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The Stability and Instability of Power: A Nonlinear Dynamic
Analysis of Power Accumulation and Collapse

Wei Liang and Heng-Fu Zou™

This paper models the cyclical rise and fall of power — an aggregate of
political, economic, military, and ideological strength — through the inter-
play of power accumulation, consumption, and endogenous nonlinear feedback
effects such as corruption and inefficiency. By framing power as a dynamic sys-
tem, we derive an optimal logistic decision rule for power accumulation from
an infinite-horizon optimization problem where the state maximizes long-term
utility from power and consumption. A key finding is that the state’s time pref-
erence (discount factor () intrinsically determines the logistic map’s growth
parameter (A). Analyzing this logistic rule using bifurcation diagrams, Lya-
punov exponents, and the Feigenbaum constant, we demonstrate how decreas-
ing patience (lower S, thus higher A) drives transitions from stable equilibria
through period-doubling cascades (limit cycles) into chaotic regimes, leading
to collapse. Finally, we simulate historical power collapses, including those of
the Roman Empire, the Soviet Union, and the Ming Dynasty, showing that all
state collapses follow the same universal mathematical path — from order to
chaos — driven by shifts in effective growth parameters.
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Dynamic optimization.
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1. INTRODUCTION

The cyclical rise and fall of empires, states, and regimes is a recurring
theme throughout human history. From ancient empires such as Rome and
the Han Dynasty to modern powers like the Soviet Union, dominant states
have experienced predictable patterns of growth, stagnation, and collapse.
Historians often attribute these patterns to a confluence of factors: external
conflicts, such as invasions or protracted wars that drain resources and man-
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power (e.g., the barbarian pressures on Rome or the Mongol conquests);
economic crises, including currency debasement, unsustainable debt, trade
disruptions, or resource depletion (seen in various forms from late Rome
to pre-revolutionary France); or leadership failures, encompassing incom-
petent or corrupt rulers, succession crises, and paralyzing internal power
struggles that divert attention from effective governance. While these fac-
tors undoubtedly play significant roles as proximate causes and catalysts
for decline, they often mask or are themselves symptoms of a more funda-
mental process. However, beneath these surface-level causes lies a deeper,
universal law governing the life cycle of power accumulation, an internal
dynamic that predisposes states to eventual fragility regardless of specific
external triggers. This paper aims to uncover those universal dynamics by
modeling the accumulation and collapse of power using tools from dynamic
optimization and nonlinear dynamics.

In this paper, we define total power as an aggregate of political, eco-
nomic, military, and ideological power. These components are interdepen-
dent: economic power, for instance, funds the military and administrative
apparatus; military strength can secure trade routes, expand territory (thus
economic base), and enforce political will; political control shapes ideology,
resource allocation, and legal frameworks; and ideology can foster social
cohesion, legitimize the state, and mobilize popular support for its objec-
tives. This interconnectedness means that growth in one area can fuel
growth in others, leading to periods of rapid power accumulation. Yet, as
states accumulate power, they introduce self-limiting feedback effects —
corruption, inefficiency, and internal strife — that ultimately lead to de-
cline. For example, unchecked political consolidation can lead to autocracy,
reduced accountability, and the stifling of innovation, fostering corruption
as elites exploit their positions. Concentrated economic power can lead
to extreme inequality, social unrest, and rent-seeking behaviors that drain
productive capacity, contributing to inefficiency and internal strife. Mili-
tary overextension, often a product of past successes, can strain resources,
neglect domestic needs, and provoke both internal dissent and external
coalitions. Even the solidification of ideological power can lead to dogma-
tism and an inability to adapt to changing circumstances, further breeding
inefficiency and discontent. These internal feedback mechanisms, inherent
in the very process of power accumulation, create vulnerabilities that can
be exploited by the aforementioned external conflicts or economic shocks,
but their origins are fundamentally endogenous.

This paper models these dynamics by framing power as a dynamic sys-
tem. We derive an optimal decision rule for power accumulation from
an infinite-horizon optimization problem, where a state seeks to maximize
long-term utility. This approach reveals how rational, optimizing behav-
ior, when interacting with the inherent nonlinearities of power, can lead to
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complex, cyclical, and even chaotic outcomes. The resulting model demon-
strates transitions from stable equilibria to limit cycles and eventually to
chaotic regimes, governed by a logistic-like dynamic. We show that this
path — from order to chaos — is a universal feature of power accumula-
tion and collapse, applicable across diverse historical contexts.

The rest of the paper is organized as follows: Section 2 introduces the
general mathematical form of the power dynamic and provides foundational
definitions of dynamical systems, including fixed points, periodic points,
and the concept of chaos via the Li-Yorke Theorem. Section 3 discusses
how chaotic behavior can arise within an optimization framework. Section
4 details the model setup, formulating the state’s dynamic maximization
problem, including the objective function, utility function, production func-
tion, and power accumulation dynamics, leading to the Bellman equation.
Section 5 focuses on the derivation of the optimal decision rule, showing
how it collapses to a logistic decision rule. Section 6 examines the special
case of the logistic decision rule f(P) = AP(1 — P) and its properties.
Sections 7, 8, and 9 analyze the model’s behavior, exploring the stability
of power, the transition from stability to oscillations (limit cycles), and
the emergence of instability and chaotic regimes at high growth param-
eters. Section 10 presents a combined bifurcation diagram overlaid with
Lyapunov exponents to measure chaos intensity. Finally, Section 11 con-
cludes by summarizing the universal law of power collapse derived from the
model.

2. THE GENERAL FORM

The saying “power tends to corrupt, and absolute power corrupts abso-
lutely” highlights the psychological and social impacts of power. Psycho-
logically, individuals with power often develop a sense of superiority and
entitlement, which can lead to ethical lapses and a disregard for the con-
sequences of their actions on others. Socially, absolute power often lacks
checks and balances, enabling leaders to make decisions without account-
ability. This lack of oversight can foster an environment where corrup-
tion becomes systemic, as leaders manipulate laws and policies to benefit
themselves or their supporters at the expense of the broader public good.
Historical examples show that when leaders operate without constraints,
they are more likely to engage in corrupt practices, suppress dissent, and
prioritize personal gain over public welfare.

Economically, power concentration can distort market mechanisms, lead-
ing to inefficiencies and corruption. Politically, it undermines democratic
institutions and erodes civic trust. When power is concentrated, decisions
are often made to benefit the few rather than the many, leading to policies
that can stifle economic innovation and concentrate wealth, which in turn
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reduces competition and economic growth. This setup also limits political
pluralism, reducing political competition, and thereby decreasing govern-
mental accountability and responsiveness to citizen needs. In both cases,
the long-term stability and health of a society can be compromised.

In totalitarian and authoritarian regimes, the concentration of power
tends to be more pronounced and systemic, leading to more severe eco-
nomic and political consequences. Economically, these regimes often con-
trol major aspects of production and distribution, stifling entrepreneurship
and innovation due to heavy regulations and state control. Politically, the
suppression of dissent and limitation of freedoms under such regimes leads
to a lack of accountability and transparency. This can result in widespread
corruption, as the lack of checks and balances allows leaders and their close
associates to exploit state resources for personal gain. These dynamics in-
hibit economic development and degrade the quality of governance, often
resulting in significant public dissatisfaction and unrest.

In this paper, we explore the dynamics of power corruption using the
framework of chaotic cycles. We define P; to represent the level of power
at period ¢, and P11 = f(P;) to represent the degree of development of a
country, which becomes the level of power at period t + 1.

The function f exhibits an inverted U-shape, reflecting the dual impact
of power on development. When the power level is very low, the country is
too fragmented to progress effectively. This fragmentation arises because
a low concentration of power results in weak central authority, leading to
disorganization, lack of coordination, and inefficient resource allocation.
Local entities may act independently without a unified strategy, resulting
in conflicts and inefficiencies that hinder overall development.

Conversely, when the power level is excessively high, it leads to totali-
tarianism. In such scenarios, power is concentrated in the hands of a few
or a single entity, leading to an authoritarian regime. This centralization
stifles innovation and growth because it often comes with suppression of
dissent, lack of political freedom, and rigid control over economic activities.
The concentration of power discourages creative thinking and entrepreneur-
ship, as individuals and businesses may fear retribution for actions that do
not align with the ruling authority’s preferences. Additionally, the lack
of checks and balances can lead to corruption and mismanagement of re-
sources, further harming the country’s development.

The equation P.y; = f(P;) highlights how power, when not balanced,
can oscillate between extremes, resulting in cycles of growth and decline,
mirroring the chaotic trajectories in economic growth models. These chaotic
cycles demonstrate how small variations in power can lead to unpredictable
and complex outcomes, emphasizing the importance of maintaining a bal-
anced distribution of power to foster sustainable development. Generally,
we assume that f is a continuous function, and the initial state is Py = P.
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2.1. Definitions of a Dynamical System
First come some definitions of a dynamical system.

DEFINITION 2.1. A dynamical system is described by a pair (X, f),
where X is called the state space that is a nonempty metric space (with
metric denoted by d), and f : X — X is called the law of motion. There-
fore, we have

Tip1 = f(a1). (1)

DEFINITION 2.2. Denote f7 as the j-th iterate of function f, i.e.
fox) =z, fi(z) = f(x), and for every positive integer j > 1,

(@) = f(F (). (2)

DEFINITION 2.3. The trajectory generated by f : z — f(x) is the
sequence 7(x) = {f7(x);2y}. The orbit from z is the set y(z) = {y : y =
f7(x) for some j > 0}.

DEFINITION 2.4. A point z € X is a fized point or a steady state if

z = f(x).

DEFINITION 2.5. A point z € X is a period point of period k > 2, if
fE(x) =2 and fi(z) # x for 1 < j < k.

Therefore, we can consider a fixed point as a period point of period 1.
The following proposition is a useful result on the existence of fixed points

of f.

ProposITION 1. Let X =R, and f be continuous. If there is a (nonde-
generate) closed interval I = [a,b] such that

(i) f(I)yc I or(i) f(I) D1, (3)

then there is a fized point of f in I.

Proof. (i) It f(I) C I, then f(a) > a, and f(b) < b. If f(a) = a or
f(b) = b, the conclusion is immediate. Otherwise, f(a) > a and f(b) < b.
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This means that the function g(z) = f(x) — x is positive at a and negative
at b. Using the intermediate value theorem, g(z*) = 0 for some z* in (a, b).
Then f(z*) = z*. (ii) If f(I) D I, by the Weierestrass’ theorem, there
are points z,, and xp; in I such that f(z,,) < f(z) < f(xar) for all z in
I. Write f(z,,) = m and f(za) = M. Again, by the intermediate value
theorem, f(I) = [m, M]. Since f(I) is assumed to contain I, m < a < b <
M. In other words,

fl@m) =m < a<am, (4)
and

flap) =M >b>xypy. (5)
The proof can now be completed by an argument similar to that in case
(i) 1

DEFINITION 2.6. A fixed point x* of f is locally attracting if there is
an open set U containing z*such that for all z € U, the trajectory 7(z)
converges to z*.

DEFINITION 2.7. A fixed point z* is repelling if there is an open set
U containing z*such that for all x € U,x # x*, there is some k > 1,

) ¢U.

Here is a simple proposition to distinguishing between attracting and
repelling fixed points of nonlinear functions.

