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Mean Field Games and Global Arms Races: Strategic Dynamics
in a Multipolar World

Heng-Fu Zou"

This paper develops a dynamic game-theoretic framework to model global
arms races in a multipolar world using mean field game (MFQG) theory. We
analyze the strategic behavior of a continuum of minor countries influenced
by the military decisions of three major powers — the United States, China,
and Russia — who engage in a finite-player differential game. Each country
chooses its military expenditure over time to minimize a cost function that re-
flects internal costs and strategic positioning relative to others. We derive both
general nonlinear and linear-quadratic-Gaussian (LQG) formulations, solve the
coupled HIB-FPK systems, and simulate both time-dependent and stationary
equilibria. Our results show how strategic interdependence, peer pressure, and
deterrence incentives drive excessive militarization in decentralized equilib-
rium. We compare decentralized and centralized outcomes and analyze policy
interventions such as caps and taxes. The framework offers a rigorous foun-
dation for understanding military competition and evaluating arms control
policies under uncertainty.

Key Words: Mean field games; Arms race, Strategic competition; Militarization;
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1. INTRODUCTION

The strategic accumulation of military power is one of the most enduring
and consequential dynamics in international relations. From the dread-
nought races of the early twentieth century to the nuclear competition of
the Cold War, and now to the emergent tensions over artificial intelligence,
cyberwarfare, and missile defense systems, the logic of the arms race con-
tinues to shape global security architectures. Today, the rivalry between
the United States, China, and Russia has reawakened the dynamics of mil-
itarized competition on a global scale. Their strategic postures not only
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affect their own security, but also reverberate across the international sys-
tem, prompting reactive behavior among smaller states and reshaping the
distribution of military capabilities worldwide.

At the core of these dynamics lies a problem of strategic interdepen-
dence under uncertainty. No country determines its military stockpile in
isolation. Instead, each faces a forward-looking optimization problem un-
der incomplete information: it must decide how much to invest in military
power based on its own perceived threats and objectives, its expectations
about the future actions of others, and the costs associated with falling
behind strategically. When many countries simultaneously respond to a
rising militarization frontier — often defined by a small number of domi-
nant states — the result is a self-reinforcing cycle of escalation, even when
no actor desires open conflict. This phenomenon is both a collective action
failure and a systemic feature of an anarchic international order.

This paper proposes a dynamic game-theoretic framework to study such
arms races using the tools of mean field game (MFG) theory. MFG the-
ory provides a scalable approach for modeling strategic interactions among
many agents who are individually negligible but collectively impactful.
First developed by Lasry and Lions (2006) and Huang, Caines, and Mal-
hamé (2006), MFG theory merges optimal control, game theory, and stochas-
tic analysis into a unified system that is both analytically tractable and
empirically interpretable. In this setting, each agent optimizes over a
stochastic trajectory, taking the distribution of the population as given;
equilibrium requires that this distribution is consistent with the agents’
joint behavior.

We extend this approach to model a multipolar arms race, with explicit
heterogeneity across players. Specifically, we consider a system compris-
ing three major powers — the United States, China, and Russia — and
a continuum of minor countries. The major powers interact strategically
with one another in a finite-player dynamic game, while the minor states re-
spond to the evolving mean field generated by their peers and the aggregate
behavior of the dominant powers. Each country chooses its military expen-
diture path to minimize a cost functional that reflects three key factors:
(i) the cost of maintaining a high military stock, (ii) the cost of exerting
high military effort, and (iii) the strategic cost of falling behind the global
norm.

We begin by developing the general nonlinear mean field game system,
consisting of a Hamilton-Jacobi-Bellman (HJB) equation for individual
value functions, a Fokker—Planck—Kolmogorov (FPK) equation for the evo-
lution of the population state distribution, and a best response control law
linked through a McKean—Vlasov fixed-point condition. We then specialize
to a linear-quadratic-Gaussian (LQG) framework, where optimal feedback
controls and equilibrium distributions can be derived in closed form. This
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allows us to simulate the system and provide comparative statics with re-
spect to key parameters, including peer pressure, discount rates, and initial
conditions.

Our simulations yield several key findings. First, the military stocks of
the three major powers converge dynamically toward a stable equilibrium
that reflects their strategic competition and desire for deterrence domi-
nance. Second, the continuum of minor players gradually aligns its military
levels with the dominant powers, leading to a rising and persistent global
mean field of militarization. Third, increasing peer pressure among minor
countries leads to tighter clustering of military stocks and a rightward shift
in the distribution — indicating higher militarization and reduced diversity.
Finally, we show that strategic inefficiencies arise from the decentralized
nature of the game: countries overinvest in military power relative to a
centralized solution that internalizes global externalities.

The policy implications are far-reaching. If left unregulated, decen-
tralized arms races generate path-dependent equilibria marked by over-
militarization and systemic vulnerability. However, coordinated action —
such as arms control agreements among major powers or penalties on ex-
cessive militarization — can alter the feedback mechanisms in the system,
shifting the equilibrium toward a more peaceful and efficient outcome. Our
model allows for quantitative evaluations of such interventions.

In sum, this paper develops a novel and rigorous framework for un-
derstanding the endogenous dynamics of global arms races in a multipo-
lar world. By combining the realism of strategic heterogeneity with the
tractability of mean field analysis, we provide both theoretical and em-
pirical insights into the causes, consequences, and control of militarized
competition in the twenty-first century.

