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When Do Circuit Breakers Stabilize Markets?

Evidence and Theory*

Tianlin Hu, Yang Ming, and Jingming Zhu†

Circuit breakers, as automatic trading halt mechanisms, have ambiguous
effects on stock market volatility. To identify the conditions under which such
mechanisms are effective, we first examine China’s short-lived circuit breaker
introduced in January 2016. Using high-frequency CSI 300 Index data and
a GJR-GARCH model, we find that circuit breaker activations significantly
increased market volatility. We then extend market microstructure models by
endogenizing asset supply shocks and comparing scenarios with and without
circuit breakers. The analysis shows that when shocks are relatively mild, cir-
cuit breakers help dampen volatility, whereas under severe market crises, they
amplify fluctuations. These findings highlight the need for carefully calibrated
trigger thresholds and complementary stabilization measures to ensure that
circuit breakers fulfill their intended role in stabilizing financial markets.
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1. INTRODUCTION

Market-wide, price-triggered trading halts have become an important
policy instrument in many countries to curb excessive volatility in financial
markets. Among these mechanisms, the circuit breaker is the most widely
adopted. It specifies a predefined price threshold,1 such that when market
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prices reach the threshold, trading is automatically suspended and resumes
after a brief interval.

The circuit breaker mechanism was first introduced in the United States
following the 1987 stock market crash. For decades, it was rarely activated:
prior to the COVID-19 pandemic, it had halted trading only once on Oc-
tober 27, 1997. However, in March 2020, amid the global market turmoil
caused by the pandemic, U.S. stock markets triggered the circuit breaker
four times within just eight consecutive trading days. In China, a circuit
breaker was implemented in January 2016, but after being triggered four
times within only two trading days, the mechanism was quickly suspended.

The primary objective of the circuit breaker is to introduce a “cooling-
off” period during which liquidity can be restored, new information may
emerge, and policy interventions may be considered. This pause is in-
tended to reshape traders’ expectations and behavior, thereby reducing
the likelihood of extreme price movements once trading resumes. Yet de-
bate persists over whether circuit breakers achieve their intended purpose
or, under certain conditions, exacerbate market instability.

In this paper, we take China’s implementation of a circuit breaker in 2016
as a case study. Using high-frequency trading data and a GJR-GARCH
model, we examine the impact of trading halts on market volatility. We find
that after trading resumes from a circuit breaker, the conditional volatility
of returns on the CSI 300 Index rises significantly compared with coun-
terfactual “normal” days, and this increase occurs rapidly. These findings
suggest that price-triggered automatic trading halts may fall short of their
volatility-smoothing objective and, in some circumstances, may even prove
counterproductive.

To identify the conditions under which a trading halt increases or reduces
volatility, we extend the market microstructure model of Greenwald and
Stein (1991), which incorporates an exogenous asset supply shock. In our
extension, the activation of a circuit breaker conveys partial information
to potential buyers, who have imperfect knowledge about the size of the
sale. This creates uncertainty about the execution price — often referred
to as transactional risk in the literature. When the shock is sufficiently
large, buyers infer stronger selling pressure from the triggering price, and
their demand falls below the level that would prevail without the circuit
breaker. By contrast, when the shock is relatively small, the circuit breaker
can stabilize prices and dampen volatility.

We further examine the role of circuit breakers by endogenizing the asset
supply shock. In a second pair of models, a group of initial asset holders
determines how much to sell in order to satisfy liquidity needs. Each seller

Throughout this paper, we use the term “circuit breaker” to refer to the price-triggered
type, since it is the most commonly implemented.
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has imperfect information about the overall size of the selling cohort and,
consequently, about the expected execution price of their market order. If
the market maker does not fully absorb the supply shock when the circuit
breaker is triggered, the observed price and trading volume act as signals
about the aggregate size of the seller population. Value buyers then update
their beliefs regarding the magnitude of the shock based on these market
signals.

When the updated belief indicates a large seller cohort, the anticipated
execution price is revised downward due to the expectation of excess supply.
In this case, the circuit breaker reduces transactional risk on the supply
side by revealing relevant information. Yet, once strong selling pressure
becomes evident, the outcome for sellers may deteriorate, and – as in the
models with exogenous shocks — the circuit breaker amplifies volatility.
Conversely, when the actual seller population is small, the mechanism helps
stabilize the market by limiting price declines.

This paper makes three contributions to the literature on the volatil-
ity effects of circuit breakers. First, it provides empirical evidence from
China’s 2016 circuit breaker episode, using high-frequency trading data and
a GJR-GARCH model. Second, it develops two sets of theoretical models
that highlight demand-side and supply-side channels through which circuit
breakers influence volatility. Finally, it extends the framework of Green-
wald and Stein (1991) by identifying the magnitude of the asset supply
shock as a key condition that determines whether circuit breakers stabilize
or destabilize markets. In doing so, we reconcile contrasting perspectives in
the literature: some emphasize their stabilizing role (Greenwald and Stein,
1991, Leal and Napoletano, 2019), while others highlight destabilizing ef-
fects such as the “magnet effect” (Chen et al., 2024).

Our work adds to the growing empirical literature on the impact of cir-
cuit breakers on market volatility. Although recent studies increasingly
investigate whether circuit breakers reduce volatility, their findings remain
mixed (Abad and Pascual, 2013). Some evidence suggests stabilizing ef-
fects: for instance, Bildik and Elekdag (2004) show that circuit breakers
reduced volatility in the Istanbul Stock Exchange. Yet a larger body of
research highlights destabilizing outcomes. Using transaction-level data on
lean hog and live cattle derivatives at the Chicago Mercantile Exchange
from 2014 to 2019, He and Serra (2022) find that price-triggered halts sig-
nificantly increase volatility and reduce liquidity upon reopening. In China,
studies of the 2016 circuit breaker episode view it as a quasi-natural ex-
periment and conclude that the policy amplified volatility and produced a
pronounced magnet effect (Yang and Jin, 2017). Building on this litera-
ture, we employ a GJR-GARCH model to estimate conditional volatility
and provide further evidence that circuit breakers can intensify volatility
under specific market conditions.
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Our analysis also carries important policy implications. Much of the re-
cent debate has focused on whether and how government interventions can
stabilize markets and mitigate systemic risk. For example, Brunnermeier,
Sockin and Xiong (2021) and Huang, Miao and Wang (2019) study the
effects of discretionary government interventions in Chinese financial mar-
kets. Relatedly, Deng (2016) demonstrates that early traders’ transactions
can impose a negative externality through the channel of rational learning,
suggesting that a transaction halt may provide an opportunity to offset
such a negative signal from rapid dissemination. Tong (2017) emphasizes
that under limited information, forecast-based trading can lead to welfare
losses due to amplified estimation errors, which cautions against the view
that circuit breakers unconditionally stabilize markets. Adding to this line
of work, our study evaluates the circuit breaker as a rule-based, structural
mechanism for market stabilization. By imposing predefined thresholds on
price movements, circuit breakers aim to temper volatility while preserving
price discovery, offering an institutional rather than discretionary approach
to market resilience. Nonetheless, the emergence of new empirical evidence
underscores the need to reassess the government’s role in stabilizing or even
rescuing financial markets amid mounting global uncertainty.

The remainder of the paper is organized as follows. Section 2 uses a
GJR-GARCH model and high-frequency intraday data from China’s stock
market to provide motivating evidence. Section 3 develops a pair of models
to show how circuit breakers endogenously generate transactional risk and
under what conditions their effect is stabilizing or destabilizing. Section
4 extends the analysis by endogenizing the asset supply shock. Section 5
concludes.

2. EMPIRICAL EVIDENCE

2.1. Background

The second half of 2015 witnessed the most turbulent stage of China’s
stock market crash. The CSI 300 index2 had fallen by 23% in the prior six
months. In an effort to stabilize the market, China Securities Regulatory
Commission (CSRC) introduced circuit breakers to China’s stock market
for the first time. The mechanism was applied to both the Shanghai and
Shenzhen stock exchanges – the only two exchanges operating in mainland
China – and was designed to automatically halt trading when the CSI 300
Index fell beyond certain thresholds within a single trading day.

Specifically, if the index declined by 5% from its opening level, the first-
tier circuit breaker was triggered, leading to a 15-minute trading suspen-

2A capitalization-weighted index designed to replicate the performance of 300 stocks
traded in the Shanghai and Shenzhen stock exchanges.
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sion. If, upon resumption, the index fell further to a 7% loss, the second-tier
breaker was activated, and the market closed for the rest of the trading day.

The circuit breakers failed to achieve the CSRC’s intended objective of
stabilizing the market and preventing further declines. First, the mecha-
nism was triggered excessively, occurring four times within only four trad-
ing days. Second, market conditions deteriorated sharply afterward: the
CSI 300 Index dropped by 14% over the following week and by 20% over
the subsequent month, as shown in Figure 1. In response to these adverse
outcomes, the CSRC acted quickly. Having introduced the mechanism on
January 4th, 2016, it announced its cancellation merely three days later,
on January 7th.