DEFINITION 2.8. A function f : X — X is a contraction, if there is
some 3 € (0,1) such that for all z,y € X,z # y, one has
d(f(x), f(y)) < Bd(z,y). (6)

PROPOSITION 2. Let (X, d) be a (nonempty) complete metriz space, and
f X — X a contraction. Then f has a unique fized point z* € X.
Moreover, for any x in X, the trajectory 7(x) = {f7(x)52,} converges to

*

xT.

Proof. Choose an arbitrary € X. Consider the trajectory 7(x) =
(z¢) from x, where z;11 = f(z;). Note that d(zs,z1) = d(f(x1), f(z)) <
Bd(zx1, ). Therefore, for any ¢ > 1,

d(wi1,7¢) < Bd(zy, ). (

EN|
~—
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Then,

d(@eq2, 24) < d(@ev2, Teqr) + d(@eq1, 24)
< B (2, 2) + Brd(zy, )
= B'(1+ B)d(z1, 7). (8)
It follows that, for any integer k > 1,
t
1-p

and this implies that 7(z) = (z;) is a Cauchy sequence. Since X is assumed
to be complete, lim;_,, x; = z* exists. By continuity of f and z;1; =
f(zy), we have f(x*) = z*. If there are two distinct fixed points z* and
x** of f, we see that there is a contradiction:

d(a:t+k, xt) <

d($1,$), (9)

0 <d(a”, ™) = d(f(z7), f(«™)) < pd(a”, 2™), (10)

where 5 € (0,1). 1

PROPOSITION 3. Let X = [a,b] and f be continuous on [a,b] and con-
tinuously differentiable on (a,b).

(a) If z* € (a,b) is a fized point of f and |f'(x*)] < 1, then z* is locally
attracting.

(b) If ©* € (a,b) is a fivred point of f with |f'(z*)| > 1, then z* is
repelling.

Proof. (a) Assume there is some g > 0 such that |f'(z)| < 5 < 1 for all
xin I = [z* — p,z* 4+ p|. By the mean value theorem,

[z — 2% = |f(z) = f(2")] < Ble —a™| < Bpu < p. (11)

Hence, f maps I into I and, by the mean value theorem is a contraction on
1. The result follows from Proposition 1. Similarly, we can define locally at-

tracting and repelling periodic points accordingly. |

2.2. Chaotic Dynamical System

Then we come to the definition of a chaotic dynamical system, which is
introduced well in Devaney (1986).

DEFINITION 2.9.  Suppose X is a set and Y is a subset of X. We say
that Y is dense in X if, for any point x € X, there is a point y in the
subset Y arbitrarily close to x.
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DEeFINITION 2.10. A dynamical system is topologically transitive if for
any pair of nonempty open sets U and V, there exists k& > 1 such that
FOYNV # 2.

In other words, a transitive dynamical system has the property that,
given any two points, we can find an orbit that comes arbitrarily close to
both.

DEFINITION 2.11. A dynamical system has sensitive dependence on
initial condition if there is € > 0 such that, for any x € X and any neigh-
borhood N of z there exists y and an integer j > 0 with the property

|fi(x) = fi(y)| > e

Devaney argues that if a dynamical system “has sensitive dependence on
initial condition, then the dynamics is unsuitable for numerical computa-
tion for all practical purposes”. Small errors in the calculations brought by
rounding may be magnified in the iterations. As a consequence, we may
be looking at an orbit that eventually diverges from the true orbit we seek.
The results of numerical calculations of orbits, no matter how precise, are
unlikely to have any resemblance to the actual orbit. Under Devaney’s
view, we have the definition of a chaotic dynamical system:

DEFINITION 2.12. A dynamical system (X, f) is chaotic if
(i) (X, f) is topologically transitive.

(ii) (X, f) has sensitive dependence on initial condition.

(iii) The set of periodic points P(X) of X is dense in X.

After the definition of a chaotic dynamical system, it is natural to ask
that under what conditions chaotic behaviour may occur in a specific eco-
nomic model. We should refer to the Li-Yorke Theorem:

THEOREM 1 (Li-Yorke Theorem). Let I be an interval and f : 1 — I
be continuous. Assume that there is some point a in I for which there are

points b= f(a), c = f(b) = f2(a) and d = f(c) = f3(a) satisfying:
d<a<b<c(or,d>a>b>c). (12)

Then,

A. For every positive integer k = 1,2, ..., there is a periodic point of
period k in I.

B. Let P(X) denote the set of periodic points of X, N'(X) denote the set
of non-periodic points of X. Then



THE STABILITY AND INSTABILITY OF POWER 533

B1.There is an uncountable set S C N (X) such that for all p,q € S,
p#q

limnsggo Lf"(p) — f"(q)] > 0; (13)
lim inf |f"(p) = f"(g)] = 0. (14)

B2. Ifpe S and g € P(X),

lim sup [f"(p) — f"(q)| > 0. (15)

n—oo

We will say that the dynamical system (X, f) exhibits topological chaos
if conditions [A] and [B] of Theorem 1 are satisfied. The Li-Yorke Theorem
is a easily verified sufficient condition for topological chaos.

Proof.

Proof of [A]. Step 1. Let G be a real-valued continuous function on an
interval I. For any compact subinterval I3 of G(I) there is a compact
subinterval @ of I such that G(Q) = I.

Proof of Step 1. One can figure out the subinterval @ directly as follows:
Let I; = [G(x), G(y)] where z,y are in I. Assume that < y. Let r be the
last point of [z,y] such that G(r) = G(z); let s be the first point after r
such that G(s) = G(y). Then Q = [r, s] is mapped onto I; under G. The
case x > y is similar.

Step 2. Let I be an interval and f : I — I be continuous. Suppose that
(1), is a sequence of compact subintervals of I and, for all n,

Lng1 C f(Ln). (16)

Then there is a sequence of compact subintervals (@) of I such that, for
all n,

Qnt1 CQn CQo=1o (17)
and
[(Qn) = In. (18)
Hence, there is
x € ﬂQn such that f"(x) € I, for all n. (19)

Proof of Step 2. The construction of the sequence @, proceeds “induc-
tively” as follows: Define Qo = Iy. Recall that f° is defined as the identity
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mapping, so f°(Qo) = Iy and I, C f(Iy). If Q,_1 is defined as a compact
subinterval such that f"~%(Q,_1) = I,_1 then I, C f(I,_1) = f"(Qn_1).
Use Step 1, with G = f™ on QQ,,_1 in order to get a compact subinterval Q,,
of Qn—1 such that f"(Q,) = I,. This completes the induction argument
(establishing (17) and (18)). Compactness of @,, leads to (19).

Now we prove [A]. Assume that d < a < b < ¢ (the other case d > a >
b > c is treated similarly). Write K = [a,b] and L = [b,¢|. Let k be any
positive integer. For k > 1, define a sequence of intervals (I,,) as follows:
I,=Lforn=0,1,2,....k—2; [;;_1 = K, and I,y =1, forn=0,1,2, ...
For k =1, let I,, = L for all n. Let @,, be the intervals in Step 2. Notice
that Q. C Qo = Iy and f¥(Q) = Iy = Iy. Hence, Proposition 1 applied to
f* gives us a fixed point pi of f* in Qi. Now, pi cannot have period less
than k; otherwise, we need to have f*~1(py) = b, contrary tof*+(p;) € L.

Proof of B. Let M be the set of sequences M = {M,,}22; of intervals
with

Al: M, = K or M,, C L, and f(M,) D M.

if M,, = K then

A2: n is the square of an integer and M, 11, M,, 4o C L.

For M € M let P(M,n) denote the number of i’s in {1, ...,n} for which
M; = K. For each r € (3/4,1) choose M" = {M"}> ; to be a sequence in
M such that

A3: lim, o P(M",n2)/n =r1.

Let Mo = {M" :r € (3/4,1)} C M. Then My is uncountable since
M™ # M™ for rq # ry. For each M"™ € My, by Step 2, there exists a
point x,, with f™(x,) € M} for all n. Let S = {x, : r € (3/4,1)}. Then
S is also uncountable. For z € S, let P(x,n) denote the number of i’s
in 1,...,n for which fi(z) € K. We can never have f¥(x,) = b, because
then z, would eventually have period 3, contrary to (A2). Consequently
P(z,,n) = P(M",n) for all n, and so

plx,) = nhﬁngo P(X,,n?*) =r (20)
for all r. We claim that

A4: for p,q € S, p # q, there exist finitely many n’s such that f™(p) € K
and f"(q) € L or vice versa.

We may assume p(p) > p(¢). Then P(p,n) — P(¢q,n) — =z, and so
there must be infinitely many n’s such that f"(p) € K and f"(q) € L.
Since f2(b) = d < a and f? is continuous, there exists § > 0 such that
f2(x) < (b+d)/2forallz € [b—4,b] C K. If pe S and f*(p) € K, then
(A2) implies f"*1(p) € L and f"*2(p) € L. Therefore f"(p) < b— 4. If
f™(q) € L, then f™(q) > b so

|f"(p) = (@) > 0. (21)
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By claim (A4), for any p,q € S, p # g, it follows

lim sup |f"(p) — f"(q)] = 6 > 0. (22)

n— oo

Hence (13) is proved. This technique may be similarly used to prove that
[B2] is satisfied.

Proof of (14). Since f(b) = ¢, f(c) =d, d < a, we may choose intervals
[b™,c"],n =0,1,2,... such that

(a) [b,c] = [b°, ] D b, D .. Db, ] D ..,

(b) f(x) € (b, c™) for all x € (b1, L),

(0) F(B+) = e, flem+) = b,

Let A =" [b", c"], b* = inf A and ¢* = sup A, then f(b*) = ¢* and
f(c*) = b*, because of (c). In order to prove (14) we must be more specific
in our choice of the sequences M". In addition to our previous requirements
on M € M, we assume that if My = K for both k = n? and (n + 1)? then
My, = 1?7~ 2=D p*] for k = n?+ (25 —1), My = [c*, > %] for k = n?>42j
where j = 1,...,n. For the remaining k’s which are not squares of integers,
we assume M = L.

It is easy to check that these requirements are consistent with (A1) and
(A2), and that we can still choose M" so as to satisfy (A3). From the fact
that p(x) may be thought of as the limit of the fraction of n’s for which
f*(z) € K, it follows that for any r*, r € (3/4,1) there exist infinitely
many n such that M} = M} = K for both k = n? and (n 4 1)2. To show
(14), let x, € S and z,~ € S. Since ™ — b*, " — ¢* as n — oo, for any
€ > 0 there exists N with |[b™ —b*| < €/2,|c™ — c¢*| < €/2 for all n > N.
Then, for any n withn > N and M| = M,:* = K for both k = n? and
(n+1)2, we have

fn2+1(17r) c M]: _ [anfl,b*], (23)

with k = (n+1)2 and f*"*1(2,) and f*"*+1(2,+) both belong to [b2"~1, b*].
Therefore,

P @) = 7 )| < e (24)

Since there are infinitely many n with this property,

lim inf [f"(2,) = f" ()

~0. (25)

Li-Yorke Theorem is used for general form of dynamical system. Here
we consider a more specific case in which the law of motion f : X — X
takes on a “single-humped” form with f(0) = 0 and f(z) increasing with
f'(x) > 1 for sufficiently small positive xz, for example, f(z) = Az(l — x).
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Therefore, we can find a unique maximization point x* € X satisfies z* =
argmaxgecx f(z). Also, we can define a maximum attainable level z™
generated by x*:

™ = f(z") = max f(z) > 0. (26)

Because of the “single-humped” property of f, £* may have two preimages.
We define the smaller one as ¢, which means that f(z¢) = z*. If f(z™) >
0, then we can find a interval I = [0, 2™] so that it satisfies the conditions
in Li-Yorke Theorem. Therefore, the sufficient condition (12) now becomes

0< fla™) <zt <a*<a™. (27)

The remaining thing we need to do is to find proper parameters such that
x™ exists, then we can confine the parameters by using condition (27).