The remainder of the paper unfolds in nine sections, each progressively
building the theoretical and empirical foundation of our model. In Section
2, we formulate the mean field game in two stages. First, we construct the
most general nonlinear model for a continuum of agents, capturing complex,
dynamic interdependence under stochastic uncertainty. We then specialize
this general formulation to the linear-quadratic-Gaussian (LQG) setting,
where the linearity of state dynamics, quadratic costs, and Gaussian noise
structure permit explicit solutions for value functions, optimal controls,
and population distributions. This LQG framework forms the backbone of
our analytical and numerical exploration.

Section 3 presents the detailed derivation and solution of both the time-
dependent (finite-horizon) and stationary (infinite-horizon) versions of the
model. We solve the forward—backward system of Hamilton—Jacobi—Bellman
(HJB) and Fokker—Planck—Kolmogorov (FPK) equations and examine the
dynamic feedback loop between individual strategies and the evolving pop-
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ulation distribution. In the stationary case, we analyze the long-run equilib-
rium configuration under constant strategic environments and discounting.

In Section 4, we conduct numerical simulations of the time-dependent
model, highlighting the evolution of military stocks over time. We show how
the strategic arms race unfolds from different initial conditions, and how
countries’ military postures converge toward stable equilibrium levels. The
simulations illustrate key dynamics, such as escalation, convergence, and
diffusion of strategic norms, across heterogeneous agents under endogenous
feedback.

Section 5 introduces policy interventions into the mean field game frame-
work. We analyze three types of instruments: (i) penalty functions for ex-
cessive militarization, (ii) hard caps on military stock levels, and (iii) fiscal
tools such as taxes or subsidies on military expenditure. Each policy alters
the optimization structure of the agents, leading to modified HJB-FPK
dynamics. We evaluate the comparative effectiveness of these policies in
reducing average militarization, controlling variance, and improving overall
welfare.

In Section 6, we contrast the decentralized Nash equilibrium of the mean
field game with the centrally planned solution in which a social planner min-
imizes total global cost. By internalizing the externalities that arise from
mutual fear and relative positioning, the planner selects a coordinated path
that achieves lower levels of militarization and lower strategic expenditure.
This section provides a benchmark for evaluating the efficiency losses due
to decentralized decision-making in the arms race.

Section 7 extends the model to reflect the real-world heterogeneity of
global power. We develop a hybrid model with three major players —
United States, China, and Russia — engaged in a finite-player game, while
the rest of the world consists of a continuum of minor countries solving a
mean field game in response to the aggregate behavior of the major powers.
This structure captures asymmetric influence, hierarchical interactions, and
the propagation of strategic norms. We derive the system of coupled HJB—
FPK equations and feedback laws for both major and minor players.

Section 8 presents simulation results for the multipolar world model,
including both transient and stationary analyses. We simulate the evolu-
tion of military stocks among major powers and track how their behav-
ior induces gradual militarization among minor states. We visualize the
emergence of a global strategic equilibrium and analyze the distributional
implications of increased peer pressure, asymmetries in initial conditions,
and changes in discount rates. These simulations demonstrate the conta-
gious logic of militarization and the interdependence of strategic incentives
across levels of power.

Finally, Section 9 concludes by synthesizing the main results and offer-
ing a policy-oriented interpretation of the model. We highlight the dangers
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of decentralized arms races in a world of rising multipolar competition
and identify key levers for coordination and intervention. We also discuss
extensions and future directions for modeling strategic interactions in in-
ternational security using mean field and hybrid game frameworks.

2. GENERAL MEAN FIELD GAME MODEL: NONLINEAR
FRAMEWORK

In this section, we construct a general continuous-time mean field game
(MFG) model in a one-dimensional state space. We begin by considering
a representative agent from a continuum of indistinguishable agents (such
as countries), each making decisions over time in response to their individ-
ual states and the distribution of the population. The state dynamics are
governed by a stochastic differential equation (SDE), and each agent min-
imizes a cost that depends on both their own trajectory and the aggregate
population distribution.

Let z(t) € R denote the state variable of a representative agent at time
t € [0,7]. In the arms race context, x(t) represents the level of military
stock or capability. Let u(t) € U C R denote the control variable, repre-
senting an action such as military expenditure.

The agent’s controlled dynamics follow the stochastic differential equa-
tion:

dx(t) = f(x(t), u(t), t) dt + o(z(t),u(t),t) dW(t),
where:

o f(x,u,t): drift term — deterministic trend in the dynamics.

e o(z,u,t): diffusion term — uncertainty or stochastic volatility.
e W (t): standard Brownian motion.

e u(t): control variable chosen by the agent.

The agent chooses a control process u(-) to minimize a cost functional of
the form:

where:

e L(x,u,p,t): running cost depending on the state, control, and popu-
lation distribution pu(t).

e G(xz,p): terminal cost.

e u(t): the distribution of states across the population at time ¢, i.e.,

p(t) = Law(x(1)).
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This cost functional introduces mean field dependence through u(t), cap-
turing the externality that each country’s behavior depends on the average
militarization level.

2.1. Hamilton—Jacobi—-Bellman (HJB) Equation

The HJB equation characterizes the value function V (¢, z), which repre-
sents the minimal expected cost for an agent starting at state x and time
t. That is:

V(t,x) = infE l/t L(x(s), u(s), u(s), s) ds + G(x(T), w(T))

x(t) = m] .