FIG. 1. The CSI 300 index
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This figure plots the time series of the CSI 300 Index in China. The red dotted lines

denote January 4th and 7th, 2016, when the circuit breakers were activated.

The introduction and abrupt suspension of China’s circuit breaker pro-
vide a compelling quasi-natural experiment for empirical analysis. Al-
though the mechanism was formally implemented in January 2016, its de-
tails were publicly announced three days earlier, allowing the stock market
time to incorporate the policy information and adjust prices accordingly.
In contrast, the sudden suspension of the mechanism on January 8th, 2016,
by the regulatory authorities was largely unanticipated and exogenous, as
market participants had not developed a consensus expectation regarding
this policy reversal. Taken together, these features create favorable con-
ditions for identifying the causal impact of the circuit breaker on market
behavior.

2.2. Data

Using intraday one-minute data from the CSI 300 Index, we examine
the two trading days — January 4th and 7th, 2016 — when the circuit
breaker was activated. Under normal circumstances, there are 240 one-
minute intervals per trading day. However, due to the activation of the
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circuit breaker, only 142 observations were recorded on January 4th, and
just 16 on January 7th, reflecting early market closures. Consequently, the
empirical results for January 7th should be interpreted with caution given
the extremely limited sample size, though we include them for comparison.
Despite these data limitations, the surge in trading volume and the sharp
price decline between the two circuit breaker triggers are clearly visible in
Figure 2.

FIG. 2. The Intraday CSI 300 Index on January 4th and 7th, 2016

This figure plots the intraday time series of the CSI 300 Index on the two trading days

of January 4th and 7th, 2016. The shaded areas denote the time periods when circuit

breakers were activated and trading suspended.

2.3. Conditional Volatility of Returns

Since circuit breakers were in effect on China’s stock market for only two
trading days, traditional empirical methods for testing structural breaks,
which are often based on data at daily frequency, are not feasible. How-
ever, leveraging high-frequency intraday data, we conduct a more granular
analysis of the volatility dynamics of the targeted index surrounding the
activation of the circuit breakers.

The per-minute return of the CSI 300 index is defined by

rt = [log(Pt)− log(Pt−1)]× 1000, (1)
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where t denotes the number of minutes since the market opening on a given
trading day.

We assume that the log-return rt is stationary and can be expressed as

rt = ηt
√
ht, (2)

where
√
ht denotes the conditional volatility at time t, and {ηt}t≥0 ∼

i.i.d. D(0, 1, λ). In this general specification, D(0, 1, λ) denotes a distri-
bution family with zero mean, unit variance, and shape parameter λ. In
modeling the conditional volatility of financial assets, it is standard practice
to employ heavy-tailed distributions. Commonly used examples include the
Variance Gamma, Hyperbolic, Student’s t, and Normal Inverse Gaussian
distributions. In this study, we adopt the widely used assumption that
{ηt}t≥0 follows an i.i.d. Student’s t distribution.

For the specification of ht, following Glosten, Jagannathan and Runkle
(1993), we assume

ht = α0 + α1r
2
t−1 + α2r

2
t−21(rt−1 < 0) + βht−1. (3)

Equation (3) corresponds to the GJR-GARCH model, where 1(·) denotes
the indicator function. This specification captures the asymmetric effect of
past returns on current conditional volatility. In particular, negative past
returns generally exert a larger impact on current volatility than positive
returns of the same magnitude, as shown in Glosten, Jagannathan and
Runkle (1993) and Christie (1982).

Before applying the GJR-GARCH model to the data, we conduct En-
gle’s ARCH LM test (Engle 1982) to examine whether the volatility of the
series exhibits autoregressive conditional heteroskedasticity. Rejection of
the null hypothesis of no ARCH effects provides statistical justification for
employing a GARCH-type specification.

The log-return series of the CSI 300 Index on January 4th and 7th are
plotted in Figure 3 below:

The results of Engle’s ARCH LM test are reported in Table 1:

TABLE 1.

Engle’s ARCH Test

Date χ2 d.o.f. p-value

Jan. 4 92.869 12 1.377e− 14

Jan. 7 4 12 0.9834

The test statistics indicate that the first series (log returns on January
4th, 2016) exhibits significant ARCH effects. We therefore proceed to esti-
mate the parameters using the GJR-GARCH model as specified in equa-
tions (2) and (3). In contrast, the null hypothesis of no ARCH effects
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FIG. 3. Log Returns of CSI 300 Index

This figure plots the intraday log returns of the CSI 300 Index on the two trading days

of January 4th and 7th, 2016. The shaded areas denote the time periods when circuit

breakers were activated and trading suspended.

cannot be rejected for the second series (log returns on January 7th, 2016),
likely due to the early market closure and the limited number of obser-
vations. Nevertheless, for completeness, we report the estimation results
based on the second series as a point of reference in the remainder of the pa-
per. The parameter estimates from the GJR-GARCH model are reported
in Table 2:

TABLE 2.

GJR-GARCH Estimation

Date α̂0 α̂1 α̂2 β̂ ν̂ ξ̂

Jan. 4 0.3841 0.6089 1.0764 0.0001 4.7296 1.5472

Jan. 7 0.0024 0.0091 0.0137 0.9869 12.3720 1.9137

In the above estimation, ν is the degrees-of-freedom parameter in the
probability density function (PDF) of the standardized Student’s t distri-
bution:

fS(x; ν) =
Γ
(
ν+1

2

)
√
νπΓ

(
ν
2

)
(

1 +
x2

ν

)−(ν+1)/2

, x ∈ R. (4)
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Here, ξ ∈ (0,∞) is a parameter that governs the degree of asymmetry in the
distribution. Technical details can be found in Trottier and Ardia (2016).
Figure 4 presents the estimated time-varying volatility of the log-return
series of the CSI 300 Index, which the circuit breaker mechanism targeted.

FIG. 4. Conditional Volatility of Log Returns of the CSI 300 Index

This figure plots the minute-level conditional volatility of log returns of the CSI 300

Index on the two trading days of January 4th and 7th, 2016. The shaded areas denote

the time periods when circuit breakers were activated and trading suspended.

In Figure 4, the black curves represent the time-varying conditional
volatility estimated using the GJR-GARCH model. The red curves indi-
cate the upper bound of the 90% empirical confidence band for conditional
volatility, constructed from intraday observations on trading days during
the month preceding January 4th and the month following January 7th,
2016. We interpret this band as a counterfactual benchmark for volatility
under normal market conditions in the absence of circuit breaker activation.
Notably, the red curves show elevated volatility shortly after the morning
opening and after the afternoon reopening, consistent with the common
finding that new information is incorporated into prices at the beginning
of each trading session.

The empirical evidence indicates that the circuit breaker mechanism in-
troduced in China in early 2016 failed to achieve its intended objective of
stabilizing stock market volatility. To investigate the underlying reasons
for this failure and to identify the conditions under which circuit break-
ers can effectively mitigate financial market volatility, this paper develops
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a theoretical framework that compares equilibrium asset prices with and
without the circuit breaker under scenarios in which asset supply shocks
are either exogenous or endogenous.

3. CIRCUIT BREAKERS AND MARKET STABILITY
UNDER EXOGENOUS SUPPLY SHOCKS

This section examines whether the circuit breaker can mitigate finan-
cial market volatility in the presence of an exogenous asset supply shock.
Specifically, we compare the equilibrium prices that arise with and without
the circuit breaker following such a shock. If the introduction of the circuit
breaker reduces the magnitude of the price decline, the mechanism can be
regarded as successful in stabilizing the market.

3.1. Model I: Exogenous Supply Shock without Circuit Breaker

The model without the circuit breaker follows Greenwald and Stein
(1991), and we provide a brief introduction here. Consider a competi-
tive financial market for a single asset with two types of traders: market
makers and value buyers. Both groups share the same constant absolute
risk aversion (CARA) utility function, with a risk-aversion coefficient nor-
malized to one. Market makers initially absorb an exogenous asset supply
shock by purchasing the asset and subsequently resell it to value buyers.
The purchase and resale prices reflect market volatility: the lower the price,
the greater the implied volatility. The timing of the model consists of three
periods, as illustrated in Figure 5.

FIG. 5. Timeline of Model I
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T = 1 T = 2 T = 3

• Fundamentals: E1F = 0.
• Supply shock s occurs and is
absorbed by n1 market makers.

• Price P1 emerges.
• A population n2 of value buy-
ers observes P1 and each sub-
mits a market order d.

• Fundamentals update: E2F = f2 > 0.
• Market makers sell n2d units to value
buyers, leading to price P2.

• Realization of fundamental value:
F = f2 + f3 > 0.

• Each asset holder receives payoff F

per unit.

Figure 5: Timeline of Model I

At T = 1, an exogenous supply shock s of the asset is absorbed by the market makers,

who have a population of size n1. This results in a price P1. Given the CARA utility with

the coefficient of risk aversion normalized to one, each market maker’s optimal limit-order

quantity at price P1 is3

m1 =
E1(P2) − P1

Var1(P2)
=

s

n1

, (5)

where P2 is the asset price at T = 2, which is uncertain at T = 1. The subscript “1” in

the expectation operator E and the variance operator Var indicates that the expressions are

conditional on the information available at time 1. The second equality in (5) follows from

the market-clearing condition.