3. CHAOTIC BEHAVIOUR UNDER THE OPTIMIZATION
FRAMEWORK

Next we consider if we can extend the model to an aggregative model
such that the solution can exhibit optimal behavior which is chaotic (in
both the “topological” and “ergodic” senses). The model specified by a
production function f: Ry — Ry, a welfare function w : Ri — R,, and a
discount factor ¢ € (0,1).

The production function f follows the assumptions:

(F.1) f is continuous on R with f(0) = 0.

(F.2) f is non-decreasing and concave on R.

(F.3) There exists some K > 0 such that f(z) > « when 0 < z < K and
f(z) < x when z > K.

Next, we define the transition possibility space 2 C Ri as:
Q= {(z,2) eRL : 2 < f(x)}. (28)

which follows the assumptions:

(©.1) (0,0) € Q. (0,2) € Q implies that z = 0.

(€2.2) Q is a closed, convex.subset of R?.

(©.3) If (z,2) € Qand 2’ >z, 0 < 2’ <z, then (2/,2") € Q.

(©2.4) There exists some K > 0 such that if (x,2) € Q@ and > K, then
z <.

The welfare function w follows the assumptions:

(W.1) w(z,c) is continuous on R .
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(W.2) w(z,c) is non-decreasing in z given ¢, and non-decreasing in ¢
given x on R%r.

(W.8) w(z, c) is concave on R3 . Furthermore, if z > 0, w(z, ¢) is strictly
concave in ¢ on ).

Also, we can define the utility function u : Q@ — R, as:
u(z, z) = w(z, f(x) - 2). (29)

which follows the assumptions:

(U.1) u(x, z) is continuous on €.

(U.2) If (z,2) € Qand 2’ >z, 0 < 2’ < z, then u(a’,2') > u(z, 2).

(U.3) u(x, z) is concave on € and given x > 0, u(z, z) is strictly concave
in z on Q.

There are some more definitions of the aggregative model:

DEFINITION 3.1. A program from x > 0 is a sequence {x;}§° satisfying

20 =%, 0 <411 < f(ay) for t > 0. (30)

DEFINITION 3.2. A consumption sequence {ci41}5° is given by

cty1 = f(wy) — xpyq for t > 0. (31)

DEeFINITION 3.3. A program {#,}§° from x > 0 is optimal if for every
program {z;}5° from x, we have

Z §'u(®y, £441) Z (g, Tyq1). (32)

DEFINITION 3.4. A program {x;}3° from x is stationary if x; = x for
t > 0. It is a stationary optimal program if it is also an optimal program
from x.

DEFINITION 3.5. A walue function V : Ry — R is defined by

z) =Y 6'u(dr, £i41), (33)
t=0
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and the optimal policy function h : Ry — R, is defined by
hw) = i, (34)

where {#;} is the optimal program from x > 0.

Given a reduced form model (€2, u, d), satisfying (©2.1)-(©2.4), (U.1)-(U.3),
the following theorem shows that there is an optimal program from every
x > 0.

THEOREM 2.

o (i) The value function, V, defined in (33) is the unique continuous real
valued function on [0, K], satisfying the functional equation of dynamic
programming:

Viz) = (g?gﬂ[u(x, z) + 6V (2)]. (35)

Further, V is concave and non-decreasing on R .

o (ii) The policy function h, defined in (34) satisfies the following prop-
erty: for each x € Ry, h(x) solves uniquely the constrained mazimization
problem:

Max [u(z,z) + 0V (2)]

Subject to (z,2) € Q (36)

Further, h is continuous on R.

4. MODEL SETUP: DYNAMIC MAXIMIZATION PROBLEM

To model the rise and fall of power, we begin by formulating an infinite-
horizon dynamic optimization problem, where the state seeks to maximize
total discounted utility from power and consumption. The state derives
utility from two sources: power, which provides security and control, and
consumption, which satisfies immediate needs. However, there is a fun-
damental trade-off: investing resources to accumulate power reduces con-
sumption, while consuming excessively weakens future power growth.

The utility function captures these preferences with diminishing returns,
expressed as a quadratic function of power and consumption. In this for-
mulation, power provides utility by securing dominance and control, while
consumption offers immediate satisfaction. The quadratic terms ensure
that excessive power accumulation and consumption are penalized due to



THE STABILITY AND INSTABILITY OF POWER 539

increasing costs or inefficiencies. Meanwhile, the production function mod-
els how power generates output, incorporating diminishing returns through
quadratic term. This nonlinearity captures the reality that accumulating
power becomes increasingly difficult as internal inefficiencies, corruption,
and resistance emerge.

Power accumulation follows a state equation where next-period power de-
pends on current production, consumption, and depreciation. Production
increases power, but consumption reduces it, representing the allocation of
resources between state-building and immediate needs. Additionally, de-
preciation captures the natural erosion of power through internal decay,
corruption, or loss of influence. To solve this problem, we use dynamic
programming and express the state’s objective through the Bellman equa-
tion, which relates the value of power today to future value. The Bellman
equation serves as the foundation for deriving the state’s optimal policy
and understanding its long-term behavior.

4.1. Objective Function (State’s Problem)

We model a state that seeks to maximize total discounted utility from
power and consumption over an infinite horizon. The state’s problem is to
choose an optimal path of consumption ¢; for all future periods ¢t = 0, 1, 2, ...
to achieve this. The objective function, also known as the value function
V(P;), given the current power level P;, is formally expressed as:

— 1
V(P) = maxz ——u(e, Py)
Ct =0 (1 + p)t

= chaX i ﬁtu(ct, Pt) (37)
Y =0

t=

where V(P;) represents the value function: this is the maximum total dis-
counted utility the state can achieve starting from an initial power level
P, at time ¢ (or Py at time 0 if we consider the problem from the outset)
and following an optimal policy thereafter. It encapsulates the long-term
well-being or objective fulfillment of the state. u(c, P;) is the instanta-
neous utility function: this function captures the state’s preferences and
satisfaction derived in any single period ¢. This utility depends on the
level of consumption ¢; undertaken in that period and the prevailing level
of power P, held by the state during that period. The summation Zfio
indicates that the state considers utility over an infinite time horizon. This
reflects a long-term perspective, where the state is concerned not just with
immediate outcomes but with the entire future trajectory of its utility.

B is the per-period discount factor, which is central to intertemporal
decision-making. It is defined as 8 = 1/(1 + p), where p > 0 is the time
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discount rate. The condition p > 0 ensures that 0 < 8 < 1. This dis-
count factor 8 quantifies the state’s patience or time preference. A higher
B (corresponding to a lower p) signifies a more patient state, one that
values future utility more highly relative to present utility. Conversely, a
lower 3 (higher p) indicates a more impatient state, prioritizing immediate
gratification or benefits more heavily.

The term (¢ is the discount weight applied to utility received ¢ periods
into the future. Because 0 < § < 1, this weight decreases as t increases.
This means that utility streams further in the future are progressively de-
valued from the perspective of the present (time 0). This discounting mech-
anism is standard in dynamic optimization and is crucial for ensuring the
convergence of the infinite sum, as well as reflecting the common economic
assumption that future utility is generally valued less than present util-
ity, either due to pure time preference, uncertainty about the future, or
expected growth.

The maximization in Equation (37) is performed by choosing the se-
quence of consumption levels {¢;}$2, to optimize this discounted sum of
utilities. This setup frames the state as a rational, forward-looking agent
aiming to make the best possible intertemporal trade-offs to maximize its
overall, long-term objective. The initial level of power P, (or Py) serves as
the state variable at the beginning of the planning horizon.

4.2. Utility Function

To make the model tractable and capture key economic intuitions, we
assume a specific functional form for the instantaneous utility u(c;, P;). We
adopt a quadratic utility function, which is widely used in economic mod-
eling for its analytical convenience and its ability to represent diminishing
marginal utility. The specific form is given by:

B
2(1-5)

Here, power utility shows positive returns. While Equation (38) doesn’t
have a term with P, alone, the influence of power on utility is channeled
through the interaction term c;P;. The “positive” aspect comes from this
interaction where higher P; can lead to higher utility for a given c¢;.

For the consumption utility, it has positive but diminishing returns. This
is more directly evident. The linear component (via ¢;P;) implies consump-
tion is desirable. The net effect of the quadratic terms will determine the
concavity. For diminishing marginal utility of consumption to hold, the
second derivative 9%u/dc; must be negative. Calculating this:

1
U(Ct,Pt) :CtPt* §Ct2+ Ct. (38)

%u  28-1
E= 15 (39)
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For diminishing marginal utility, we need (26 —1)/(1—8) <0, or 5 < 1/2,
which will be restricted in the future sections.

4.3. Production Function

The mechanism by which a state’s current level of power, P;, generates
new output or potential for further power is described by the production
function, F(P;). This function is central to the model’s dynamics, as its
output directly influences the state’s capacity for future power accumula-
tion and consumption. In this framework, power itself is not merely a static
attribute but a productive asset capable of generating further capacity. The
specific form adopted for this production function

F(P) = (kﬂﬂ + 5> P, — %Pf (40)

is designed to capture both the initial growth impetus provided by power
and the inherent limitations that eventually arise. Here, power, P;, repre-
sents an aggregate measure of the state’s control over resources (natural,
human, and financial), its military strength (for security and projection),
and its capacity to organize and direct economic production.

The production function incorporates two key components reflecting the
dual nature of power’s impact on output. The linear term, ((1—3)/8+9)P;,
signifies that power generates growth, particularly when existing power lev-
els are relatively low. The coefficient (1 — 3)/8 + ¢ determines the initial
marginal product of power, where § can be seen as a baseline productivity
and the term (1 — )/ links this productivity to the state’s intertemporal
preferences encapsulated by the discount factor 5. This component em-
bodies the fundamental ability of power to mobilize resources and facilitate
economic activity, leading to a proportional increase in output at lower lev-
els of power. However, this growth is not unbounded. The quadratic term,
—((1 — B)/B)P?, introduces the critical concept of diminishing marginal
returns and negative feedback effects. As power P, escalates, this nega-
tive term becomes increasingly influential, ensuring that each additional
unit of power contributes progressively less to new output. This captures
a range of real-world phenomena, such as rising inefficiencies in large bu-
reaucracies, increased opportunities for corruption at high concentrations
of power, internal resistance to excessive control, or the over-exploitation
of resources. The concavity introduced by this quadratic term ensures that
the production of new output from power eventually faces constraints, a
crucial feature for modeling the cyclical dynamics of power.