Using dynamic programming and It6’s lemma, we derive the Hamilton—
Jacobi-Bellman (HJB) equation:

ov 2

, ov 1, 92V B
E(t’x)_kig{] {f(xaua t)aix(tvx) + 50- (.13, u, t)w(ﬁx) + L(x,u,u(t),t)} - 0;

with terminal condition:
V(T,z) = G(z, (T)).

This is a backward PDE solved from ¢ = T to t = 0. The term inside the
infimum is the Hamiltonian H (x, u,t, 1(t), 0;V, 0z V).

2.2. Best Response Control

The best response (BR) or optimal feedback control u*(t,z) is defined
as the argument minimizing the Hamiltonian:

2

e oV 1, 02V
) = angmig { £, 0.0 5 00) + 000,05 5 (0) 4 Ll )0}

This gives the feedback law w* (¢, z; u(t)), i.e., the optimal decision as a
function of state and the mean field.

2.3. Fokker—Planck—Kolmogorov (FPK) Equation

Given the best response control u*(¢,z), the evolution of the popu-
lation distribution p(¢,z) over time is governed by the Fokker—Planck—
Kolmogorov (FPK) equation, a forward PDE:

ap 9 16

ot (t,l‘) = 7% (f(x,u(t,x),t)p(t,x)) + 5@ (0’2(1‘,u(t,f£),t)p(t,x)) )

with initial condition:

p(0,2) = po(x),
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where po(z) is the initial distribution of agent states.

2.4. Coupling and Fixed Point: McKean—Vlasov Structure

The key feature of mean field games is the coupling between individ-
ual optimization and population dynamics. The optimal control u(t,x)
depends on the population distribution p(t), while the evolution of u(t)
depends on u. This mutual dependency creates a fixed-point problem.

This is often interpreted through a McKean—Vlasov SDE:

da(t) =f(a(t), ult,2(0); pt)), )t + o (x(t), ult, 2(); p(t)), /AW (1),
p(t) =Law(x ().

A mean field equilibrium is a pair (u*, u) such that:

e u*(t,x) solves the HIB equation given pu(t),
e 1u(t) evolves under the FPK equation with u*(¢, z).

2.5. Specialization: Linear-Quadratic Mean Field Game

We now specialize to the linear-quadratic (LQ) setting, which is analyt-
ically tractable and ideal for modeling strategic arms races.

State Dynamics:

dx(t) = (ax(t) + bu(t))dt + cdW (1),

where a is the natural decay or depreciation of military stock and b is the
effectiveness of military expenditure.
Cost Functional:

/OT (gx(t)2 + gu(t)z +

where Z(t) = [ 2 p(t,z) dz is the mean field (average militarization level).
Quadratic Value Function Ansatz:
We guess:

J(u)=E

)

(VRS

(z(t) — E(t))z) dt + %%(TV

1
Vi(t,x) = 5 P(H)a + R(t)r + (1),
which leads to the optimal control:
. b
u*(t,x) = —;(P(t)a: + R(1)).
Plugging this into the HJB yields a system of Riccati ODEs for P(t), R(¢), S(t),

and the FPK equation simplifies to a linear PDE with drift and diffusion
defined by this optimal feedback.
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The LQ case allows explicit solutions, which we exploit in later sections
to perform simulations and policy comparisons.

3. TIME-DEPENDENT AND STATIONARY SOLUTIONS
WITH MCKEAN-VLASOV COUPLING

We now examine the full dynamic solution of the mean field game (MFG)
system introduced in Section 2, beginning with the general nonlinear formu-
lation and then specializing to the linear-quadratic-Gaussian (LQG) case.
For both the general and specialized settings, we distinguish between the
finite-horizon time-dependent case, where the optimization problem spans
a fixed interval [0, 7], and the infinite-horizon stationary case, where solu-
tions are time-invariant and reflect long-run strategic behavior.

We proceed in four steps:

1. General nonlinear time-dependent MFG system.

2. General nonlinear stationary MFG system.

3. LQG time-dependent solution with Riccati ODEs.

4. LQG stationary solution with algebraic Riccati equations.

3.1. General Nonlinear Time-Dependent MFG System

Consider a representative agent whose scalar state z(t) € R evolves ac-
cording to a controlled stochastic differential equation:

dx(t) = f(x(t),u(t),t) dt + o(x(t), u(t),t) dW(t),
where u(t) € U C R is the control, and W (¢) is a standard Brownian

motion. The objective is to minimize the cost functional:

I

J(u(-)) =E l/o L(x(t), u(t), u(t), t) dt + G(2(T), u(T))

where p(t) = Law(z(t)) is the time-varying distribution of the population.
The value function is defined as:

Vit.o) = inf B [ | H@).u).19).5) s + Gla ). (D)

z(t) = x} .

Applying the dynamic programming principle and It6’s lemma, we obtain
the Hamilton-Jacobi-Bellman (HJB) equation:

2

oV . oV L, O’V _
E(tvx)_FJgg {f(xaua t)%(tx) + 50- (x,u,t)w(t,a:) + L(m,u,,u(t),t)} - Oa

with terminal condition V(T z) = G(x, u(T)).
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The optimal control u(t,x) is obtained by minimizing the integrand of
the HJB equation:

2

. ov 1, 02V
ul(t. ) = arg min {f(%u,t)ax(t,x) b2 (@) + L, ) t)} .