After market makers absorb the exogenous supply shock, a total of n2 value buyers each

submit a market order of size d for the asset at the end of T = 1. These value buyers also

have CARA utility functions with the coefficient of risk aversion normalized to one, and their
3Following Greenwald and Stein (1991), market makers are assumed to be “myopic maximizers,” meaning

that at both T = 1 and T = 2, they look only one period ahead when formulating their asset demand. This
assumption is made for tractability.

14

At T = 1, an exogenous supply shock s of the asset is absorbed by the
market makers, who have a population of size n1. This results in a price
P1. Given the CARA utility with the coefficient of risk aversion normalized
to one, each market maker’s optimal limit-order quantity at price P1 is3

m1 =
E1(P2)− P1

Var1(P2)
=

s

n1
, (5)

3Following Greenwald and Stein (1991), market makers are assumed to be “myopic
maximizers,” meaning that at both T = 1 and T = 2, they look only one period ahead
when formulating their asset demand. This assumption is made for tractability.
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where P2 is the asset price at T = 2, which is uncertain at T = 1. The
subscript “1” in the expectation operator E and the variance operator Var
indicates that the expressions are conditional on the information available
at time 1. The second equality in (5) follows from the market-clearing
condition.

After market makers absorb the exogenous supply shock, a total of n2

value buyers each submit a market order of size d for the asset at the end
of T = 1. These value buyers also have CARA utility functions with the
coefficient of risk aversion normalized to one, and their individual demand
for the asset is given by

d =
E1(F − P2)

Var1(F − P2)
. (6)

At T = 2, in light of the new information on fundamentals f2, market
makers and value buyers trade a total of d units in a competitive market,
which determines the execution price P2. Specifically, at P2, the optimal
aggregate holdings of market makers, n1m2, must equal the initial exoge-
nous supply net of the total quantity purchased by value buyers, (s−n2d),
as shown below:

n1m2 = n1
E2(F )− P2

Var2(F )
= s− n2d. (7)

At T = 3, the fundamental value of the asset, F = f2 + f3, is fully
revealed, and each trader holding the asset receives a payoff equal to F per
unit. No further decisions are made in this period.

In the model described above, our focus is on the equilibrium market
price P1 under an exogenous asset supply shock. A lower P1 indicates a
larger price drop caused by the shock, reflecting greater market instability.

Suppose that f2 and f3 are normally distributed with mean zero, where
the variance of f2 is σf

2, and the variance of f3 is normalized to one.
The model is solved by backward induction. Based on the first equality in
equation (7), the aggregate demand of all market makers at time 2 is

n1m2 = n1
E2(F )− P2

Var2(F )
= n1(f2 − P2). (8)

As noted above, the total supply of the asset at time 2 is (s − n2d).
According to the second equality in equation (7), equating demand and
supply yields the execution price:

P2 = f2 +
n2d− s
n1

. (9)
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Substituting equation (8) into equation (6), an individual value buyer’s
demand at time 1 can be expressed as

d =
E1(F − P2)

Var1(F − P2)
=
s− n2d

n1
. (10)

From equation (10), the optimal demand of each value buyer is

d∗ =
s

n1 + n2
. (11)

Substituting the optimal demand d∗ into equation (9), we obtain the
second-period price:

P2 = f2 −
s

n1 + n2
, (12)

which implies that the uncertainty about the execution price is entirely
driven by the stochastic component of the fundamentals, since the ex-
ogenous supply shock s and the populations of market makers and value
buyers, n1 and n2, are common knowledge at the end of time 1.

Now consider the asset price P1 at T = 1. Market clearing requires
s = n1m1, where m1 denotes the per-capita demand of market makers.
Substituting equation (12) into equation (5), we obtain the optimal indi-
vidual demand of market makers at time 1 as

m1 = − 1

σ2
f

(
s

n1 + n2
+ P1

)
. (13)

Combining the market-clearing condition s = n1m1 with equation (13)
yields the equilibrium price P1:4

P1 = −s
(

1

n1 + n2
+
σ2
f

n1

)
. (14)

As shown in equation (14), in the absence of the circuit breaker and
under an exogenous supply shock, the magnitude of the price decline is
directly proportional to the size of the shock.

3.2. Model II: Exogenous Supply Shock with Circuit Breaker

In this section, we introduce the circuit breaker into the model and com-
pare the resulting asset price under an exogenous supply shock with that

4For tractability, it is assumed here that the fundamental value of the asset is nor-
malized to zero, which implies a negative value for P1. In reality, both the fundamental
value and the asset price are positive.
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of the scenario without the circuit breaker. Facing the same shock, if the
equilibrium price with the circuit breaker is higher than the price without
it, the mechanism contributes to market stabilization.

Formally, the circuit breaker is modeled by imposing a lower bound P−1
on the asset price at time 1; once the price reaches this threshold, trading
is halted. At the trigger price P−1 , market makers can no longer formulate
a complete demand schedule through limit orders. Instead, they face the
binding price floor directly and choose a purchase quantity sCB < s. Con-
sequently, only a portion of the supply shock is absorbed at the initial halt,
while the remaining shock (s − sCB) must be absorbed when the market
reopens. The timing of Model II is shown in Figure 6.

FIG. 6. Timeline of Model II
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1 on
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T = 1 T = 2 T = 3

• Fundamentals: E1[F ] = 0.
• Exogenous supply shock s occurs.
• Circuit breaker triggers at price P −

1 .
• n1 market makers absorbed sCB units.
• n2 value buyers observe P −

1 and sCB ,
each submits a market order d.

• Market reopens; market makers absorb
the remaining s − sCB at price P+

1 .

• Fundamentals update: E2[F ] = f2 > 0.
• Market makers sell n2d units to value
buyers at price P2.

• Realization of fundamentals: F =

f2 + f3 > 0.
• Each asset holder receives payoff F

per unit.

Figure 6: Timeline of Model II

17

We again solve the model by backward induction. Since the execution
price of market orders P2 is determined after the initial exogenous sup-
ply shock has been fully absorbed, equations (8) and (9) continue to hold.
However, value buyers form their demand without knowing the exact mag-
nitude of the supply shock s, observing only the realized trading volume
sCB at the activation of the circuit breaker. This introduces an additional
source of risk beyond the uncertainty associated with f2. At the time of
order submission, value buyers know only that the size of the supply shock
s is at least as large as sCB . Accordingly, their demand depends on the
conditional expectation and variance of the net gain (F − P2) given sCB :

d =
E1(F − P2)

Var1(F − P2)
, (15)

where

E1(F − P2) =
1

n1
[E(s|s > sCB)− n2d] , (16)

and

Var1(F − P2) = 1 +
1

n2
1

Var(s|s > sCB). (17)

This analysis relies on the assumption that the supply shock s is a random
variable with a distribution whose first and second moments exist and
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are common knowledge to both types of traders. Combining the above
expressions yields

d =
E(s|s > sCB)− n2d

n1 + 1
n1

Var(s|s > sCB)
. (18)

The optimal quantity demanded by each value buyer is therefore

d∗CB(sCB) =

{[
n1 +

1

n1
Var(s|s > sCB)

]
+

}−1

E(s|s > sCB). (19)

The subscript CB distinguishes the optimal demand of value buyers
with the circuit breaker from that without. This demand depends on the
absorbed portion of the supply shock, sCB < s, upon activation of the
circuit breaker. In contrast, without the circuit breaker, demand depends
on the entire supply shock s absorbed at once, as in equation (11). Thus,
the presence of the circuit breaker effectively alters value buyers’ demand
by conditioning it on the observed partial absorption sCB , which in turn
influences the second-period price.

Substituting equation (19) into equation (9) yields the execution price
P2 under the circuit breaker:

P2,CB = f2 +
n2d
∗
CB(sCB)− s

n1
. (20)

Now consider the trading prices before and after the circuit breaker is
triggered, denoted by P−1 and P+

1 . Let m−1 be the individual demand of
market makers at the activation of the breaker, so that sCB = n1m

−
1 .

Let m+
1 denote the total holdings of each market maker after the market

reopens, in which case s = n1m
+
1 .

Since market makers make two separate purchases – once at the activa-
tion of the circuit breaker and once after the market reopens – these trades
correspond to two distinct prices: the circuit breaker trigger price P−1 ,
which is exogenously set as the breaker’s price limit, and the post-reopening
price P+

1 , which is endogenously determined. To address the issue of dual
pricing, we assume that market makers care about the volume-weighted

average acquisition price, given by
(
m−

1

m+
1

P−1 +
m+

1 −m
−
1

m+
1

P+
1

)
.

Once the market reopens, the full magnitude of the asset supply shock
s becomes public information. At this point, each market maker optimally
adjusts their demand based on the realized shock, which is given by

m+
1 =

E(P2,CB |s, sCB)−
(
m−

1

m+
1

P−1 +
m+

1 −m
−
1

m+
1

P+
1

)

Var (P2,CB |s, sCB)
=

s

n1
, (21)
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where the second equality follows from the market-clearing condition. This
formulation highlights that once the circuit breaker is triggered, market
makers’ effective purchase price depends on a weighted combination of the
exogenous trigger price and the endogenous post-reopening price, imply-
ing that the circuit breaker alters their incentives and thereby shapes the
subsequent price dynamics.