4.4. Power Accumulation Dynamics and The Bellman Equation

The evolution of power over time is governed by the state constraint,
which describes how power P; in one period transitions to power P;;; in
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the next. This power accumulation dynamic is crucial as it defines the
feasible paths of power growth and decline available to the state. The
specific law of motion for power is given by:

Pt+1:F(Pt)—Ct+(].—6)Pt. (41)

where next period’s power P;;1 is determined by several factors. Firstly,
power grows from production, represented by F'(P;), which is the output
generated from the current stock of power as detailed in Section 4.3. Sec-
ondly, power declines from consumption ¢;, as resources allocated to imme-
diate consumption are not available for reinvestment into power. Finally,
the term (1 — §) P; reflects the portion of current power that remains after
accounting for internal decay and depreciation, where § is the deprecia-
tion rate of power. This depreciation, d P;, captures the natural erosion of
power that can occur through various channels such as institutional decay,
the obsolescence of existing military or economic structures, the corrosive
effects of unchecked corruption, or the gradual loss of ideological influence
if not actively maintained and reinforced. Thus, the net change in power
from one period to the next is the result of new productive output, less
what is consumed by the state and what is naturally lost to these forces
of decay. This equation serves as the fundamental constraint within which
the state must optimize its choices.

Given this law of motion for power, the state’s dynamic optimization
problem, originally stated as maximizing the sum of discounted utilities
over an infinite horizon (Equation 37), can be reformulated using the pow-
erful tool of dynamic programming. This approach breaks the complex
infinite-horizon problem into a sequence of simpler, recursive decisions,
leading to the Bellman equation. The Bellman equation expresses the re-
cursive nature of the state’s problem as follows:

V(Pt) = H}:?X [U(Ct, Pt) + ﬂ -V (F(Pt) -+ (1 - 5)Pt)] . (42)

This equation is the cornerstone of dynamic optimization. It states that
the maximum value V' (P;) achievable from the current state of power P;
is found by choosing the current consumption level ¢; to maximize the
sum of two components: the immediate utility u(c;, P;) derived in the
current period, and the discounted expected value 3 - V(P;+1) of being
in the subsequent state P;;1. Critically, the argument of the future value
function, F(P;) —ct+(1—98) P, is precisely the expression for P;; from the
power accumulation dynamics (Equation 41). The Bellman equation thus
elegantly links the present to the future, forcing the state to consider how
its current consumption choice ¢; not only yields immediate utility but
also determines the power level, and therefore the maximum achievable
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utility, in all subsequent periods. Solving this functional equation yields
the optimal policy for consumption ¢; as a function of P; and the true value
function V(P).

5. DERIVATION OF THE OPTIMAL DECISION RULE
(LOGISTIC FUNCTION)

To derive the optimal decision rule, we solve the Bellman equation us-
ing dynamic programming. First, we take the first-order conditions with
respect to consumption, which produce the Euler equation — a fundamen-
tal condition governing the intertemporal trade-off between consumption
and power accumulation. Simultaneously, we apply the envelope theorem,
which relates changes in the value function to changes in power. Solving
these equations together allows us to eliminate the value function derivative
and derive the state’s optimal policy for power accumulation.

The result is both elegant and profound: the optimal decision rule col-
lapses to a logistic function. This logistic function describes how power
evolves over time, governed by an intrinsic growth rate and self-limiting
feedback. The intrinsic growth rate reflects the state’s ability to accumu-
late power efficiently, while the self-limiting term represents internal con-
straints, such as corruption, resistance, or resource depletion. Mathemati-
cally, the logistic function arises because power accumulation is subject to
diminishing returns and internal decay. As power grows, internal pressures
increase, slowing further growth until the state reaches its capacity.

This logistic decision rule is significant because it is a canonical model
of nonlinear dynamics. Logistic models are known for producing complex
behavior — from stable equilibria to periodic cycles and chaos — depending
on the growth parameter. Thus, even a state pursuing an optimal policy
faces the inherent unpredictability of power dynamics. The derivation of
the logistic rule from first principles — starting from the state’s utility
maximization problem — demonstrates that complex and chaotic state
behavior is not a result of external shocks but a natural consequence of
optimal decision-making under nonlinear constraints.

To derive the First-order condition, we take the derivative of the Bellman
equation with respect to consumption ¢;:

au(ct, Pt) ’ 8Pt+1
_— V(P =0. 4
e, + BV (Prs1) Be, 0 (43)
Substituting to get the Euler Equation:
Pt—Ct‘FL—ﬁV/(Pt_k]):O. (44)
2(1-5)
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From the Envelope Theorem:

’ - 8u(ct, Pt> ’ 8Pt+1
Vi(P) = b + BV (Piy1) oD, (45)
Substituting, we have
/ / 1- ﬂ

In order to solve the dynamic programming problem, we guess the func-
tional form of V(P) first. Since both utility and production functions are
polynomial, the value function will also be a polynomial of the same form.
We guess the simplist form:

V(P) = kP,. (47)

Second, from the first-order condition for optimal consumption:

ou(ct, P)) , 0P 11
—_— V(P =0 48
e, + BV (Pry1) e, ; (48)
namely,
Pt—Ct-i-L—BVI(P,H,]):O. (49)
2(1-5)
Third, from the envelope condition for V' (P,):
8u(ct, Pt) 6Pt+1
4 _ TP\ ) /
VI(P) = op, + BV (Pit1) ap, (50)
where:
au(ct, Pt) -
—on oy
and
0Py1 1-p
— = —(1-2P, 1. 52
ap, 3 ( +) + (52)

Fourth, solving for V(P) by polynomial matching. Combining Equations
(49) and (50), we have

_p._ B 1-8,_
k=Pt 5o ﬁk+ﬁk< 5 zpt)+1>
B

=(1-20=-Bk) P+ (1= B+ 57—

1-p

(53)
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Since it is satisfied for any P;, we have

1
1-20-Bk=0=k= ———. 54
(1-5) S5 (54
And the constant condition will be satisfied:
B
k= ———. 55
T )

5.1. The Logistic Optimal Decision Rule

To obtain the logistic optimal decision rule P11 = AP;(1 — P;), we only
to derive an explicit expression for A, which is determined by production,
depreciation, and utility parameters. We derive it by analyzing the state’s
power accumulation equation:

Pt+1:F(Pt)—Ct+(1—5)Pt. (56)
From the production function:

-8
E

1-p

5 P2 (57)

F(P,) = ( + 5) P -

Substituting ¢;:

ﬂPt(l—Pt)+Pt—Ct

Py =
_1-5 B
=3 Pt(l—Pt)—m+ﬁk
- na-r)
:APt(lfpt% (58)
where
1-5
A=1"F
3 (59)

6. THE SPECIAL CASE OF F(P) = AP(1 — P)

The optimal decision rule derived from the dynamic optimization prob-
lem elegantly collapses to a logistic decision rule. This specific functional
form is canonical in the study of nonlinear dynamics and is well-known for
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its capacity to generate complex behavior, including chaos, from a simple
deterministic rule. From the derivation, the coefficient A in this logistic
decision rule is determined by underlying model parameters. Specifically,
as indicated by Equation (59), this relationship reveals that the growth
rate A of power in the logistic decision rule is intrinsically and inversely
linked to the discount factor 8. A higher discount factor 5 (representing
a more patient state that values the future more) leads to a lower growth
parameter A. Conversely, a lower 8 (a more impatient state) corresponds
to a higher A. Therefore, the subsequent analysis in this paper, which
explores the impact of varying the growth rate A on the stability and dy-
namics of power, is essentially an exploration of how changes in the state’s
time preference — specifically, its discount factor 8 or, equivalently, its
discount rate p (since 8 = 1/(1+ p)) — drive the system through different
behavioral regimes. A shift towards greater impatience (lower 3, higher p)
translates into a higher effective growth parameter A in the logistic decision
rule, pushing the system towards more complex dynamics.

Let X = [0,1] be the state space for normalized power P, and I be the
relevant range for the parameter A. We can define the quadratic family of
maps as

f(P) = AP(1 — P) for (P, A) € X x I, (60)

where P is the variable (power level) and A is the parameter (growth
rate). It’s also pertinent to recall the condition identified earlier for the
utility function (Equation 38) to exhibit diminishing marginal utility with
respect to consumption, which required § < 1/2, and thus A > 1. For
B approaching 0.5 from below, A approaches 1. If 8 approaches 0 (ex-
treme impatience), A would tend towards infinity. Therefore, the condition
B < 1/2 (ensuring diminishing marginal utility of consumption as discussed
in Section 4.2) corresponds to a growth parameter A > 1. However, the
logistic decision rule AP(1 — P) is typically studied for A in the range up
to A = 4 to keep P within the [0,1] interval (for Py € [0,1]). Therefore,
the most interesting dynamics of the logistic decision rule, including the
transition to chaos, occur for A values between 1 and 4. Thus, the sub-
sequent analysis focusing on the impact of changes in the value of A will
primarily consider this range, which is consistent with a state that is rela-
tively impatient (8 < 1/2) yet not so extremely impatient that the power
dynamics become immediately explosive or ill-defined within the normal-
ized [0, 1] power space. When A < 3, it is easy to describe the dynamical
System:

1. For 0 < A < 1, the equation f(P) = P has a unique solution P = 0,
where we also have f'(0) = A < 1. Therefore, from Proposition 3, P = 0
is a locally attracting fixed point (also for A = 1). From any initial point
mg € X, it will monotonic converge to P = 0.
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2. For 1 < A < 3, the equation f(P) = P have two solutions P = 0
and P°* = (A — 1)/A. The derivatives are f'(0) = A > 1 and f/'(P®) =
2 — A € (—1,1). Therefore, from Proposition 3, P = 0 is a repelling fixed
point, while P* = (A — 1)/A is a locally attracting fixed point (also for
A = 3). However, for each A € I, f has exactly one critical point where
f'(P) =0, and this critical point (which equals 0.5) is independent of the
parameter A. Therefore, the only difference is that from any initial point
Py € X, it will monotonic converge to P* = (A —1)/A when 1 < A <2,
while oscillations converge to P* = (A —1)/A when 2 < A < 3.

3. For 3 < A < 4, the dynamic of f can be extremely complex. Under
this case, we have

* 1 c c
P —argglg))((f(P)—i—AP (1—P°), (61)
. A
P™ = f(P") =7, (62)
ie.
1—/1-4
PC =
5 (63)

Therefore, from condition (27), the dynamical system (X, f) exhibits topo-
logical chaos when

A2 4 1—y/1-4
o<t 1-9 5 2 <

1 < ———

4

S

. (64)

N | =

Consequently, for all A such that 3.83 < A < 4, chaos trajectories exists.

Using the following special example, we can show the sensitive dependence
on initial condition of the dynamical system. Two examples are shown in
the following Figure 1, in which the two trajectories have identical law of
motion

J(P) =4P(1 - P), (65)

but differing only in their initial starting point. The red trajectory starts
with Py = 0.1, and the green one starts with P} = 0.10001. We can see
that both trajectories do not settle into a repeating pattern, underscoring
the non-periodic nature of chaotic systems .Although the initial conditions
are very close, the trajectories start to diverge rapidly due to the chaotic
nature of the system. This divergence becomes noticeable relatively early
in the time series. What’s more, as time progresses, the specific oscillation
patterns of the red and green lines differ significantly, demonstrating the
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sensitivity of chaotic systems to initial conditions. The peaks and troughs
do not align perfectly between the two lines. In summary, the chaotic
dynamic system depicted in the figure demonstrates how tiny variations in
initial conditions can lead to vastly different trajectories, showcasing the
complexity and unpredictability inherent in chaotic systems.

FIG. 1. The Sensitive Dependence on Initial Condition of the Dynamical System

——— Initial Py = 0.10000
—— Initial P = 0.10001
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7. THE STABILITY OF TOTAL POWER
7.1. Equilibrium, Value Function, and Steady State Analysis

With the logistic decision rule established, we analyze the system’s equi-
librium properties and long-term behavior. At low growth rates, the system
converges to a single stable equilibrium, where power remains constant over
time.