Given this optimal control, the population distribution p(¢,z) evolves
under the Fokker—Planck—Kolmogorov (FPK) equation:

op, . 0 1 9?

with initial condition p(0, z) = po(z).
The MFG system is closed through the fixed-point consistency condition:

p(t) = pt,x)de, and u(t,z) = u(t,z; u(t)).

3.2. General Nonlinear Stationary MFG System

For long-run analysis, we consider an infinite-horizon version with dis-
count factor p > 0. The optimization objective becomes:

J(u()) =E UOOO e‘ptL(x(t),u(t),u(t))dt} .

Assuming time-invariant coefficients and a stationary distribution u, we
seek a value function V' (z) satisfying the stationary HJB equation:

pV(@) = inf {f<x,u>V'<x> b L)V (x) + L(x,u,m} |

The optimal stationary control w(z) is then a function of u, and the
invariant distribution p(x) solves the stationary FPK equation:

2
0=~ @) + 5 L (0% u@)pl@),

subject to normalization [ p(z)dz = 1. The equilibrium requires:
p=p(x)de, and wu(z)=u(z;p).

This formulation establishes the stationary mean field equilibrium as a
fixed point.
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3.3. LQG Time-Dependent Mean Field Game

We now specialize to the linear-quadratic-Gaussian (LQG) case. The
agent’s dynamics are:

dz(t) = [az(t) + bu(t)]dt + odW (¢),

and the cost functional is:
T ra r U
J=E [/ (fx(t)2 +Zu(®)? + L (at) — j(t))Q) dt} .
o \2 2 2
We conjecture a quadratic value function:
1
V(t,x) = iP(t)xQ + R(t)x + S(t),
and derive the optimal control:
. b
u'(t @) = —— (P(t)e + R(t)).

The coefficients P(t), R(t), S(t) solve:

P(t) = —2aP(t) + ?P(tf —q—n,

() = - (a=ZP)) R0+ 200,

S(t) = —%R(t)2 + %P(t) - gf(t)Q.

Under this control, the state process follows:

b2 2

d(t) = Ka - TP(t)) w(t) — er(t)} dt + odW (1),

and the FPK equation becomes:

%(t,:@ = —(% (Ka - IfP(t)) z— IfR(t)] p(t,w>> + %2%-
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3.4. LQG Stationary Mean Field Game and McKean—Vlasov
Equilibrium

In the stationary case, the algebraic Riccati equations become:

b2
pP+2aP—7P2+q+n:0,

b2
pR + (a—P)R—nsz.
T

The optimal control is:

bz +R),

u*(x) = -

and the FPK equation becomes:

d b2 b? o d%p

Its solution is:
2 /1 b2 b2
p(z) = Cexp (2 ((a — —P)z? — Ra:)) ,
o 2 T

with [ p(x)dx = 1. The fixed point requires:

= /xp*(x) dz,

matching the value used in R.
This stationary solution, characterized by self-consistent expectations
and behavior, is the McKean—Vlasov equilibrium of the arms race system.

4. SIMULATIONS AND INTERPRETATION OF
STRATEGIC MILITARY EQUILIBRIUM

In this section, we investigate how the dynamic and stationary solutions
to the MFG system translate into military equilibrium behavior across
countries. Our focus is the linear-quadratic-Gaussian (LQG) case, for
which the system of Riccati equations and the Fokker—Planck—Kolmogorov
(FPK) equation derived in Section 3 can be solved either analytically or
numerically. We analyze both transient dynamics over a finite horizon and
stationary equilibrium behavior in the infinite-horizon setting. We simulate
the MFG dynamics under a variety of global conditions and interpret how
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different forces — such as peer pressure, long-term planning, and interna-
tional norms — shape the collective behavior of countries in a strategic
arms race.

To begin, recall that in the stationary case, the optimal control policy
for each country is given by:

b Pz R),

u*(x) = -

where P and R solve the algebraic Riccati system:

b2
pP+2aP—7P2+q+n:O,

b2
pR—|—<a—rP>R—nf—O.

These coefficients determine how aggressively countries respond to their
own military capital level x, and how much they adjust in response to the
global average Z. The steady-state distribution p*(z) of military capital
across countries satisfies the stationary FPK equation:

(o Er) o ] o) 2 o,

This is a linear second-order ordinary differential equation with a closed-
form solution. Let us denote the drift term by:

2 2
u(z) = <a . bP) x— b—R.
r T

Then the FPK equation becomes:

d o d%p
0= —%(M(x)p(x)) t 5 e

This type of equation has a known solution via integrating factor method.
First, we write the stationary density as:

p*(x) = Cexp (022 /I (z) dz) ,

where C is the normalization constant ensuring [ p*(z)dz = 1. In our case,
since p(x) is affine, the integral becomes:

/m,u(z)dz = <; (a— b:P> z? — b:Rx) ,
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which yields:

. 2 [1 b? , b2
D (x)—CeXp((72 [2 <a—TP)x —TRac]>.

This expression describes a shifted and scaled Gaussian-like distribution
of military stock. The shape of this distribution depends critically on the
coefficients P and R, which in turn depend on the parameters p (discount
rate), n (peer pressure), and Z (global military norm).

To interpret this distribution, we compute the mean and variance:

- / ep(z)dz, Var(z) = / (@ — )2 p(z) da.

These moments describe the long-run military equilibrium across coun-
tries. We find that the mean Z generally exceeds the social planner’s opti-
mum due to the decentralized externalities embedded in the peer pressure
term n(x — z)2. Each country wants to avoid falling behind, which pushes
the entire distribution rightward.