At the moment the circuit breaker is triggered, market makers do not
know the true magnitude of the supply shock s, but they do know that it
must be at least as large as the observed trading volume sCB . Based on
this information, their individual demand at this stage is given by

m−1 =

E

[
P2,CB −

(
m−

1

m+
1

P−1 +
m+

1 −m
−
1

m+
1

P+
1

) ∣∣∣∣sCB
]

Var

[
P2,CB −

(
m−

1

m+
1

P−1 +
m+

1 −m
−
1

m+
1

P+
1

) ∣∣∣∣sCB
] =

sCB
n1

. (22)

Proposition 1. The quantity sCB absorbed upon activation of the cir-
cuit breaker satisfies

1 +
σ2
f

n2
1

Var(s|s > sCB) =
E(s|s > sCB)

sCB
. (23)

Proof. See Appendix A.1.

Such an sCB as in Proposition 1 does not necessarily exist for all distri-
butions that s may follow. However, existence is guaranteed if s follows a
normal distribution with finite mean and variance.

Proposition 2. If s is normally distributed, s ∼ N (s̄, σ2
s) with s̄ ∈ R

and σ2
s ∈ R++, then there exists an equilibrium in which sCB > 0.

Proof. See Appendix A.2.

The asset supply shock does not affect the fundamental value of the
asset, which provides value buyers with an opportunity to acquire the asset
at a lower price. However, the presence or absence of a circuit breaker
influences how they perceive the relevant purchase price. We therefore
compare the second-period prices after the shock – P2,CB with the circuit
breaker and P2 without it – to examine under what conditions the circuit
breaker contributes to market stabilization. This highlights that the circuit
breaker not only alters the timing of absorption of the supply shock but
also reshapes market participants’ expectations, which ultimately affects
equilibrium pricing.
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Corollary 1. Denote the second-period prices in the models with and
without the circuit breaker by P2,CB and P2, and the equilibrium demand
of value buyers by d∗CB and d∗, respectively. There exists a threshold supply
shock s∗ > sCB such that:

1.P2 < P2,CB and d∗ < d∗CB, if s < s∗;

2.P2 > P2,CB and d∗ > d∗CB, if s > s∗.

Proof. See Appendix A.3.

In our three-period trading model, the second period represents the stage
of market recovery following the initial asset supply shock. Whether the
circuit breaker stabilizes the market at this stage depends critically on the
magnitude of the shock. Corollary 1 establishes the existence of a thresh-
old such that, when the shock exceeds it, the second-period price under
the circuit breaker is lower than that without it. The underlying mecha-
nism arises from the transactional uncertainty faced by value buyers: once
the circuit breaker is triggered, they do not observe the true magnitude
of the shock s, but only the absorbed portion sCB . Consequently, they
base their demand on incomplete information, using the observed trading
volume as a noisy signal of the shock size. When the true shock is large,
a steep short-term price decline creates incentives for value buyers to pur-
chase more aggressively. If they were aware of the actual shock magnitude,
their demand would be higher. However, under the circuit breaker, uncer-
tainty depresses their demand, causing the post-shock price to fall below
the level without the circuit breaker. In this case, the mechanism impedes
the market’s natural adjustment and undermines volatility control. Con-
versely, if the shock is below the threshold, the circuit breaker raises the
second-period price, thereby exerting a stabilizing effect. In summary, the
circuit breaker stabilizes the market when shocks are moderate but becomes
destabilizing when shocks are large.

Meanwhile, the first-period price P1 in Model I and P+
1 in Model II

represent the short-term prices when the entire supply shock is absorbed
by the market makers. We now compare these two prices.

Corollary 2. Given the threshold s∗ described in Corollary 1, if s > s∗,
then P+

1 < P1.

Proof. See Appendix A.4.

When the market reopens following activation of the circuit breaker,
market makers resume purchasing assets, this time with perfect knowledge



WHEN DO CIRCUIT BREAKERS STABILIZE MARKETS? 589

of the supply shock. Having already acquired part of the supply at the rel-
atively high trigger price P−1 , they seek to reduce their average acquisition
cost. As a result, the price at which they are willing to resume purchasing
assets, P+

1 , will be lower than the corresponding price in a scenario without
the circuit breaker, P1. This result highlights that, under large shocks, the
circuit breaker not only fails to stabilize prices in the short run but also
amplifies the decline relative to the no-circuit-breaker case.

Corollary 3. For any s > sCB, P+
1 is strictly decreasing in P−1 .

Proof. This follows directly from equation (21). Given s and sCB ,
the equilibrium condition implies that the quantity-weighted average price,
m−

1

m+
1

P−1 +
m+

1 −m
−
1

m+
1

P+
1 , is constant. Moreover, the weights

m−
1

m+
1

and
m+

1 −m
−
1

m+
1

are independent of P−1 . Therefore, P+
1 must be strictly decreasing in P−1 .

In the period when the shock occurs, without a circuit breaker, the price
would immediately adjust downward to a level at which the entire supply
shock is absorbed by market makers. With a circuit breaker, however, part
of the shock is absorbed at the relatively high trigger price P−1 . Once the
market reopens, market makers attempt to reduce their average acquisition
cost, leading to a further decline in the asset price relative to the no-circuit-
breaker scenario. Moreover, the higher the initial trigger price P−1 , the
greater the subsequent decline in P+

1 .
The analysis in this section demonstrates that when the exogenous sup-

ply shock is sufficiently large, asset prices at both the time of the shock
and during the recovery phase are lower under the circuit breaker regime
compared to the no-circuit-breaker case. Hence, automatic trading halts
can only contribute to market stability when the magnitude of the shock is
moderate rather than severe. It is important to emphasize that we have so
far assumed the supply shock to be exogenous and unrelated to the asset’s
fundamentals. In the next section, we relax this assumption by endog-
enizing the supply shock and analyzing how circuit breakers affect asset
holders’ selling incentives.

4. CIRCUIT BREAKERS AND MARKET STABILITY
UNDER ENDOGENOUS SUPPLY SHOCKS

In practice, asset supply shocks are often not exogenous; rather, they
may arise endogenously from the selling incentives of investors in response
to market conditions. For instance, price declines themselves can trigger
further liquidation, amplifying volatility. To better capture this mecha-
nism, we extend the model by endogenizing the asset supply shock and
explicitly examining how circuit breakers affect the selling incentives of as-
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set holders. As in the benchmark framework of the previous section, our
analysis focuses on whether circuit breakers stabilize financial markets by
comparing equilibrium asset prices under scenarios with and without the
mechanism.

The structure of this section is as follows. We first set up the extended
model in which asset holders determine their selling quantity endogenously
in response to price movements. Next, we solve for the equilibrium prices
under both scenarios with and without circuit breakers, and characterize
how the mechanism alters investors’ incentives to sell. Finally, we compare
the resulting price dynamics to assess under what conditions circuit break-
ers contribute to market stabilization or, conversely, exacerbate volatility.

4.1. Model III: Endogenous Supply Shock without Circuit Breaker

This section extends Model I by introducing an additional initial period
(T = 0) and a new group of agents: the initial asset holders. At T = 0,
a continuum of initial holders must liquidate part of their asset holdings
to satisfy exogenous liquidity needs, thereby endogenizing the asset supply
shock. We further assume that the fundamental value of the asset contains
an additional positive constant component, f > 0, ensuring that asset
holders earn a strictly positive expected return from selling the asset.

Each initial asset holder is endowed with one unit of the risky asset and
faces a liquidity requirement of size M > 0. At T = 0, each initial holder
i ∈ [0, n0] decides what fraction of her endowment to sell. Specifically,
holder i chooses to sell a fraction (1−ωi) of her asset, generating liquidity
proceeds (1 − ωi)P1 at T = 1. Importantly, at T = 0, initial holders do
not know the realized number of sellers n0; from their perspective, n0 is
a random variable. However, the expected number of sellers, denoted by
E(n0), is common knowledge among all traders.

Once the selling decisions of initial holders are aggregated, they gener-
ate the endogenous asset supply shock. Thereafter, the evolution of the
model is identical to that in Model I, with market makers and value buyers
determining asset prices in subsequent periods. The sequence of events is
illustrated in Figure 7.