Solving the steady-state condition — where power no longer changes —
yields a unique equilibrium value for power. At this equilibrium, consump-
tion, value function, and power accumulation are all balanced. The value
function, derived from the Bellman equation, provides additional insights
into the state’s long-term utility. As a quadratic polynomial, it exhibits
a concave shape with a distinct peak, indicating that states achieve the
highest long-term utility at moderate power levels.

Proof. The fixed points satisfy

P* = f(P*) = AP*(1 - P*). (66)
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Therefore we have P* =0 or 1 = A(1 — P*), which means
Pr=1-—. (67)

The origin is a fixed point for all A, whereas P* =1 — 1/A is in the range
of allowable P only if A > 1.

The stability depends on the multiplier f'(P*) = A — 2AP*. Since
f/(0) = A, the origin is stable for A < 1 and unstable for A > 1. At the
other fixed point,

F(P)=A—24 <1—;> =2- A (68)

Therefore, the fixed point P* =1—1/A is stable for —1 < (2—A) < 1, i.e.,
for 1 < A < 3. It is unstable for A > 3. |

FIG. 2. Simulated Power Trajectory Using Logistic Decision Rule
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The equilibrium is stable under low growth rates, meaning that small
perturbations return the system to its steady state. However, as growth
rates increase, the equilibrium becomes unstable. Instead of returning to a
fixed point, the system begins to oscillate, marking the onset of nonlinear
dynamics. This transition from stability to oscillation is a critical threshold,
signaling that internal feedback loops — such as corruption or rebellion —
are beginning to destabilize the state. The value function, which measures
long-term success, peaks before the onset of these oscillations, indicating
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FIG. 3. Phase Portrait (Power vs. Next-Period Power)
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that attempts to push beyond this equilibrium reduce the state’s total
welfare.

7.2. Stability Under Shocks and Damped Oscillations

Figure 4 demonstrates the behavior of the power accumulation system
under low growth conditions (A = 2.7), where the system converges to
a single stable equilibrium. Under low growth conditions (A = 2.7), the
power accumulation system exhibits a robust convergence to a single equi-
librium point, calculated as

1
P*=1—— ~0.63.
a1 0.63 (69)

This steady-state represents a balance between power production, con-
sumption, and depreciation, where the state’s investments in power ac-
cumulation are precisely offset by the costs of maintaining control and
addressing internal decay. Remarkably, regardless of initial power levels
— whether a fledgling state begins with minimal influence or an estab-
lished empire starts near its peak — all trajectories gravitate toward this
equilibrium. This universality arises from the logistic decision rule’s inher-
ent stability at low growth rates, where diminishing returns and negative
feedback mechanisms dominate. Historically, such behavior mirrors em-
pires like the Han Dynasty or the Roman Empire during their Pax Sinica
and Pax Romana eras, where centralized governance and measured expan-
sion sustained equilibrium for centuries. The equilibrium’s mathematical
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inevitability underscores the model’s core insight: controlled growth and
balanced resource allocation are prerequisites for long-term stability.

FIG. 4. Single Equilibrium and Stability (Low A, Stable Regime)
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The equilibrium at P* = 0.63 is not only attainable but resilient. Small
deviations — whether from external shocks like invasions or internal dis-
ruptions such as short-term policy errors — decay exponentially over time,
restoring the system to its steady state. This stability is rooted in the
logistic rule’s negative feedback structure: as power approaches the equi-
librium, overaccumulation triggers self-correcting mechanisms (e.g., rising
corruption or inefficiency) that dampen growth, while underaccumulation
incentivizes reinvestment. Linear stability analysis confirms that the eigen-
values of the system’s Jacobian at P* lie within the unit circle, ensuring
asymptotic stability. Historical parallels include the resilience of the Ming
Dynasty’s bureaucracy in the 15th century, which withstood peasant revolts
and fiscal crises through institutional reforms, or the Abbasid Caliphate’s
recovery from the Anarchy at Samarra. These regimes temporarily deviated
from equilibrium but reverted through systemic adjustments, illustrating
the model’s prediction that stable states inherently resist collapse under
moderate perturbations.

Certain trajectories exhibit mild oscillations before settling into equilib-
rium, a hallmark of damped oscillations driven by the logistic rule’s delayed
feedback. For instance, a state recovering from a crisis might overshoot P*
due to aggressive reinvestment, only to face overextension and corrective
contraction. These oscillations mirror the behavior of a damped harmonic
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oscillator, where energy (here, power) dissipates over cycles until stability
is restored. Historically, such patterns manifested in the cyclical reforms
of the Tang Dynasty, where land redistribution policies alternated with
periods of aristocratic consolidation, or in the Byzantine Empire’s alter-
nating centralization and decentralization. These oscillations reflect not
instability but adaptive recalibration — a dynamic equilibrium maintained
through self-limiting governance.

This regime of controlled growth and stability offers a blueprint for en-
during power. By aligning policies with the logistic rule’s equilibrium dy-
namics — prioritizing moderate expansion, balancing consumption with
reinvestment, and institutionalizing feedback mechanisms — states can
avoid the chaotic tipping points that precede collapse. The value func-
tion V(P) , peaking near P*, further validates this equilibrium as the
utility-maximizing state. Empires that adhered to such principles, like the
Gupta Empire under Chandragupta II or the early Ottoman Devgirme sys-
tem, achieved centuries of stability. Conversely, regimes that ignored these
dynamics, pushing growth rates beyond critical thresholds, inevitably trig-
gered period-doubling cascades and chaos. Thus, the lesson is clear: sta-
bility is not passive but a deliberate alignment with the nonlinear laws
governing power — a dance between ambition and restraint, growth and
decay.

8. TRANSITION FROM STABILITY TO OSCILLATIONS
8.1. The First Bifurcation: Emergence of 2-Period Cycles

As the state’s growth rate continues to rise, the system exhibits increas-
ingly complex behavior. Initially, the steady-state equilibrium gives way
to a two-period cycle, where power alternates between two distinct levels.
This phenomenon, known as a limit cycle, represents a stable pattern of
boom-and-bust dynamics, where the state experiences repeated cycles of
growth and decline. With further increases in growth rates, the cycle dou-
bles again, creating a four-period cycle, followed by an eight-period cycle,
and so on. This pattern of repeated period-doubling is a hallmark of non-
linear systems approaching chaos. We can prove that the logistic decision
rule has a 2-cycle for all A > 3.

Proof. A 2-cycle exists if and only if there are two points m and n such
that f(m) = n and f(n) = m. Which means that there must exists a p
satisfy
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where f(P) = AP(1 — P) . Hence m is a fixed point of the second-iterate
map

F2(P) = f(f(P)). (71)
To find m and n, we need to solve for the points where the graph intersects

the diagonal, i.e., we need to solve the fourth-degree equation f2(P) = P.
Expansion of the equation gives

A*P(1 - P)1 — AP(1 - P)] - P=0. (72)
After factoring out P and P — (1 — 1/A),we have
—P(AP+1— A) (A’P? — (A’ + A)P+ (1+ A)) = 0. (73)
Solving the resulting quadratic equation, we obtain a pair of roots

L A+1+/(A-3)(A+1) (74)
o 24 ’

m,n

which are real for A > 3. Thus a 2-cycle exists for all A > 3, as claimed. |
Also, we can prove that the 2-cycle above is stable for 3 < A < 1+ /6.

Proof. In order to analyze the stability of a cycle, we need to reduce
the problem to a question about the stability of a fixed point. Both m
and n are solutions of f2(P) = P, hence m and n are fixed points of the
second-iterate map f2(P). The original 2-cycle is stable precisely if m and
n are stable fixed points for f2.

To determine whether m is a stable fixed point of f2, we compute the
multiplier

A= dipf(f(P))P:m = f'(f(m))f'(m) = f'(n)f'(m). (75)

If P = n, we can obtain the same multiplier A. Therefore, when the m and
n branches bifurcate, they must do so simultaneously. After carrying out
the differentiations and substituting for m and n, we obtain

A=Al —-2n)-A(1—2m)
=A*[ 1-2(m+n)+ 4mn]
A+1 A+1 (76)
— A2 _9. .
=A°|1-2 a1 +4 12
=4+24 - A%

Therefore the 2-cycle is linearly stable for ‘4 +2A — A2| < 1,ie., for 3 <
A<1++6. 1
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FIG. 5. Transition from Stability to Oscillations (Higher A)
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Figure 5 above illustrates the system’s behavior as the growth parame-
ter increases to A = 3.2. At a growth parameter of A = 3.2, the system
undergoes a critical transition: the stable equilibrium P* = 1—1/A, which
dominated the low-growth regime, destabilizes. Instead of converging to a
single steady state, trajectories bifurcate into a 2-cycle, oscillating indefi-
nitely between two distinct power levels. This bifurcation occurs when the
equilibrium’s stability criteria — rooted in the eigenvalues of the system’s
Jacobian — cross the unit circle, shifting from a stable node to a saddle
point. The logistic decision rule P11 = AP,(1 — P;) now drives the system
into alternating phases of overaccumulation and contraction. Conversely,
undershooting the equilibrium incentivizes reinvestment, spurring recov-
ery. These oscillations reflect a fundamental shift in dynamics: the system
no longer “forgets” perturbations but incorporates them into a structured,
repeating pattern.

The emergence of a 2-cycle marks the first stage of the period-doubling
cascade, a universal pathway to chaos observed in nonlinear systems. As A
increases beyond the critical threshold (A = 3.0), the system’s eigenvalues
bifurcate, splitting the single equilibrium into two alternating states. While
the 2-cycle itself remains predictable, its existence signals that the system
has entered a regime where internal feedback loops — such as corruption,
bureaucratic inertia, or resistance — no longer dampen oscillations but
sustain them. The transition mirrors the behavior of a pendulum swinging



THE STABILITY AND INSTABILITY OF POWER 555

between extremes, where each swing grows more pronounced until stability
is irrevocably lost.

Although the 2-cycle retains short-term predictability, the system’s re-
silience to shocks has fundamentally eroded. Small deviations no longer
decay but instead perturb the trajectory into the oscillatory regime, where
power levels alternate indefinitely. The system now resides in a limit cy-
cle — a closed orbit in phase space — where power oscillates between
high and low states. For instance, aggressive expansion might temporarily
elevate power, only to trigger overextension and collapse, followed by re-
covery. These oscillations are self-sustaining: the logistic rule’s nonlinear
terms ensure that growth and decay phases feed into one another, creating
a perpetual cycle of crisis and reform.

The 2-cycle regime finds striking parallels in the late Roman Empire,
where alternating phases of expansion and contraction defined its decline.
During the 3rd-5th centuries CE, Rome oscillated between military con-
quests (e.g., Diocletian’s reconquests) and internal crises (e.g., the Crisis of
the Third Century, barbarian invasions). Each recovery phase — marked
by administrative reforms or territorial consolidation — temporarily re-
stored stability but sowed seeds of overextension. The empire’s trajectory
mirrored the model’s 2-cycle: power surged after reforms (high P), only to
collapse under fiscal strain or rebellion (low P), repeating until systemic
collapse in 476 CE. Similarly, the Eastern Roman Empire’s alternating cen-
tralization and decentralization under the Thematic System reflected os-
cillatory dynamics. These historical cycles underscore the model’s insight:
once growth surpasses critical thresholds, even optimal policies cannot pre-
vent destabilizing oscillations, setting the stage for eventual chaos.