To better understand how equilibrium changes under global conditions,
we simulate three comparative statics:

1. Higher peer pressure (7 1): The coefficient P increases, which steepens
the cost associated with falling behind. This leads countries to invest more
heavily in military capital, shifting the distribution p*(z) rightward. The
peak of the distribution flattens and variance increases, indicating more
dispersion across countries.

2. Lower discount rate (p J): Countries value future security more, and
thus tolerate higher up-front costs to maintain long-term military advan-
tage. This increases P and marginally increases R, which again shifts the
distribution rightward but less drastically than in the high-peer-pressure
case.

3. Changes in perceived global norm Z: Since the optimal control and
the Riccati coefficients depend directly on Z, raising the expected average
militarization level pushes R downward (more negative), which intensifies
military spending in the control formula. The entire distribution p*(z)
moves right. Conversely, lowering Z to simulate a more pacified global
environment significantly compresses the distribution toward lower values.

Time-dependent simulations (finite horizon) show similar trends. Begin-
ning from an initial distribution (e.g., concentrated at low z), the FPK
equation gradually spreads the mass over time. As agents follow the best
response dynamics derived from the HJB equation, the population’s dis-
tribution converges toward the stationary equilibrium. These transient
dynamics are critical for understanding how rapidly an arms race escalates
or how quickly demilitarization takes hold under a new norm.
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In all cases, the joint behavior of countries converges to a distribution
that reflects their incentives, expectations, and exposure to uncertainty.
Importantly, because the MFG model is based on symmetric and decen-
tralized decision-making, the equilibrium can lead to over-investment in
military power due to mutual imitation and the tragedy of strategic ex-
pectations. These insights highlight the necessity for coordinated policy
efforts to shift the mean field (through treaties or norms) or directly alter
strategic incentives (via taxes, penalties, or caps).

5. POLICY INTERVENTIONS AND THEIR EFFECTS ON
STRATEGIC MILITARY EQUILIBRIUM

Given the potential for self-reinforcing over-militarization highlighted in
Section 4, it becomes important to study whether and how effective policy
instruments can steer the global equilibrium toward more peaceful out-
comes. In this section, we examine the formal incorporation of policy
interventions into the mean field game (MFG) framework. We explore
three classes of interventions: (i) penalty functions that discourage exces-
sive militarization, (ii) military caps that impose hard constraints on the
state variable, and (iii) subsidies or taxes that alter the cost of control
(i.e., military spending). We analyze each intervention both mathemati-
cally and strategically by modifying the HJB-FPK system accordingly and
examining the resulting changes to the equilibrium distribution.

Let us denote the baseline individual cost functional as:

T
/0 (gx(t)2 + Su()? + 2 (w(t) - 2(1))?) dt + Ta(r)

)

with dynamics:
dz(t) = (ax(t) + bu(t))dt + ocdW (t).
To model penalties for excessive militarization, we modify the running

cost by adding a convex penalty function ¢(z(t)) that rises rapidly beyond
a threshold xy,ax. A simple choice is a quadratic penalty:

A
QJ)(J;) = 5(37 - xmax)g : 1:r>zm-dx7

where A > 0 controls the severity. The new cost functional becomes:

Jpen(u) = E /OT (%2 T S VS ¢(a:)) dt + 1L (1)

2 2 2 2
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In the HJB equation, this adds ¢(z) directly to the Hamiltonian. Since
the penalty term is convex and only activated for > ., the optimal
control u*(x) becomes more conservative in this region. The effect on the
distribution p(¢, x) is a leftward truncation and compression: countries are
deterred from moving beyond the penalized threshold.

Alternatively, one may impose a hard cap on the state variable, requiring
2(t) < Teap. Mathematically, this creates a reflecting barrier or boundary
condition in the FPK equation. In the stationary case, we replace the
domain Ry with [0, Zcap], and the stationary FPK equation becomes:

0_2 2
0= 2 (e + % pla)

with boundary conditions:

T=ZTcap

This forces all countries’ military levels to remain within a legal bound.
The result is a truncated equilibrium distribution with sharp mass concen-
tration near the cap, especially if peer pressure 1 remains strong. Impor-
tantly, hard caps may generate undesirable clustering near x,p, signaling
strategic risk if countries attempt to “touch the ceiling” without exceeding
it.

A third intervention modifies the cost of military expenditure. Sup-
pose a supranational organization subsidizes disarmament or taxes military
buildup. Let the new cost of control become:

1
7( ;'T) 2,

where 7 > 0 is a tax and 7 < 0 is a subsidy. Then, the optimal control
derived from minimizing the HJB Hamiltonian becomes:

b

BT

(Px + R),
and the drift in the FPK equation adjusts accordingly:
b? b2
= - —P ——— R
Hiw) (“ r(1+7) ) S G
We now observe that taxation increases the effective cost of control and

thus reduces the responsiveness of countries to their current state, flatten-
ing the control response. The overall distribution p*(z) shifts leftward and
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becomes more peaked at low values. Conversely, subsidies reduce the effec-
tive cost of control, possibly inducing more militarization unless targeted
at low states x only.