Initial asset holders are homogeneous, so we focus on a symmetric equi-
librium in which every holder sells the same fraction of their holdings.
Specifically, for each initial asset holder i ∈ [0, n0], we have ωi = ω∗. Con-
sider a representative holder i who conjectures that all other holders sell
the same fraction of their assets, denoted by 1− ω−i. Then, analogous to
equation (14), the period-1 execution price P1 is given by:

P1 = f − n0 (1− ω−i)
(

1

n1 + n2
+
σ2
f

n1

)
, (24)
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FIG. 7. Timeline of Model III
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(
1
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+
σ2

f

n1

)
, (24)

whose expectation at T = 0 is

E0 (P1) = f − E0 (n0) (1 − ω−i)

(
1

n1 + n2

+
σ2

f

n1

)
. (25)

24

whose expectation at T = 0 is

E0 (P1) = f − E0 (n0) (1− ω−i)
(

1

n1 + n2
+
σ2
f

n1

)
. (25)

Clearly, for any E0(n0) > 0 and ω−i ∈ (0, 1), the expected execution
price E0(P1) is strictly lower than the expected fundamental value f . Thus,
from the perspective of the initial asset holders, retaining the asset until
period 3 yields a higher expected return compared to selling at period 0.
This creates a trade-off: selling too much reduces future asset holdings and
lowers overall expected returns, while selling too little fails to meet the
liquidity demand M . We assume that initial asset holders minimize the
squared deviation between expected liquidity proceeds and their liquidity
demand. Formally, each initial asset holder i ∈ [0, n0] solves:

min
ωi∈[0,1]

[(1− ωi)E0 (P1)−M ]
2
. (26)

Based on equations (25) and (26), the optimal decision of initial asset
holder i ∈ [0, n0] is to sell an amount such that the expected liquidity
proceeds exactly match the liquidity requirement M :

(1− ωi)
[
f − E0(n0)(1− ω−i)

(
1

n1 + n2
+
σ2
f

n1

)]
= M. (27)

To characterize the symmetric equilibrium, define the auxiliary function:

H(ωi, ω−i,E0(n0)) = (1−ωi)
[
f − E0(n0)(1− ω−i)

(
1

n1 + n2
+
σ2
f

n1

)]
−M.

(28)
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The best response of holder i, denoted by ωi = BR(ω−i,E0(n0)), is implic-
itly defined by

H(BR(ω−i,E0(n0)), ω−i,E0(n0)) = 0. (29)

In a symmetric equilibrium, ωi = ω−i = ω∗ ∈ [0, 1] for all i ∈ [0, n0], which
implies

H(ω∗, ω∗,E0(n0)) = 0, (30)

or equivalently,

E0(n0)

(
1

n1 + n2
+
σ2
f

n1

)
(1− ω∗)2 − f(1− ω∗) +M = 0. (31)

If a solution ω∗ exists, it characterizes the symmetric Nash equilibrium
strategy of the initial asset holders. Economically, this condition balances
two forces: the downward pressure on the expected price from aggregate as-
set sales, and the positive returns from holding the asset until fundamentals
are realized. The equilibrium ω∗ therefore captures the trade-off between
meeting short-term liquidity needs and preserving long-term value.

Proposition 3. A Nash equilibrium that satisfies equation (31) and is
locally stable exists if the following condition holds:

f − E0 (n0)

(
1

n1 + n2
+
σ2
f

n1

)
> 0. (32)

Proof. See Appendix A.5.

As equation (25) shows, the condition in Proposition 3 requires that even
if every initial holder sells their entire endowment, the expected asset price
remains strictly positive. This ensures that the market does not collapse
to a corner solution with zero prices, thereby guaranteeing the existence of
a stable symmetric Nash equilibrium.

Furthermore, according to equation (24), given the equilibrium strategy
ω∗, a larger number of asset sellers n0 results in a greater endogenous supply
shock n0(1−ω∗). This amplifies downward pressure on the price P1, leading
to a lower equilibrium level and hence higher volatility. Proposition 3
emphasizes a self-reinforcing mechanism: when more asset holders attempt
to meet liquidity needs simultaneously, the resulting price decline worsens
market instability.
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4.2. Model IV: Endogenous Supply Shock with Circuit Breaker

In this model, we introduce a circuit breaker into Model III and examine
how it affects the endogenized supply shock. Our analysis shows that when
the number of asset sellers n0 is large, the presence of a circuit breaker can
lead to a larger endogenous asset supply shock than in the model without
the mechanism. This, in turn, results in lower asset prices and heightened
market volatility, thereby revealing an additional channel through which
circuit breakers may amplify, rather than mitigate, price fluctuations. The
timeline of Model IV is illustrated in Figure 8. In what follows, we for-
mally derive the equilibrium conditions under this setting and compare the
resulting asset prices with those from Model III.

FIG. 8. Timeline of Model IV
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the circuit breaker is triggered at the limit price P−
1 , a group of n1 market makers absorbs

part of the supply shock, denoted by s− = n1m
−
1 . At this point, both s− and the realized

value of n0 become publicly observed.

At period 1, the market reopens. If the liquidity needs of the initial asset holders are

already fully satisfied, i.e. if s− = n1m
−
1 , then no further trading occurs between the initial

holders and themarket makers. In this case, eachmarket maker ends up holdingm+
1 = m−

1 =

s−/n1 units of the asset at the end of period 1. Otherwise, the initial holders must continue

selling assets after the trading halt in order to fulfill their remaining liquidity requirements.

27

At period 0, when the initial asset holders and market makers make their
trading decisions, the true value of n0 is unknown, although its distribution
is common knowledge. Once the circuit breaker is triggered at the limit
price P−1 , a group of n1 market makers absorbs part of the supply shock,
denoted by s− = n1m

−
1 . At this point, both s− and the realized value of

n0 become publicly observed.
At period 1, the market reopens. If the liquidity needs of the initial

asset holders are already fully satisfied, i.e. if s− = n1m
−
1 , then no further

trading occurs between the initial holders and the market makers. In this
case, each market maker ends up holding m+

1 = m−1 = s−/n1 units of the
asset at the end of period 1. Otherwise, the initial holders must continue
selling assets after the trading halt in order to fulfill their remaining liq-
uidity requirements. The total amount of assets they sell upon and after
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the suspension is

s+ = s− +
n0

P+
1

(
M − s−

n0
P−1

)
, (33)

which implies that upon market reopening, each initial holder must liqui-
date additional assets at price P+

1 to cover the liquidity shortfall
[
M − (s−/n0)P−1

]
.

Since n0 becomes public information at this stage, the demand of an
individual market maker, m+

1 , can again be derived from the CARA utility
framework, analogous to Model II:

m+
1 =

E (P2|n0)−
(
m−

1

m+
1

P−1 +
m+

1 −m
−
1

m+
1

P+
1

)

Var(P2|n0)
. (34)

The expectation and variance in (34) are conditional on the realized value
of n0, reflecting that, upon market reopening, the true size of the potential
selling pressure is common knowledge.

Combining equations (33) and (34) with the market clearing condition
s+ = n1m

+
1 , the per capita asset holdings of market makers after the full

absorption of the supply shock can be expressed as

m+
1 =

s+

n1
=
E (P2|n0)− n0M

s+

Var(P2|n0)
=
f − s+

n1+n2
− n0M

s+

σ2
f

,
n1m

−
1

n0
P−1 < M.

(35)
Equation (35) applies when a second round of trading occurs after the

circuit breaker has been triggered. That is, when the liquidity needs of
initial asset holders are not fully met at the trigger stage. In contrast, if
the initial supply shock is completely absorbed at the breaker-triggering
price, i.e. s− ≥ n1m

−
1 , then no additional transactions take place after the

market reopens. In this case, market makers do not acquire further assets
from the initial holders, and their final holdings remain unchanged:

m+
1 =

s+

n1
=
s−

n1
=

n0M

n1P
−
1

,
n1m

−
1

n0
P−1 ≥M. (36)

Therefore, the final supply shock s+ = s+(n0,m
−
1 ) is jointly determined

by the realized number of initial sellers n0 and the volume m−1 absorbed
by each market maker at the breaker-triggering price P−1 . When solving
equation (35), if two real roots for s+ exist, we exclude the smaller one by
applying the same local stability criterion used in Model III.

At the moment the circuit breaker is triggered, market makers do not
yet know the true number of initial sellers n0. Similar to the setup in
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Section 3.2, they must account for the volume-weighted average acquisition
cost P avg1 when making their decisions. Accordingly, the quantity m−1 is
determined in the same way as in equation (22):

m−1 =
E(P2 − P avg1 )

Var(P2 − P avg1 )
=

f − E[s+(n0,m
−
1 )]

n1+n2
− E(P avg1 )

σ2
f + Var

[
s+(n0,m

−
1 )

n1+n2
+ P avg1

] , (37)

where the average acquisition cost is given by

P avg1 =

{
m−

1

m+
1

P−1 +
m+

1 −m
−
1

m+
1

P+
1 = n0M

s+(n0,m
−
1 )
,

n1m
−
1

n0
P−1 < M,

P−1 , otherwise.
. (38)

Assuming that Model III and Model IV share the same set of parameters,
we can now compare their equilibrium outcomes. In particular, our analysis
focuses on the size of the endogenous asset supply shock and the resulting
equilibrium prices, under both the scenario without a circuit breaker and
the one with it. This comparison reveals how the introduction of the circuit
breaker changes not only the timing of market clearing but also the ultimate
magnitude of the shock absorbed by market makers.

Proposition 4. If the realized number of initial asset holders is smaller
than expected, i.e. n0 < E0(n0), and the initial shock is fully absorbed at the
circuit breaker trigger price P−1 (that is, s− ≤ n1m

−
1 ), then the final supply

shock s+ with the circuit breaker is strictly smaller than the corresponding
shock s without it.