The transition to 2-cycles reveals a perilous phase in state dynamics.
While the system remains temporarily predictable, its loss of equilibrium
stability demands proactive governance. States must avoid policies that
amplify oscillations, such as abrupt centralization or austerity, which risk
deepening feedback loops. Instead, gradual recalibration — aligning growth
with feedback constraints — can delay further bifurcations. However, the
period-doubling cascade is inexorable once initiated: unchecked growth
inevitably propels systems toward higher cycles and chaos. Thus, the 2-
cycle regime serves as an early warning, urging states to temper ambition
with restraint, lest they accelerate their own demise.

8.2. Emergence of Limit Cycles (Intermediate A)

Figure 6 above shows the system’s behavior when the growth parameter
increases to A = 3.5. At a growth parameter of A = 3.5, the system enters
a regime of heightened complexity, transitioning from the previously ob-
served 2-cycle to a 4-cycle. This bifurcation marks the second stage of the
period-doubling cascade. Here, the logistic decision rule P,y; = AP,(1—F;)
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amplifies nonlinear feedback: each oscillation between power levels triggers
further subdivisions, splitting the trajectory into four distinct phases of
expansion and contraction. Mathematically, this transition occurs when
the eigenvalues of the system’s Jacobian cross the unit circle, destabiliz-
ing the 2-cycle and bifurcating it into a 4-cycle. The system now resides
in a structured yet precarious phase, where power oscillates between four
equilibrium-like states, each phase feeding into the next through delayed
feedback loops.

FIG. 6. Onset of Limit Cycles at Intermediate A
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Despite losing a single equilibrium, the system exhibits stable oscilla-
tions, forming a closed, repeating orbit in phase space — a hallmark of limit
cycles. These oscillations remain predictable, as trajectories follow a deter-
ministic pattern of alternating between four power levels. Historically, such
stability-in-oscillation mirrors the Ming Dynasty’s cyclical reforms, where
land redistribution and tax policies temporarily restored balance before re-
newed elite consolidation. The system’s ability to sustain these oscillations
underscores a critical insight: even in volatile regimes, structured patterns
can persist until growth parameters push the system closer to chaos.

The emergence of a 4-cycle at A = 3.5 signals the continuation of the
period-doubling cascade. Each bifurcation — from 2 to 4, then 8 cycles —
halves the interval to the next instability, accelerating the system toward
chaos. By A = 3.5, the system has passed two critical bifurcations, with
each cycle doubling reflecting a deeper entanglement of nonlinear feedback.
The phase portrait of this regime would reveal four distinct nodes, each
corresponding to a phase of power — expansion, peak, contraction, and
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trough — that repeat ad infinitum. Yet, this predictability is fleeting;
further increases in A will trigger additional doublings, culminating in a
breakdown of periodicity.

The 4-cycle regime finds a striking parallel in the cyclical rise and fall
of Chinese dynasties, such as the Han, Tang, and Ming. Each dynasty
followed a recurring pattern: initial consolidation and expansion (high P),
peak stability marked by cultural and economic flourishing, gradual de-
cline due to bureaucratic corruption or peasant unrest (low P), and even-
tual collapse followed by renewal under a new regime. The Ming Dynasty,
for instance, oscillated between agrarian reforms and aristocratic backlash,
mirroring the model’s 4-cycle dynamics. Similarly, the Tang Dynasty’s An
Lushan Rebellion and subsequent recentralization efforts exemplify how
systems can temporarily stabilize within oscillatory regimes before exter-
nal or internal shocks push them toward chaos. These historical cycles
underscore the model’s predictive power: once growth surpasses critical
thresholds, states enter a phase where stability is transient, and collapse
becomes a matter of time.

The 4-cycle regime serves as a critical warning: growth-driven policies,
even when initially successful, risk entrenching destabilizing oscillations.
States must recognize that each period-doubling bifurcation reduces the
window for corrective action. For example, the Ming Dynasty’s failure to
address land inequality during its oscillatory phase hastened its chaotic
collapse. To mitigate this, governance must prioritize dampening feedback
mechanisms — such as decentralizing power or curbing elite excess — to
delay further bifurcations. Only by reducing growth parameters (A) can
states revert to stable equilibria. Thus, the 4-cycle regime epitomizes the
peril of unchecked ambition: empires thrive not by perpetual growth, but
by harmonizing expansion with the nonlinear laws that govern power’s rise
and fall.

9. THE INSTABILITY OF TOTAL POWER
9.1. Chaotic Regime at High A

Figure 7 above captures the system’s behavior when the growth param-
eter increases to A = 3.9, entering the chaotic regime. At a growth param-
eter of A = 3.9, the system enters a regime of full-blown chaos, marked by
the complete breakdown of predictable patterns. Unlike earlier regimes
characterized by stable equilibria or structured oscillations, trajectories
now exhibit erratic, aperiodic fluctuations. This chaotic behavior stems
from the logistic decision rule P;y; = AP;(1 — P;) amplifying nonlinear in-
teractions between power accumulation, inefficiencies, and corrective con-
tractions. This sensitivity — the hallmark of the butterfly effect — ensures
that even nearly identical starting power levels diverge rapidly, rendering
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long-term forecasting impossible. The phase portrait of this regime would
reveal a fractal-like scatter of points, with no closed orbits or repeating
sequences, reflecting the system’s irreversible departure from order.

FIG. 7. Chaotic Regime at High A (A = 3.9)
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Figure 7 starkly illustrates the butterfly effect by simulating three trajec-
tories with nearly identical initial power levels (P, = 0.500,0.501,0.502).
Despite their proximity, these paths diverge dramatically within a few it-
erations, showcasing the chaotic system’s hypersensitivity. For instance, a
minor policy shift or localized rebellion — analogous to a 0.001 difference
in Py — could cascade into vastly different outcomes, such as rapid collapse
or temporary recovery. Historically, such sensitivity mirrors the fragility of
states in terminal decline: the Soviet Union’s collapse in 1991, triggered by
seemingly minor reforms (perestroika) that spiraled into systemic disinte-
gration, or the Roman Empire’s fall after centuries of accumulated strain
from border crises and fiscal overextension.

In this chaotic regime, the structured oscillations of limit cycles (e.g.,
2- or 4-cycles) disintegrate into irregular, unpredictable fluctuations. The
system no longer adheres to periodicity but instead traverses a dense, non-
repeating set of power levels. This collapse of order arises from the cumu-
lative effects of the period-doubling cascade. By A = 3.9, the system has
surpassed the critical threshold (A a2 3.57) where periodic windows vanish,
leaving only chaos: overaccumulation triggers catastrophic declines, while
recovery phases are cut short by renewed feedback pressures. The resulting
trajectory resembles the Ming Dynasty’s final decades, where peasant re-
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volts, corruption, and invasions created a vortex of crises with no coherent
pattern, culminating in the dynasty’s chaotic 1644 collapse.

The chaotic regime finds its historical counterpart in states experiencing
terminal disintegration. The Soviet Union’s trajectory (A = 3.9) exem-
plifies this: decades of centralized control under Stalin gave way to er-
ratic reforms (Khrushchev’'s Thaw, Brezhnev’s stagnation), followed by
Gorbachev’s glasnost, which unleashed uncontrollable political and eco-
nomic forces. Similarly, the Western Roman Empire’s collapse in 476 CE
— precipitated by barbarian invasions, fiscal collapse, and administrative
fragmentation — mirrors the model’s chaotic phase. Both cases reflect a
critical insight: once power dynamics enter chaos, recovery becomes mathe-
matically impossible. The system’s internal feedback loops, now unmoored
from stabilizing mechanisms, drive irreversible decline.

The chaotic regime underscores the existential peril of unchecked power
accumulation. States must recognize that surpassing critical growth thresh-
olds (A > 3.57) locks them into a deterministic yet unpredictable path to-
ward collapse. Proactive measures — such as decentralizing power, curbing
elite excess, or prioritizing stability over growth — can delay bifurcations,
but chaos is inevitable once initiated. The model thus offers a grim les-
son: empires thrive not by maximizing power but by harmonizing ambition
with the nonlinear laws that govern its rise and fall. In chaos, even opti-
mal policies become futile, as the Soviet Union and Rome learned too late.
Stability, not supremacy, is the ultimate safeguard against collapse.

9.2. Combined Bifurcation Diagram (Stability, Limit Cycles,
and Chaos)

The bifurcation diagram above (Figure 8) provides a comprehensive view
of how the system transitions from stability to chaos as the growth param-
eter A increases from 2.5 to 4.0.

At low growth parameters (A = 2.5 to A & 3.0), the system converges
to a single equilibrium point P* = 1 — 1/A, reflecting a regime of stabil-
ity and predictability. In this phase, all trajectories — whether starting
from nascent or near-peak power levels — gravitate toward the same steady
state, where power accumulation is balanced by depreciation and consump-
tion. The equilibrium’s resilience is mathematically rooted in negative
feedback loops from the logistic decision rule, which dampen deviations
and restore balance. Historically, this regime mirrors the Pax Romana or
the Han Dynasty’s golden age, where measured expansion, institutional
checks, and resource equilibrium sustained centuries of stability.

As A surpasses 3.0, the equilibrium destabilizes, bifurcating into a 2-
cycle where power oscillates between two distinct levels. This marks the
first period-doubling bifurcation. The eigenvalues of the system’s Jacobian
cross the unit circle, transforming the stable node into a saddle point. The
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FIG. 8. Combined Bifurcation Diagram (Stability, Limit Cycles, Chaos)
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logistic rule’s nonlinear feedback now drives alternating phases of overaccu-
mulation and contraction, creating self-sustaining oscillations. Historically,
this transition parallels the late Roman Empire’s cyclical crises and reforms
(3rd—5th centuries CE), where military overextension and fiscal austerity
alternated with temporary recoveries, foreshadowing systemic fragility.

Between A = 3.4 and A = 3.57, the system enters a regime of multi-
point limit cycles, evolving from 2-cycles to 4-, 8-, and higher-order cycles.
Each bifurcation halves the interval to the next instability, accelerating
the system toward chaos. These cycles represent structured yet precarious
oscillations, where power fluctuates between predictable highs and lows.
The Ming Dynasty’s cyclical reforms — land redistribution followed by
elite consolidation — exemplify this phase, where stability was transient,
and each cycle sowed seeds of deeper instability.

Beyond A = 3.57, the system enters full chaos, marked by aperiodic, un-
predictable fluctuations. The bifurcation diagram dissolves into a fractal-
like scatter of points, reflecting the collapse of order, confirming sensitivity
to initial conditions (the butterfly effect): trajectories diverge exponen-
tially from nearly identical starting points. This regime mirrors the Soviet
Union’s disintegration (1991), where minor reforms (perestroika) cascaded
into uncontrollable political and economic fragmentation. Chaos here is
deterministic yet irremediable; no policy can restore stability, as internal
feedback loops dominate.
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Even within chaos, brief “periodic windows” emerge — narrow intervals
(e.g., A ~ 3.83) where the system transiently regains periodicity, such as
3-cycles. These windows reflect the system’s residual nonlinear coherence,
akin to temporary stabilization efforts during broader collapse. The New
Deal reforms during the Great Depression briefly restored economic order
amid global turmoil, exemplifying such ephemeral respites. However, these
windows close rapidly as A increases, reaffirming chaos’ inevitability.