These interventions can be compared by examining how they alter the
Riccati system. In the case of a tax 7 > 0, the Riccati equation becomes:

2

pP+2aP—T P24 q+n=0,

b

(I1+7)
which clearly shows that increasing 7 (i.e., stronger taxation) reduces the
coefficient on the negative quadratic term. This leads to a lower equilibrium
value of P, meaning a reduced marginal penalty on high . Paradoxically,
too much taxation might reduce the slope of the control function and cause
countries to respond less forcefully to increases in their state, thus slowing
disarmament unless peer pressure or penalties are increased correspond-
ingly.

In all cases, the interventions modify the equilibrium not by directly con-
trolling the distribution, but by reshaping incentives and indirectly steering
collective behavior. The strength of the MFG framework lies in its ability
to represent such strategic adjustments endogenously. Policymakers can,
through appropriate parameter adjustments (e.g., through treaties, incen-
tive schemes, or regulations), shift the Nash equilibrium of the game toward
more globally optimal outcomes.

6. COMPARISON BETWEEN DECENTRALIZED MEAN
FIELD EQUILIBRIA AND THE CENTRAL PLANNER
SOLUTION

In this section, we formally analyze the divergence between decentralized
equilibrium outcomes in a mean field game (MFG) and the socially opti-
mal allocation of resources under a centralized planner. This comparison
is particularly illuminating in the context of arms races, where individual
incentives drive countries to maintain high levels of military capital, even
when global security and welfare might be improved through restraint and
coordination. We begin by characterizing the planner’s problem and deriv-
ing the optimality conditions. We then contrast the planner’s solution to
the decentralized MFG outcome and quantify the structural inefficiencies
that emerge.

We maintain the linear-quadratic-Gaussian (LQG) setting introduced
earlier. In the decentralized case, each country minimizes the individual
cost functional:

JMFG (y) = E

)

T
/O (L2t + Su? + J@®) - 2(0))?) dt + Loa(T)?
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where the state evolves according to:
dz(t) = (ax(t) + bu(t))dt + odW ().

In contrast, the central planner minimizes the aggregate expected cost
of all countries, internalizing the impact each agent has on the overall
distribution. Since all agents are symmetric and indistinguishable, the
planner’s problem becomes one of minimizing the average cost functional:

r

T
JPlanner<u) -F [/0 (%x(t)Z + iu(t)Q + 'r](,jc(t) - 7(t))2> dt + %%(T)2

9

with the same dynamics. Note that in the planner’s problem, the external-
ity term n(z —z)? appears once, whereas in the MFG setting, it is perceived
as part of each agent’s private cost. Consequently, the planner recognizes
that the average deviation term aggregates to the population variance:

E[(z - 2)?] = Var(z(t)),

and therefore, the planner aims to minimize not only the mean military
capital level but also its dispersion across countries. This insight will be
reflected in the derivation of optimal policies.

To proceed analytically, we again assume the control policy is linear in
state:

u(t) = =K (t)z(t) + h(t),

and derive the corresponding optimal control laws using the dynamic pro-
gramming principle. The planner’s value function retains the quadratic
form:

1 - - ~
yPlanner(y oy — 5P(t)a;2 + R(t)x + S(t),

and the planner’s HJB equation becomes:

oV - - 1 .-
B + min {(ax + bu)(Px + R) + 502]3 + %m2 + gug +n(z — x)g} =0.

Solving for the optimal control in the same way as in the MFG yields:

ul:’lamner(t7 x) — _Q(P(t)x + R(t))

r
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Substituting into the HJB equation and matching coefficients results in
the Riccati system for the planner:

The key difference lies in the second equation: the coefficient in front
of z is now 27 rather than n, as it was in the MFG Riccati system. This
discrepancy reflects the planner’s internalization of the externality, recog-
nizing that each country’s deviation contributes to a collective inefficiency.
As a result, the planner’s coefficient Is(t) is typically smaller than the de-
centralized coefficient P(t), leading to more moderate control policies.

In the stationary case (infinite horizon, time-invariant), the planner solves
the algebraic system:

- - b2 .
pP+2aP77P2+q+77:O,
- 2 -\ -
pR + (a—rP>R—2n:E—O.

The contrast becomes sharpest when comparing the optimal control laws:

MFG control: uMFS(z) = —2(Pz + R),
Planner control: uPanner(z) = —%(Px +R).

Since P < P and |R| < |R|, the planner prescribes weaker militarization
for all countries. This leads to a lower drift rate in the population-level dy-
namics, and a more concentrated and left-shifted equilibrium distribution
p(z).

Quantitatively, we find that:

e The mean military stock zFlanner < gMFG/

e The variance under the planner is smaller: Var"®" () < Var™FC (z),
o The total expected cost is lower under the planner: JFlanrer o jMFG

This confirms the classic result that decentralized strategies with exter-
nalities (such as peer effects) lead to over-provision of strategic goods like
military capital. In the MFG setting, each country ignores how its actions
raise the incentive for others to militarize, generating an arms race with
inflated costs and inefficiencies.
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The policy implication is conceptually straightforward: in the absence of
coordination, decentralized equilibrium leads to a distorted global outcome
characterized by excessive militarization and synchronized strategic risk.
However, the geopolitical reality is far more complex. Centralized plan-
ning at the global level is politically impossible. There is no supranational
authority with the legitimacy or coercive capacity to dictate defense policy
across sovereign states. Even multilateral institutions like the United Na-
tions or NATO face deep-seated constraints rooted in power asymmetries,
divergent national interests, and historical mistrust.