Proof. See Appendix A.8.

Proposition 4 highlights a case in which the circuit breaker helps reduce
the effective supply shock. The mechanism operates through two channels.
First, because sales occur at the relatively high trigger price P−1 , initial
holders can satisfy their liquidity needs by selling a smaller fraction of their
assets. Second, the activation of the circuit breaker leads market makers
to infer that the number of sellers is larger than it actually is, thereby
stimulating higher demand. Together, these forces ensure that the supply
shock absorbed under the circuit breaker is smaller than in the absence of
such a mechanism. In this scenario, the circuit breaker plays a stabilizing
role by mitigating the magnitude of the shock and dampening short-term
volatility.

Proposition 5. If the realized number of initial asset holders exceeds
expectations, i.e. n0 > E0(n0), and the initial shock is not fully absorbed
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at the circuit breaker trigger price P−1 (that is, s− > n1m
−
1 ), then the

final supply shock s+ with the circuit breaker is strictly larger than the
corresponding shock s without it.

Proof. See Appendix A.9.

Proposition 5 shows that when the realized seller population turns out
to be larger than expected, the circuit breaker amplifies rather than miti-
gates the supply shock. The mechanism works as follows. Since the initial
shock cannot be fully absorbed at the trigger price P−1 , initial asset holders
must sell additional assets upon market reopening in order to satisfy their
liquidity needs. At this stage, they learn that the actual number of sellers
n0 is higher than anticipated, which signals stronger selling pressure and a
lower expected continuation price. Faced with deteriorating price expecta-
tions, initial holders are induced to liquidate an even larger fraction of their
assets. Consequently, the circuit breaker, by revealing unexpectedly high
selling pressure, reinforces rather than alleviates selling incentives, thereby
enlarging the total supply shock and exacerbating market volatility.

Propositions 4 and 5, together with the pricing conditions in equations
(38) and (12), emphasize the dual role of circuit breakers under endogenous
shocks. When selling pressure turns out stronger than expected, the circuit
breaker – by revealing this intensified pressure – amplifies the incentive to
sell, thereby increasing the final supply shock and depressing asset prices
both at the trigger point and after market reopening. In this case, the
mechanism destabilizes the market. Conversely, when selling pressure is
weaker than expected, the disclosure effect of the circuit breaker alleviates
excessive pessimism, leading to a smaller supply shock and higher prices
at both stages. Under such conditions, the circuit breaker contributes to
stabilizing the market.

4.3. A Numerical Example

This section presents a numerical illustration of how the imposition
of a circuit breaker alters the equilibrium outcome of initial asset sales.
Consider two possible states for the population of initial asset holders,
n0 ∈ {nL0 , nH0 } with 0 < nL0 < nH0 , occurring with probability masses
(π, 1− π). With an arbitrary but representative parameterization – quali-
tatively robust to alternative choices – we compare the equilibrium supply
shock s, the short-term price P1, value buyers’ demand d, and the long-
term price P2 in Model III (without circuit breaker) and Model IV (with
circuit breaker). The triggering threshold is set at P−1 = 1.05 × P1, i.e.,
the circuit breaker activates when the price is 5 percent higher than the
no-breaker equilibrium price.
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FIG. 9. A Numerical Example of the Circuit Breaker’s Effect on Market Volatility
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This figure illustrates a numerical example based on Models 4.1 and 4.2, where the asset

supply shock is endogenous and the circuit breaker is absent and present, respectively.

Parameters are set as follows: nL0 = 0.5, nH0 ∈ [1.5, 3], π = 0.5, n1 == 1, f = 2, σf = 1,

M = 0.15.

When the true state corresponds to a small number of initial asset hold-
ers, the circuit breaker allows their sell orders to be executed at a relatively
higher price, thereby reducing the quantity of assets needed to meet the
liquidity requirement. In this case, the breaker mitigates the effective sup-
ply shock and prevents the price from falling as deeply as in the no-breaker
scenario, as illustrated by the blue dashed curve in Figure 9.

By contrast, when the number of initial asset holders is large, activation
of the circuit breaker produces the opposite effect. Once the breaker is
triggered, asset holders realize that there are many competitive sellers in
the market. Anticipating a low execution price, they choose to sell more
aggressively to satisfy liquidity needs. As a result, the circuit breaker
amplifies the supply shock and leads to a deeper price slump, as shown by
the red dotted curve in Figure 9.
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5. CONCLUSIONS

Automatic trading halts are widely adopted in global financial markets,
yet their effectiveness remains controversial. Using the 2016 introduction
of the circuit breaker in China’s stock market as a case study, we apply
a GJR-GARCH model and show that the mechanism failed to suppress
volatility and, instead, exacerbated it. To reconcile the mixed evidence
in the literature, we extend Greenwald and Stein (1991) and propose two
pairs of models that highlight the channels through the demand and supply
sides, respectively.

On the demand side, the circuit breaker acts as a signal by revealing a
lower bound on the unknown magnitude of the asset supply shock. Buyers
update their demand schedules based on this information. When the shock
is large, demand is underestimated, causing the equilibrium price under
the circuit breaker to fall below that without it. When the shock is small,
however, the breaker raises the equilibrium price.

On the supply side, we show how fire sales can trigger asset price crashes.
Here, the circuit breaker functions by disclosing trading volume and price
upon activation, thereby revealing the true size of the population of dis-
tressed sellers. When this population turns out to be large, stronger selling
pressure pushes expected execution prices down, which in turn incentivizes
sellers to liquidate even more assets to meet liquidity needs. This feedback
loop amplifies the supply shock and depresses prices further compared to
the no-breaker scenario. Conversely, when the revealed population of sell-
ers is small, the breaker dampens the supply shock and prevents prices
from falling as steeply.

Taken together, our analysis shows that the stabilizing or destabilizing
role of circuit breakers depends critically on the magnitude of the shock
hitting the market. When shocks are sufficiently large, the breaker tends to
amplify volatility by reducing demand and encouraging additional supply.
Otherwise, the mechanism fulfills its intended stabilizing function.

These findings yield two policy implications. First, the effectiveness of
circuit breakers is conditional. It is essential to design automatic trading
halt standards, such as trigger thresholds, in line with the volatility pat-
terns of specific markets. When markets face severe or imminent supply
shocks, circuit breakers alone cannot effectively suppress volatility or con-
tain crises. Second, trading halts should be complemented with broader
stabilization policies. During suspensions, regulators should proactively
implement measures that strengthen investor confidence, reduce informa-
tion asymmetries, or ease liquidity strains. Such interventions can shape
expectations and behaviors, mitigating potential volatility when trading
resumes.
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Finally, our models rely on the simplifying assumption that traders’
choice between limit and market orders is determined by their type, primar-
ily for tractability. Relaxing this assumption through homogeneous-agent,
dynamic models would be a valuable extension. Recent episodes in the U.S.
stock market during 2020 suggest that circuit breaker activations may be
more frequent than previously anticipated, further underscoring the need
for continued research.

APPENDIX A

A.1. PROOF OF PROPOSITION 1

At the time of market reopening, we have

s

n1
=
E (P2,CB |s, sCB)−

(
m−

1

m+
1

P−1 +
m+

1 −m
−
1

m+
1

P+
1

)

Var (P2,CB |s, sCB)
, (A.1)

P2,CB = f2 +
n2d
∗
CB (sCB)− s

n1
. (A.2)

Here, s, sCB , and d∗CB (sCB) are known. The only source of uncertainty is
f2, so we obtain:

Var (P2,CB |s, sCB) = Var (f2|s, sCB) = Var (f2) = σ2
f , (A.3)
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. (A.4)

Taking the conditional expectation of s given sCB in equation (A.4), we
have:

E (s|s > sCB)
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E
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. (A.5)

From equation (22), it follows that

sCB
n1

=
E
[
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(
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] . (A.6)
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From equations (A.4) and (20), the volume-weighted average acquisition
cost of the asset can be written as

m−1
m+

1

P−1 +
m+

1 −m−1
m+

1

P+
1 = E (P2,CB |s, sCB)− s

n1
σ2
f

=
n2d
∗
CB (sCB)− s

n1
− s

n1
σ2
f . (A.7)

From equations (A.6) and (20), the conditional variance of the average
acquisition cost is
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Substituting equation (A.8) into (A.6) yields

sCB
n1

=
E
[
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Finally, dividing equation (A.5) by (A.9) gives

1 +
σ2
f

n2
1

Var (s|s > sCB) =
E (s|s > sCB)

sCB
. (A.10)
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A.2. PROOF OF PROPOSITION 2

Consider the auxiliary function G defined as

G(x) =
E(s|s > x)

x
−
σ2
f

n2
1

Var(s|s > x). (A.11)

We aim to show that lim
x→0+

G(x) =∞ and lim
x→∞

G(x) = 0. By the Interme-

diate Value Theorem, this ensures the existence of s∗CB ∈ (0,∞) such that
G(s∗CB) = 1.