Figure 8 synthesizes these transitions into a single “roadmap of col-
lapse”, illustrating how states evolve from stability to chaos through period-
doubling cascades. The Feigenbaum constant’s universality underscores
that empires — whether Roman, Ming, or Soviet — follow identical math-
ematical trajectories. The diagram’s vertical axis (power levels) and hor-
izontal axis (growth parameter A) encode a dire lesson: unchecked power
accumulation inexorably triggers bifurcations, eroding resilience until chaos
prevails. History’s collapses are not random failures but deterministic out-
comes of nonlinear dynamics, where ambition outpaces the self-regulating
mechanisms that sustain equilibrium.

9.3. Zoom into the Period-3 Window: Onset of Chaos

Figure 9 above highlights the period-3 window within the chaotic regime
(A ~ 3.82 to 3.87), offering a close-up view of the onset of chaos. Within the
chaotic regime (A =~ 3.82 to 3.87), Figure 9 reveals a striking phenomenon:
the system temporarily stabilizes into a 3-point cycle, where power alter-
nates between three distinct levels before repeating. This period-3 cycle
emerges as a rare “island of order” amidst chaos, governed by the same
logistic decision rule (P,+; = AP;(1 — P;)) that otherwise produces erratic
fluctuations. Mathematically, this occurs when the Lyapunov exponent —
a measure of chaos intensity — briefly dips below zero, allowing trajecto-
ries to lock into a predictable pattern. Historically, this mirrors regimes
that stabilize temporarily through targeted reforms, only to later collapse
under renewed instability. Any point p in a period-3 cycle repeats every
three iterates by definition, so such points satisfy

p= £ v = FF (D)), (77)

where f(z) = Az(1 — z). When we plot f3(x) for A = 3.835, intersections
between the graph and the diagonal line correspond to solutions of f2(z) =
x. There are eight solutions, with three stable period-3 cycles and three
unstable cycles. However, when A = 3.8, these six cycles have vanished.
Therefore, there exists some A € (3.8, 3.835), the graph of f3(z) must have
become tangent to the diagonal. At this critical value, the period-3 cycles
are created in a tangent bifurcation.
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FIG. 9. Zoom into the Period-3 Window: Onset of Chaos
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The period-3 conditions can be expressed:

f(z) = Az(1 — x), (78)
f2(x) = f(f(2)) = —A%(=1 4+ 2)2(1 — Az + Az?), (79)

and

f2(x) = f(f*(2))
= —A3(—1+2)x(l — Az + Az?)(1 — A%z + A%2? + A32? — 24323 + A3a2Y)
=z
(80)
We are also given that the onset of period-three is heralded by a tangent
bifurcation. Hence f3 has slope 1 at each intersection with the diagonal.
At x, this yields

d(f*(x)) _ d(f*(z)) d(f*(x)) d(f(z))

dx d(f*(z)) d(f(z))  do
= A%(1 = 2f%(2))(1 - 2f(2))(1 — 22)
=1

(81)

By simultaneously solving Equations (80) and (81) for the unknowns = and
A, many pairs of analytical solutions can be obtained. Here, we only focus
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on the real solutions of A within the range of [1, 4], which are

=0 r=0.514... d z=0.956... (82)
A=1"\1A=1+2v2 M a=14+2v2"
Therefore, the value of A at the tangent bifurcation is given exactly by
142V2~3.8284.... (83)

The period-3 window exemplifies a fundamental property of chaotic sys-
tems: even in regimes dominated by unpredictability, periodic windows
can arise. These windows are not anomalies but intrinsic features of the
Feigenbaum diagram, governed by universal constants like § ~ 4.669. In
Figure 9, the 3-cycle acts as a transient attractor, drawing trajectories into
a repeating loop. For states, this represents a fleeting opportunity to re-
gain stability through policy interventions. However, the window’s narrow
parameter range (A &~ 3.82 to 3.87) underscores its fragility. The Ming
Dynasty’s late-stage reforms, such as tax relief measures in the 1620s, tem-
porarily mitigated peasant unrest but could not forestall the eventual Qing
conquest — a historical parallel to this mathematical ephemerality.

As A increases beyond 3.87, the 3-cycle destabilizes, fracturing into
chaotic oscillations. This transition follows the period-doubling cascade in
reverse: the stable 3-cycle undergoes bifurcations (e.g., 6-cycle, 12-cycle)
before dissolving into chaos. The Lyapunov exponent, which had briefly
turned negative, surges back into positive territory, signaling the resurgence
of hypersensitivity to initial conditions. The system’s return to chaos re-
flects the logistic rule’s inherent instability at high growth rates. This
mirrors the Soviet Union’s final years: Gorbachev’s reforms briefly sta-
bilized the economy (perestroika) but inadvertently accelerated systemic
fragmentation, leading to irreversible collapse.

The period-3 window finds a poignant analogy in the New Deal reforms
(1933-1939) during the Great Depression. Like the 3-cycle, Franklin D.
Roosevelt’s policies introduced temporary stability through public works
and financial regulation, creating a “window” of recovery. However, this
order was short-lived; the onset of WWII in 1939 plunged the global system
into a new phase of chaos, akin to the model’s return to irregular oscilla-
tions at A > 3.87. The New Deal’s transient success — and subsequent
overshadowing by global conflict — illustrates how even effective inter-
ventions in chaotic regimes are ultimately constrained by larger nonlinear
dynamics.

Figure 9 underscores a critical lesson: stability in chaos is transient.
Periodic windows offer fleeting chances for recovery, but their brevity de-
mands humility. States must recognize that reforms within chaotic regimes
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(A > 3.57) are stopgaps, not solutions. The Feigenbaum constant’s uni-
versality implies that collapse remains inevitable once chaos dominates.
Thus, the optimal strategy is preventive — curbing growth parameters (A)
to avoid crossing critical thresholds. Just as the Ming Dynasty’s reforms
delayed but did not prevent collapse, so too do periodic windows in chaos
theory remind us that power’s mathematical laws brook no exceptions.

10. COMBINED BIFURCATION DIAGRAM TO CAPTURE
THE ENTIRE TRANSITION FROM STABILITY TO CHAOS

10.1. Overlay of Lyapunov Exponents on Bifurcation Diagram
(Measuring Chaos Intensity)

In order to be called “chaotic,” a system should also show sensitive de-
pendence on initial conditions, in the sense that neighboring orbits separate
exponentially fast, on average. We can define the Lyapunov exponent for
a chaotic differential equation intuitively. Given some initial condition xg,
consider a nearby point x4+ dg, where the initial separation Jy is extremely
small. Let &, be the separation after n iterates. If

|6n] = [do] €™, (84)

then A is called the Lyapunov exponent. A positive Lyapunov exponent is
a signature of chaos.

A more precise and computationally useful formula for A can be derived.
By taking logarithms and noting that

5n = f"(1-0+50) _fn(xO)a (85)
we obtain
1 On
Ar —In|—

- n %

_ lln f" (w0 + o) — f"(z0) (86)
n (50
1

= I |(f") (o)l

where we've taken the limit §; — O in the last step. The term inside the
logarithm can be expanded by the chain rule:

(") o) = T £/(xo). (87)
1=0
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Therefore,

1
A~ —In
n

17| = S il (55)
1=0 =0

If this expression has a limit as n — oo, we define that limit to be the
Lyapunov exponent for the orbit starting at zq:

n—1
A= lim {i Zln|f'<xi>|}. (59)
=0

Note that A depends on zy. However, it is the same for all zy in the basin
of attraction of a given attractor. For stable fixed points and cycles, A is
negative; for chaotic attractors, A is positive.

FIG. 10. Bifurcation Diagram with Lyapunov Exponent Overlay
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Figure 10 above overlays the Lyapunov exponents (red curve) on the
bifurcation diagram (blue points), providing a detailed measurement of
chaos intensity. Beyond A = 3.57, the Lyapunov exponent becomes pos-
itive, marking the onset of chaos. In this regime, the system exhibits
extreme sensitivity to initial conditions — the butterfly effect — where
infinitesimal differences in starting power levels diverge exponentially over
time. For example, trajectories starting at Py = 0.500 and P, = 0.501
rapidly follow irreconcilable paths, rendering long-term predictions impos-
sible. This mathematical inevitability mirrors historical collapses like the
Soviet Union’s disintegration (1991), where minor reforms (perestroika)
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cascaded into uncontrollable political fragmentation. The positive Lya-
punov exponent confirms that chaos is intrinsic to the system’s dynamics,
not a product of external shocks. Once entered, the chaotic regime becomes
a deterministic yet unpredictable trap, where recovery is mathematically
precluded.

When the Lyapunov exponent is above zero, the system exhibits chaotic
behavior, where small differences in initial conditions result in vastly dif-
ferent outcomes (Butterfly Effect). This occurs beyond A ~ 3.57, marking
the onset of chaos.

At critical thresholds (e.g., A =~ 3.0, 3.45), the Lyapunov exponent touches
zero, signaling period-doubling bifurcations. These points mark transitions
between stability and instability, such as the shift from a single equilibrium
to a 2-cycle or from a 4-cycle to an 8-cycle, illustrating the universal path-
way to chaos. Historically, these transitions resemble the Roman Empire’s
shift from the Pax Romana to late-stage oscillations, where reforms tem-
porarily stabilized power but deepened systemic fragility. Each bifurcation
reflects a loss of resilience, as feedback loops amplify rather than dampen
disturbances.

For A < 3.0, the Lyapunov exponent remains negative, indicating stabil-
ity. Here, the system converges to a single equilibrium or stable limit cycle,
resisting minor perturbations. Negative exponents reflect the dominance
of self-correcting feedback mechanisms, such as bureaucratic efficiency or
resource equilibrium. This regime parallels the Han Dynasty’s Pax Sinica
or the Ottoman Devsgirme system, where balanced governance sustained
centuries of stability. Even in limit cycles (3.0 < A < 3.57), negative ex-
ponents ensure oscillations remain bounded and predictable, akin to the
Ming Dynasty’s cyclical reforms before chaos emerged.

Within the chaotic regime (A > 3.57), narrow intervals like A ~ 3.83
exhibit periodic windows, where the Lyapunov exponent dips below zero.
These windows represent transient returns to stability, such as 3-cycles,
amidst broader chaos. Historically, these brief respites mirror the New
Deal reforms during the Great Depression — a temporary stabilization
before WWII’s global upheaval. Such windows underscore chaos’s nuanced
structure: even deterministic collapse contains latent order, though it is
fleeting. The persistence of these windows, governed by universal constants
like Feigenbaum’s, confirms that empires in decline may experience illusory
recoveries before final disintegration.

Figure 10’s overlay of Lyapunov exponents on the bifurcation diagram
serves as a diagnostic tool for empires. By monitoring the exponent’s sign,
states can identify proximity to chaos. Negative values advocate for poli-
cies that reinforce equilibrium (e.g., decentralizing power), while positive
values demand crisis mitigation. Periodic windows offer fleeting chances
for reform, but their transience warns against complacency. Ultimately,
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the overlay codifies a grim truth: stability is fragile, chaos is inexorable,
and the laws governing power’s collapse are as immutable as mathematics
itself.

