages in terms of bias and

standard deviation in this example.18 In particular, it reduces the stan-

dard deviation of the modified MLE by about 40% across the board. When

we quadruple the sample size L (from 100 to 400, or from 400 to 1600),

the modified likelihood estimator θ̂ reduces the standard deviation by half,

which is consistent with the regular asymptotic properties of our estimator.

So as the indirect inference estimator. On the other hand, the standard

deviation of the linear programming estimator θ̃ reduces to a quarter.
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