The conditional cumulative distribution function (CDF) of the exogenous
asset supply shock s given s > sCB is

Pr (s < x|s > sCB) ≡ Hs (x|s > sCB) =
Pr (sCB < s < x)
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) , (A.12)

where Φ denotes the CDF of the standard normal distribution.
Using (A.11), the conditional probability density function (PDF) of s

given s > sCB can be written as
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ϕ
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where ϕ is the probability density function of the standard normal distri-
bution. By definition, the conditional expectation and variance of s given
s > sCB are
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∫ ∞
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We first establish that lim
x→0+

G(x) = ∞. From equations (A.14) and

(A.15), we obtain
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Therefore,
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Next, we show that lim
x→∞

G(x) = 0. By the definition of the conditional

probability density function, we have
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where
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In deriving (A.20), we apply L’Hôpital’s rule and use the property of the
standard normal density:

ϕ(x) =
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Substituting equation (A.20) into (A.19), we obtain
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From equation (A.15), we further have
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Combining (A.22) and (A.23), it follows that

lim
x→∞

G(x) = lim
x→∞

[
E(s|s > x)

x
−
σ2
f

n2
1

Var(s|s > x)

]
= 0. (A.24)

Thus, the proof of lim
x→∞

G(x) = 0 is complete.

A.3. PROOF OF COROLLARY 1

According to Proposition 2, there exists a threshold sCB that satisfies
the equilibrium condition in Proposition 1. The equilibrium demand of
value buyers and the execution price in the presence of the circuit breaker
are given by equations (19) and (20) in the main text:

d∗CB (sCB) =

{[
n1 +

1

n1
Var (s|s > sCB)

]
+ n2

}−1

E (s|s > sCB) ,

(A.25)

P2,CB =f2 +
n2d
∗
CB (sCB)− s

n1
. (A.26)

In the model without the circuit breaker, the equilibrium demand of
value buyers and the corresponding execution price, as given in equations
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(11) and (12), are:

d∗ =
s

n1 + n2
, (A.27)

P2 =f2 +
n2d
∗ − s
n1

. (A.28)

Suppose that for some s = s∗, we have d∗ = s∗

n1+n2
= d∗CB (sCB). Then

it follows that:

1. When s > s∗, d∗ > d∗CB (sCB) , P2 > P2,CB ;
2. When s < s∗, d∗ < d∗CB (sCB) , P2 < P2,CB .

A.4. PROOF OF COROLLARY 2

In the baseline model without a circuit breaker, equation (5) yields:

P1 = E1 (P2)− s

n1
Var1 (P2) . (A.29)

Using equation (12), we have:

P2 = f2 +
n2d
∗ − s
n1

, (A.30)

E1 (P2) =
n2d
∗ − s
n1

, (A.31)

Var1 (P2) = σ2
f . (A.32)

Thus,

P1 =
n2

n1
d∗ −

1 + σ2
f

n1
s. (A.33)

In the model with a circuit breaker, equation (21) implies:

m−1
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1

P−1 +
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1 −m−1
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1

P+
1 = E (P2,CB |s, sCB)− s

n1
Var (P2,CB |s, sCB) ,

(A.34)
with the following expressions derived from equation (20):

P2,CB = f2 +
n2d
∗
CB (sCB)− s

n1
, (A.35)

E (P2,CB |s, sCB) =
n2d
∗
CB (sCB)− s

n1
, (A.36)

Var (P2,CB |s, sCB) = σ2
f . (A.37)
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Hence, the volume-weighted average acquisition cost for market makers is

m−1
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1

P−1 +
m+

1 −m−1
m+

1

P+
1 =

n2

n1
d∗CB (sCB)−

1 + σ2
f

n1
s. (A.38)

Subtracting equation (A.38) from equation (34) yields the difference in
the market maker’s acquisition cost between the baseline model without
the circuit breaker and the one with the circuit breaker:

P1 −
(
m−1
m+

1

P−1 +
m+

1 −m−1
m+

1

P+
1

)
=
n2

n1
[d∗ − d∗CB (sCB)] . (A.39)

By Corollary 1, if s > s∗, then d∗ > d∗CB (s∗CB), so P1 >
(
m−

1

m+
1

P−1 +
m+

1 −m
−
1

m+
1

P+
1

)
.

Hence,

m−1
m+

1

(
P1 − P−1

)
>
m+

1 −m−1
m+

1

(
P+

1 − P1

)
. (A.40)

Since both coefficients
m−

1

m+
1

and
m+

1 −m
−
1

m+
1

are positive, when P−1 > P1, the

left-hand side of (A.40) is negative. Therefore, to satisfy the inequality it
must follow that P+

1 < P1. This completes the proof.

A.5. PROOF OF PROPOSITION 3

There are four possible cases regarding the existence of ω∗ ∈ (0, 1):

• Case 1: The best response function ωi = BR (ω−i,E0(n0)) does not
intersect the 45◦ line ωi = ω−i in the interval (0, 1).
• Case 2: The best response function ωi = BR (ω−i,E0(n0)) is tangent

to the 45◦ line ωi = ω−i at a point ω∗ ∈ (0, 1).
• Case 3: The best response function ωi = BR (ω−i,E0(n0)) intersects

the 45◦ line ωi = ω−i at a unique point ω∗ ∈ (0, 1).
• Case 4: The best response function ωi = BR (ω−i,E0(n0)) intersects

the 45◦ line ωi = ω−i at two distinct points ω∗1 and ω∗2 , with ω∗1 < ω∗2 .

Now fix a value E0(n0) satisfying f − E0(n0)
(

1
n1+n2

+
σ2
f

n1

)
> 0. For

notational simplicity, write ωi(ω−i) = BR(ω−i,E0(n0)). We discuss the
local stability of equilibria and exclude the possibility of multiple stable
equilibria. Two lemmas are stated below regarding the derivative of the
best response function at an equilibrium.

Lemma 1. In Case 3, the derivative dωi(ω−i)
dω−i

∣∣∣∣
ω−i=ω∗

lies in (0, 1).

Proof: See Appendix A.6.
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Lemma 2. In Case 4, the derivative dωi(ω−i)
dω−i

∣∣∣∣
ω−i=ω∗

1

is in the interval

(1,∞), and dωi(ω−i)
dω−i

∣∣∣∣
ω−i=ω∗

2

lies in (0, 1).

Proof: See Appendix A.7.
Consider a symmetric equilibrium ωi = ω∗ for all i ∈ [0, n0]. An equi-

librium is said to be locally stable if, following any sufficiently small per-
turbation around ω∗, repeated best-response updates by all asset holders
converge back to ω∗. Formally:

Definition A.1. Let ω∗ be a symmetric equilibrium. Consider pertur-
bations (ω0

i )i∈[0,n0] such that {i : ω0
i 6= ω∗} 6= ∅ and sup

i∈[0,n0]

|ω0
i −ω∗| < δ for

some δ > 0. If for all such perturbations we have lim
k→∞

sup
i∈[0,n0]

|ωki −ω∗| = 0,

where ωki = BRi

((
ωk−1
j

)
j∈[0,n0],j 6=i

)
denotes the k-th optimal choice of

agent i, then ω∗ is locally stable; otherwise it is locally unstable.

By this definition, we now prove that ω∗ in Case 3 and ω∗2 in Case 4 are
locally stable, while ω∗1 in Case 4 is locally unstable.

Suppose {ω0
i }i∈[0,n0] is an initial perturbation such that

{
i : ω0

i 6= ω∗
}
6=

∅ and sup
i∈[0,n0]

{
|ω0
i − ω∗|

}
< δ for some δ > 0. Note that ω0

i 6= ω0
j for some

i 6= j is allowed. In this case, the best response function BRi for any i is

[
1−BRi

(
(ωj)j∈[0,n0],j 6=i

)][
f −

∫ E0(n0)

0

(1− ωj) dj
(

1

n1 + n2
+
σ2
f

n1

)]
−M = 0.

(A.41)

For any individual agent i in the continuum [0, n0], the integral

∫ E0(n0)

0

(1− ωj) dj

in equation (A.41), and thus the best response BRi

(
(ωj)j∈[0,n0],j 6=i

)
, has

the same value. Therefore, though
{
ω0
i

}
i∈[0,n0]

can be heterogeneous in

that ω0
i 6= ω0

j is allowed, once all asset holders have updated their choices
according to the best response function in the first round, their subsequent
best responses will remain identical in every following round. From k = 1
on,

{
ωki
}
i∈[0,n0]

=
{
BRi

(
(ωk−1
j )j∈[0,n0],j 6=i

)}
i∈[0,n0]

must be homogeneous,

i.e. ωki = ωk for any i and k ≥ 1. And it is obvious that ω1 can be arbi-
trarily close to ω∗ for δ > 0 small enough. Therefore, it suffices to discuss
the symmetric strategy.

Consider the symmetric equilibrium ω∗ in Case 3 (the same reasoning
applies to ω∗2 in Case 4). By equation (A.50), the second order derivative of
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ωi(ω−i) exists in (0, 1), implying that the first order derivative of ωi(ω−i)

exists and is continuous in (0, 1). From Lemma 1, dωi(ω−i)
dω−i

∣∣∣∣
ω−i=ω∗

∈ (0, 1).