Consequently, the task of global governance becomes one of approximat-
ing the planner’s logic through feasible second-best mechanisms. These
include bilateral and multilateral treaties, non-proliferation regimes, arms
control agreements, and economic incentives or sanctions. While such insti-
tutions cannot directly enforce optimal behavior, they can shape expecta-
tions, internalize some externalities, and influence the feedback structures
that drive military decision-making.

But even this is optimistic. In reality, geopolitical strategy is shaped not
only by costs and optimization, but by ideology, misperception, national-
ism, and domestic politics. Coordination fails not just because of strategic
divergence, but also because of systemic mistrust and opportunism. Arms
control efforts are regularly undermined by cheating, ambiguity, or techno-
logical shifts that render old agreements obsolete.

Thus, while our model identifies clear distortions and possible remedies,
the real world remains far from the ideal of rational coordination. What re-
mains possible, however, is the construction of flexible institutional frame-
works that nudge the system toward more stable equilibria — not by solving
the game, but by reshaping it at the margins. Effective arms control, in this
view, is less about achieving global optimality and more about minimizing
catastrophic feedback loops within a fundamentally anarchic order.

7. MULTIPOLAR ARMS RACE: THREE MAJOR POWERS
AND A CONTINUUM OF MINOR COUNTRIES

The homogeneous mean field framework developed in earlier sections
captures the decentralized arms race dynamics among symmetric countries.
However, the real-world international system is far from symmetric. A
small number of major powers exert disproportionate influence on global
security architecture, while the majority of countries behave as followers,
reacting to the strategic environment set by those powers. In this section,
we build a two-tier mean field game model in which three major countries —
United States, China, and Russia — act strategically and directly influence
the equilibrium, while a continuum of minor countries respond to the joint
behavior of the major powers and the distribution of peers.
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7.1. General Nonlinear MFG System with Major—Minor Asym-
metry

Let us denote the major powers by 7 € {1,2,3}, representing the United
States, China, and Russia respectively. Let z;(t) € Ry be the military stock
of major power ¢ at time ¢, and w;(t) € U; C R be its military expenditure
(control variable). The dynamics of each major power follow a controlled
stochastic differential equation (SDE):

dri(t) = fi(xi(t), ui(t),t) dt + oi(xi(t), wi(t), ) dWi(t),

where W;(t) is a Brownian motion representing geopolitical uncertainty,
and the function f; governs the deterministic drift of the military stock.

Each major power aims to minimize a cost functional that includes: (i)
internal costs of military stock and expenditure, (ii) strategic deviation
from other major powers, and (iii) global deterrence measured by deviation
from the mean field of minor countries:

T
K (). ualus(on() 2| [ (Lz-(mt),ui(t),m(tm(t),t))dt

+ Gi(zi(T), 20 (T), (T)) |,

where:

o Ty (t) = £ a;(t) with i € {1,2,3} is the average military stock of
three major powers,

e 1(t) is the distribution of the minor countries’ military stocks at time
t,

e [; and G; are running and terminal cost functions.

Each minor country is indexed over a continuum m € [0,1] \ {1,2,3},
and its state z(t) € R, evolves according to:

dx(t) = fm(x(t),u(t),t) dt + om(z(t), u(t), t) AW (1),

with cost functional:
T

Here, minor players respond only to the joint behavior of major powers
(through Z,/(t)) and the population distribution of other minor players
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(through u(t)). Their decisions do not directly affect the behavior of the
major powers.

7.2. HJB Equation (Minor Players)

Let V,,,(t, 2) denote the value function for a representative minor country.
Then the HJB equation is:

OV
: inf m\+s 7t 5Y%m
5 (t,z)—l—;IelU{f (x,u )—ax t30

Py Sl

+Lm(:r7U,:EM(t),u(t),t)} —o,

with terminal condition V,,, (T, z) = Gy, (z, Zps(T), u(T)).
Best Response (Minor Players):
The optimal control is defined pointwise via:

WV 1, 0*Vy,
B +§am(az,u,t) 52

ur (t,x) = argglei(rjl {fm(x,u,t) + Ly (2, u, Zpr(t), u(t),t)} .

FPK Equation (Minor Players):
Given the optimal control u},(¢,z), the distribution p(t, z) of the minor
countries’ states evolves according to:

D1, 0) = (ol (1,2), (1, 1)) oy (0 (1 2), )p, )

This is the Fokker—Planck—Kolmogorov (FPK) equation, describing how
the probability density of minor players’ states evolves forward in time.

McKean—Vlasov Coupling:

The system is closed through the consistency condition:

w(t) =p(t,z)de, and uwm(t,z)=um(t,x;Za(t), u(t)).

The full equilibrium requires solving:

e A finite-player game among the major powers (with their own HJB
systems), and

e A mean field fixed point for the minor players’ HJB-FPK system,
coupled through s (t).

7.3. Linear-Quadratic-Gaussian (LQG) MFG System

We now specialize the model for explicit derivations. Each major player
i € {1,2,3} controls:

dzi(t) = a;z;(t) dt + byu;(t) dt + o;dWi(t),
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and minimizes:
T
i i i _ 0; _
Ji=E [/o (qzxf + %uf + %(mZ —Zn)* + 5(% - xu)Q) dt] .

Each minor player controls:
dx(t) = ax(t) dt + bu(t) dt + odW (t),

and minimizes:

J =E

T
9.2 T 2 M, - 32
/0(233 +2u —|—2(x xM)>dt].