10.2. Period-Doubling Cascade and the Road to Chaos

As the growth parameter A increases, the intervals between bifurcation
points — where the system transitions from stable cycles (e.g., 2-cycle)
to higher-order cycles (e.g., 4-cycle, 8-cycle) — shrink geometrically. The
ratio of these intervals converges to d, a universal constant observed across
diverse nonlinear systems, from fluid turbulence to biological populations.
In the context of power dynamics, this convergence reveals that state col-
lapses — whether Roman, Soviet, or Ming — follow identical mathematical
rules. For example, the interval between the first bifurcation (4; = 3, 1
—2 cycles), the second (As ~ 3.47, 2 —4 cycles) and the third (As ~ 3.57,
4 —8 cycles) yields a ratio

Ay — Ay

A A, ~ 4.669, (90)

mirroring Feigenbaum’s universal scaling. This universality transcends his-
torical specifics: once a state enters the period-doubling regime, its trajec-
tory toward chaos becomes inevitable, governed by this immutable ratio.

The period-doubling cascade is the hallmark of systems approaching
chaos. In the logistic decision rule, increasing A triggers bifurcations: a
stable equilibrium splits into a 2-cycle, then a 4-cycle, and so on. Each
bifurcation represents a loss of resilience, as internal feedback loops (e.g.,
corruption, rebellion) amplify oscillations. The narrowing intervals be-
tween these thresholds reflect the accelerating instability inherent to power
accumulation. Historically, this mirrors empires like Rome, which oscil-
lated between crisis and reform (2-cycle) before fragmenting into chaos,
or the Soviet Union, whose limit cycles (Khrushchev’s Thaw — Brezhnev
stagnation) preceded irreversible collapse.

The convergence to Feigenbaum’s constant validates the model’s central
thesis: power collapse is not contingent on external shocks but rooted in
the nonlinear dynamics of accumulation. Once a state surpasses the critical
threshold (A =~ 3.57), chaos becomes unavoidable: whether modeling the
Ming Dynasty’s peasant rebellions or Nazi Germany’s rapid rise and fall,
the same § =~ 4.669 governs their trajectories. The Feigenbaum constant
thus serves as a mathematical “countdown” to collapse: each bifurcation
shortens the window for intervention, and no policy can halt the cascade
once initiated.

The Feigenbaum constant’s universality offers a dire warning: stabil-
ity demands restraining growth parameters (A) below critical thresholds.
Empires that ignored this — such as the Ming Dynasty, which pushed
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agrarian expansion until chaos erupted — sealed their fates. Conversely,
states that moderated growth (e.g., the Han Dynasty’s balanced gover-
nance) prolonged stability. The convergence to ¢ underscores the futility
of brute-force centralization or unchecked ambition. Just as a pendulum’s
swing grows wilder with each push, so too does power’s collapse acceler-
ate with each period-doubling bifurcation. The lesson is clear: the road

to chaos is paved not by chance but by the immutable laws of nonlinear
dynamics.

10.3. Simulations of Historical Collapses Through Bifurcation
Phases

Figure 11 above simulates the power trajectories of major historical em-
pires, showing how each followed the universal path from stability to col-
lapse through different phases of bifurcation and chaos:

FIG. 11. Simulated Historical Collapses of Empires Through Bifurcation Phases
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Roman Empire (A=3.2): Transition to Oscillations.

At A = 3.2, the Roman Empire’s trajectory aligns with the model’s
2-cycle regime, marking its transition from stability to structured oscil-
lations. For centuries, Rome maintained equilibrium through centralized
governance and controlled expansion, mirroring the logistic rule’s stable
equilibrium at low A. However, as growth pressures mounted — driven
by military overextension, bureaucratic inefficiency, and diminishing re-



THE STABILITY AND INSTABILITY OF POWER 569

turns — the system bifurcated into a 2-cycle. Power began oscillating be-
tween phases of crisis (e.g., the Third Century Crisis, barbarian invasions)
and reform (e.g., Diocletian’s administrative reorganization, Constantine’s
centralization). These oscillations reflect the logistic rule’s self-sustaining
feedback: overaccumulation triggered corrective contractions (e.g., fiscal
collapse), while underinvestment spurred recovery (e.g., military reinvest-
ment).

The Lyapunov exponent near zero at A = 3.2 indicates neutral stability,
where deviations neither decay nor amplify but sustain cyclicality. This
phase mirrors Rome’s late-stage dynamics: the empire temporarily sta-
bilized through tetrarchy and legal reforms but could not escape cyclical
decline. The eventual collapse in 476 CE underscores the model’s predic-
tion: once growth surpasses critical thresholds (A > 3.0), even optimal
policies cannot prevent destabilizing oscillations.

Soviet Union (A =3.7): Limit Cycles and Collapse.

The USSR’s trajectory at A = 3.7 exemplifies multi-point limit cycles (4-
or 8-cycles), where power fluctuated between alternating phases of reform
and stagnation. Post-Stalin, the Soviet system entered a period of cyclical
dynamics: Khrushchev’s de-Stalinization (1953-1964) spurred temporary
growth, followed by Brezhnev-era stagnation (1964-1982), Gorbachev’s
perestroika (1985-1991), and eventual collapse. Each phase corresponds
to a node in the model’s limit cycle regime, where nonlinear feedback —
ideological rigidity, economic inefficiency, and elite corruption — perpetu-
ated oscillations.

By 1991, the cumulative strain of these cycles pushed the system beyond
the Feigenbaum critical threshold (A ~ 3.57), triggering a chaotic break-
down. The Lyapunov exponent turning positive here reflects the butterfly
effect: minor reforms (glasnost) cascaded into uncontrollable political frag-
mentation. The Soviet collapse validates the model’s central insight: limit
cycles precede chaos, and deterministic feedback — not external shocks —
drives systemic failure.

Ming Dynasty (A=3.85): Onset of Chaos.

The Ming Dynasty’s trajectory at A = 3.85 plunges into full chaos, char-
acterized by aperiodic fluctuations driven by peasant rebellions (e.g., Red
Turban uprising), corruption, and Manchu invasions. Overaccumulation
(e.g., excessive taxation) triggered catastrophic declines, while recovery
attempts (e.g., Wanli Emperor’s reforms) were cut short by renewed insta-
bility.
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The positive Lyapunov exponent confirms extreme sensitivity to initial
conditions: minor perturbations (e.g., a local rebellion) diverged exponen-
tially, rendering long-term forecasting impossible. By 1644, the dynasty’s
chaotic collapse to the Qing mirrored the logistic rule’s terminal phase —
trajectories scattered irreversibly, with no convergence to equilibrium or
cycles. This aligns with historical records: the Ming’s final decades saw
factional strife, famine, and military defeat, culminating in a chaotic, non-
recoverable collapse.

Nazi Germany (A =3.9): Full Chaos and Rapid Collapse.

Nazi Germany’s trajectory at A = 3.9 epitomizes full chaos, marked by
extreme volatility and rapid divergence. The regime’s hyper-centralization
and militarization (1933-1941) produced a sudden peak in power, akin to
the logistic rule’s chaotic attractor. However, the system’s intrinsic insta-
bility — encoded in the quadratic feedback term — led to unpredictable
fluctuations: overextension on the Eastern Front, resource shortages, and
Allied counteroffensives.

The butterfly effect is stark here: minor strategic errors (e.g., the inva-
sion of the USSR in 1941) spiraled into existential collapse by 1945. The
Lyapunov exponent’s sharp positivity reflects this sensitivity, where tra-
jectories diverged wildly despite nearly identical initial conditions (e.g.,
Hitler’s decision-making vs. hypothetical alternatives). The Third Reich’s
short lifespan (1933-1945) and catastrophic end align with the model’s pre-
diction: chaotic regimes lack periodicity and collapse abruptly, driven by
internal feedback rather than external conquest.

Figure 11 synthesizes these trajectories into a universal narrative: em-
pires, regardless of era or ideology, follow identical mathematical pathways
from stability to chaos. The bifurcation parameter A serves as a proxy
for growth ambition, while the Lyapunov exponent quantifies resilience.
Rome’s oscillations, the USSR’s limit cycles, the Ming’s chaos, and Nazi
Germany’s terminal volatility all validate the model’s predictive power.
This universality offers a sobering lesson: empires fall not from external
conquest but from the internal logic of power itself — a truth echoing from
Rome to the USSR.

11. CONCLUSION: THE UNIVERSAL LAW OF POWER
COLLAPSE

This paper has endeavored to uncover the fundamental mechanisms gov-
erning the cyclical rise and fall of power, a phenomenon that has charac-
terized states and empires throughout human history. Our central finding
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reveals a universal law of power collapse, one rooted not in idiosyncratic
historical contingencies or external shocks alone, but in the inherent nonlin-
ear dynamics of power accumulation itself. By deriving a logistic decision
rule from an infinite-horizon optimization problem — wherein a state ratio-
nally seeks to maximize its long-term utility from power and consumption
— we showed how states move from stability to chaos through a predictable
sequence of equilibria, limit cycles, and bifurcations. This progression is
not arbitrary; it follows a mathematically determined path, often referred
to as the period-doubling route to chaos, a pattern observed across a wide
range of complex systems.

The journey begins with stable equilibria, where power accumulation,
production, and consumption are balanced, reminiscent of historical peri-
ods of sustained peace and controlled growth. However, as the underlying
growth parameter — which we’ve shown to be intrinsically linked to the
state’s time preference or discount factor — increases, this stability erodes.
The system first transitions to predictable oscillations, such as 2-period
limit cycles, where power fluctuates between distinct high and low states.
Further increases in this growth parameter lead to a cascade of period-
doubling bifurcations, pushing the system through 4-cycles, 8-cycles, and
progressively more complex, yet still structured, oscillations. The emer-
gence of chaos, marked by positive Lyapunov exponents and quantified by
the universal Feigenbaum constant, becomes inevitable once power accu-
mulation dynamics, driven by the state’s optimizing behavior, surpass a
critical threshold. Our historical simulations, from the Roman Empire’s
oscillations to the Soviet Union’s limit cycles and eventual chaotic disin-
tegration, and the terminal chaos of the Ming Dynasty, confirm that this
universal pattern provides a compelling framework for understanding the
collapse of diverse great powers. These collapses, therefore, are not merely
failures of leadership or the result of overwhelming external pressures, but
manifestations of an underlying mathematical inevitability once the system
enters certain dynamic regimes.

The most profound and perhaps sobering lesson from this analysis is
that all power, when pursued without understanding or respecting these
intrinsic nonlinear dynamics, ultimately collapses from within. Attempts
to suppress these inherent tendencies through forceful centralization or by
relentlessly pushing for ever-greater power accumulation only serve to ac-
celerate the journey towards instability and chaos, as such measures often
exacerbate the very feedback loops (like corruption, inefficiency, and in-
ternal strife) that destabilize the system. The logistic map, derived from
first principles of optimization, demonstrates that even a state acting “op-
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timally” according to its utility function can be led into chaotic regimes if
the parameters governing its growth drive are too high. Thus, the collapse
of empires is not necessarily a failure of rationality or intent, but a con-
sequence of the complex, often counterintuitive, behavior of the dynamic
system of power itself.

In the end, the pursuit of absolute power leads to absolute collapse —
a truth as inevitable as the laws of mathematics that govern it. This is
not a statement of political ideology, but a conclusion drawn from the
mathematical structure of power dynamics as modeled through dynamic
optimization and nonlinear systems theory. Stability, it appears, is not
found in the maximization of power, but in a nuanced understanding of its
lifecycle, its inherent limits, and the delicate balance required to navigate
its inherent instabilities. The universal patterns of rise, and fall are, at
their core, a testament to these immutable mathematical laws.
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