Hence, there exists some δ > 0, such that for all ω−i ∈ (ω∗ − δ, ω∗ + δ) ≡
Bδ(ω∗) ⊆ (0, 1), dωi(ω−i)

dω−i
∈ (0, 1). Again by equation (A.50), function

ωi(ω−i) is concave in (0, 1), it follows that

|ωi(ω2)−ωi(ω1)| ≤ dωi(ω−i)

dω−i

∣∣∣∣
ω−i=ω1

|ω2−ω1|, ∀ ω1, ω2 ∈ Bδ(ω∗), (A.42)

where
dωi(ω−i)

dω−i

∣∣∣∣
ω−i=ω1

∈ (0, 1). Since the first order derivative of best

response function ωi(ω−i) is continuous, by Weierstrass Theorem, there

exists q = max
ω−i∈cl(Bδ1 (ω∗))

dωi(ω−i)

dω−i
, where cl (Bδ1(ω∗)) is the closure of

Bδ1(ω∗) and δ1 ∈ (0, δ) to guarantee q ∈ (0, 1). Hence,

|ωi(ω2)− ωi(ω1)| ≤ q|ω2 − ω1|, ∀ ω1, ω2 ∈ Bδ1(ω∗). (A.43)

Therefore, the best response function ωi(ω−i) to symmetric strategy ω−i
is a contraction mapping on Bδ1(ω∗). By Banach Fixed Point Theorem,
ωi(ω−i) admits a fix point in Bδ1(ω∗), and the fixed point must be ω∗

itself, otherwise it contradicts the uniqueness of the symmetric equilibrium
in Case 3. And for any initial perturbation with sup

i∈[0,n0]

{
|ω0
i − ω∗|

}
< δ1,

ωt → ω∗ where ωk = ωi(ω
k−1). By Definition 1, ω∗ is locally stable.

For ω∗1 in Case 4, following a similar argument as above, it can be shown
that for any δ > 0, there exists δ1 ∈ (0, δ) so that the first order derivative
of the best response function in (ω∗1 − δ1, ω∗1 + δ1) is strictly greater than
1. Then it is easy to show that any perturbation in the vicinity of ω∗1 leads
to a divergence. Therefore, ω∗1 is locally unstable.

A.6. PROOF OF LEMMA 1

Combining equations (28) and (29), we obtain

H (ωi, ω−i,E0 (n0)) = (1− ωi)
[
f − E0 (n0) (1− ω−i)

(
1

n1 + n2
+
σ2
f

n1

)]
−M = 0.

(A.44)
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Taking the first-order derivative with respect to ω−i on both sides of equa-
tion (A.44), we obtain

dωi (ω−i)

dω−i
= −

∂H(ωi,ω−i,E0(n0))
∂ω−i

∂H(ωi,ω−i,E0(n0))
∂ωi

= −
(1− ωi)E0 (n0)

(
1

n1+n2
+

σ2
f

n1

)

−
[
f − E0 (n0) (1− ω−i)

(
1

n1+n2
+

σ2
f

n1

)]

=
(1− ωi)E0 (n0)

(
1

n1+n2
+

σ2
f

n1

)

f − E0 (n0) (1− ω−i)
(

1
n1+n2

+
σ2
f

n1

) . (A.45)

For any ωi, ω−i ∈ (0, 1), we have

(1− ωi)E0 (n0)

(
1

n1 + n2
+
σ2
f

n1

)
> 0. (A.46)

f − E0 (n0) (1− ω−i)
(

1

n1 + n2
+
σ2
f

n1

)
> f − E0 (n0)

(
1

n1 + n2
+
σ2
f

n1

)
> 0

(A.47)

where the second strict inequality follows directly from condition (32).
Therefore,

dωi(ω−i)

dω−i
=

[1− ωi(ω−i)]E0(n0)
(

1
n1+n2

+
σ2
f

n1

)

f − E0(n0)(1− ω−i)
(

1
n1+n2

+
σ2
f

n1

) > 0, ∀ (ωi, ω−i) ∈ (0, 1)2.

(A.48)

Hence, dωi(ω−i)
dω−i

∣∣∣∣
ω−i=ω∗

> 0.

It cannot be the case that dωi(ω−i)
dω−i

∣∣∣∣
ω−i=ω∗

= 1, because this would con-

tradict the fact that the best response function ωi(ω−i) intersects the 45-
degree line at ω∗.

Likewise, it cannot be the case that dωi(ω−i)
dω−i

∣∣∣∣
ω−i=ω∗

> 1. To see this, sup-

pose otherwise. Then, for any ω−i ∈ (ω∗, 1), it must hold that ωi(ω−i) >
ω−i. This would imply that the best response function ωi(ω−i) intersects
the 45-degree line at two distinct points, contradicting the uniqueness of
ω∗. By continuity, ωi(1) = 1 would also constitute an equilibrium, meaning
that an asset holder would optimally sell nothing. However, as implied by
optimization problem (26), a strategy of not selling any holdings is never
optimal.
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Therefore, we conclude that

dωi(ω−i)

dω−i

∣∣∣∣
ω−i=ω∗

∈ (0, 1). (A.49)

A.7. PROOF OF LEMMA 2

The proof that dωi(ω−i)
dω−i

∣∣∣∣
ω−i=ω∗

2

∈ (0, 1) follows a similar logic to the

proof of Lemma 1. Taking the first-order derivative with respect to ω−i on
both sides of equation (A.45) gives

d2ωi(ω−i)
dω2
−i

=−
E0(n0)

(
1

n1+n2
+
σ2
f

n1

)
[
f − E0(n0)(1− ω−i)

(
1

n1+n2
+
σ2
f

n1

)]2

{
dωi(ω−i)
dω−i

[
f − E0(n0)(1− ω−i)

(
1

n1 + n2
+
σ2
f

n1

)]

+ [1− ωi(ω−i)]E0(n0)

(
1

n1 + n2
+
σ2
f

n1

)}
< 0, ∀ (ωi, ω−i) ∈ (0, 1)2. (A.50)

By the Lagrange Mean Value Theorem, there exists some ξ ∈ (ω∗1 , ω
∗
2)

such that

dωi(ω−i)

dω−i

∣∣∣∣
ω−i=ξ

=
ωi(ω

∗
2)− ωi(ω∗1)

ω∗2 − ω∗1
= 1. (A.51)

Combining (A.50) and (A.51), we conclude that dωi(ω−i)
dω−i

∣∣∣∣
ω−i=ω∗

1

∈ (1,∞)

while at ω∗2 the derivative must lie strictly between 0 and 1.

A.8. PROOF OF PROPOSITION 4

In Model III, with ωi = ω−i = ω∗, the supply shock is s = n0(1 − ω∗).
From equation (24), we obtain

P1 = f − s
(

1

n1 + n2
+
σ2
f

n1

)
= f −n0 (1− ω∗)

(
1

n1 + n2
+
σ2
f

n1

)
. (A.52)

Combining equation (30) with n0 < E0 (n0) yields

P1 > f − E0 (n0) (1− ω∗)
(

1

n1 + n2
+
σ2
f

n1

)
=

M

1− ω∗ , (A.53)
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which implies

1− ω∗ < M

P1
. (A.54)

Since P−1 > P1, it follows that

M

P−1
<
M

P1
. (A.55)

In Model IV, if s− < n1m
−
1 so that the liquidity demand of the initial

asset holders is fully satisfied, the final supply shock is

s+ = s− = n0
M

P−1
< n0

M

P1
< n0 (1− ω∗) = s. (A.56)

A.9. PROOF OF PROPOSITION 5

In Model III, the symmetric equilibrium is characterized by equation
(31). Multiplying both sides of equation (31) by n0 and substituting s =
n0(1− ω∗) yields:

E0 (n0)

n0

(
1

n1 + n2
+
σ2
f

n1

)
s2 − fs+ n0M = 0. (A.57)

In contrast, in Model IV, s+ is governed by equation (35):

(
1

n1 + n2
+
σ2
f

n1

)
(
s+
)2 − fs+ + n0M = 0. (A.58)

The key difference between equations (A.57) and (A.58) lies in the multi-

plicative factor E0(n0)
n0

, which reflects the role of uncertainty regarding the
number of initial asset holders.

By Proposition 3, in Case 4 where two equilibria ω∗1 < ω∗2 exist, the
lower equilibrium ω∗1 is locally unstable, while the higher equilibrium ω∗2
is locally stable. Therefore, the relevant solution for s corresponds to the
smaller root, i.e., s = n0(1−ω∗2). For convenience, define the coefficients:

a =
E0 (n0)

n0

(
1

n1 + n2
+
σ2
f

n1

)
, (A.59)

b =f, (A.60)

c =n0M. (A.61)
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Then the quadratic equation (A.57) in s can be rewritten as

as2 − bs+ c = 0, (A.62)

which admits the solution

s =
b−
√
b2 − 4ac

2a
=

2c

b+
√
b2 − 4ac

. (A.63)

Note that the coefficient a increases with E0(n0)
n0

, and hence s is also

increasing in this ratio. Therefore, when n0 > E0(n0), we have E0(n0)
n0

< 1,

which implies s < s+.
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