HJB for Minor Player (LQG):
Guess the value function:

1
Vin(t,z) = 5Pm(t)x? + Ry (H)x 4 Spn(t).

Compute the derivatives:

ov 0V
oz = fmOt Bmy Bg = o

Optimal control:
. b
uy (t,2) = ——(Pmx + Rpy).
r

Plug into the HJB equation, and collect terms to get the Riccati system:

b2
Pm:—QaPm—l—?Pf@—q—n,
. b2
Rm:_<a_rpm>Rm+77jM7
. b? 9 o? n
m = T 5 7Pm7*
S. QTRm+ 5

FPK for Minor Players (LQG):
Drift under optimal control is:

p(z,t) = (a - Zme(t)) - ?Rm(t).
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Then the FPK equation becomes:

2 92
o L m+ 5oL
The mean field z,(t) = [ ap(t, ) dz feeds back into the major players’
cost.
Major Powers’ Best Responses:
Each major power solves a 3-player LQ differential game. Their optimal
controls take the form:

wl(tas) = — Pty + Ri(t),

T

where P;(t), R;(t) satisfy Riccati ODEs depending on Zx/(t), Z,(t), and
the strategies of other major players.

8. SIMULATIONS AND INTERPRETATION OF
STRATEGIC MILITARY EQUILIBRIUM

This section presents simulations of the heterogeneous mean field game
(MFQG) system featuring three major powers and a continuum of minor
states. We numerically solve the coupled Riccati and Fokker—Planck—
Kolmogorov (FPK) equations derived in Section 7 and analyze how the
strategic interactions shape the global distribution of military power.

We examine:

1. Time-evolution of optimal military stocks for major powers.

2. Transition of the minor player distribution over time.

3. Stationary equilibrium distributions of all agents.

4. Comparative statics: how changes in key parameters affect global
militarization.

We begin by discretizing the system over a finite time horizon [0, T, with
T = 50, and then we examine the stationary case as T" — oo.

8.1. Numerical Implementation: Dynamic System of Major and
Minor Players

We restate the key dynamic equations in the LQG formulation:

8.1.1. Minor Player Dynamics and Controls

Each minor player follows:

b? b?
dz(t) = (a — 7Pm(t))x(t) dt — 7Rm(t) dt + o dW (t).
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The density p(t, ) evolves according to:

dp 0 b2 b2 o2 0%p
%= ([ Zrttne - Zra) o) + T 55

We solve this numerically on a bounded domain = € [0, Zpax], with
reflecting boundaries or fast decay conditions. The Riccati equations for
(P R, Si) are:

b2
Pm:*QGPer*Pi*Q*Ua
T
. b2

: 2 N _o
= Tp, 02,
S o ftm + 35 57w (t)

The mean field z,(¢t) = [ 2 p(t,z)dz is computed at each time step to
influence the major players.

8.1.2. Major Powers’ Controls and Dynamics

Each major power i € {1,2,3} has:

dx;(t) = a;2z;(t) dt + byu;(t) dt + o; dW;(t),

wl(tes) = — S (Pi(t)s + Ra(t).

Ti
The Riccati equations for each major player involve the average behav-
iors:

. b2
Py = —2a;P;, + P} —q; — n; — 0;,
T

R 2
= ( - bP) Ri i (e (8) — 2i(6)) + 0u(@u(t) — (1)),

. bZQ 2 0-12 i, _ 2 91‘ = 2
e e R o @m(t) = 2i(t)" = (2, (1) — 2:(1))".

This system is solved jointly across the three major players, with feedback
coupling via:

o Ty(t) =35> wi(t),ie{1,2,3}.
e Z,(t) from the evolving FPK.



MEAN FIELD GAMES AND GLOBAL ARMS RACES 639

8.2. Simulation Results: Transient Dynamics and Convergence

In a representative simulation calibrated with:

o a; =0.05,b;=01,q =17 =1m=03,0 =04,0; = 0.1,

e a=003b=008qg=17=1,7=050=0.1,

e Initial condition for minor players p(0,z) = Gaussian(x;0.5,0.12),
e Initial major stocks: x1(0) = 1.2,25(0) = 0.9, 23(0) = 0.8,

we observe:

e Rapid initial growth in all three major powers’ military stocks, with
China and Russia increasing faster due to their lower initial values and the
presence of competitive pressure.

e Minor players gradually increase their military stocks in response to
Zar(t), with the distribution p(t, ) shifting rightward and flattening.

e The system stabilizes around t =~ 25, withz; ~ 1.6, zo ~ 1.55, x3 ~ 1.5,
and 7, ~ 1.3.

8.3. Stationary Distribution and Long-Term Strategic Balance
Solving the stationary Riccati system (as P=R= 0):

b2
pPp +2aP, — —P2 +q+n=0,
r
b2
pRm+ (G_Pm> R, —nZy =0,
r
we find a stationary FPK distribution for minor players of the form:
. 2 (1 b? , VP
p*(z) = Cexp (02 <2(a — 7Pm):c — rRmI>> ,

where C' normalizes the distribution over R;. This distribution is unimodal
and right-skewed when Zj, is high.
In our simulation, the stationary distribution has:

e Mean 7, ~ 1.25,
e Moderate variance, centered near the average major power level.

This reflects a rational convergence of minor players toward the strategic
frontier established by the major powers.

8.4. Comparative Statics and Strategic Interpretation

We explore how key parameters affect the equilibrium:
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e Increasing 7); (major power rivalry): raises dispersion in major stocks
and shifts minor player distributions rightward.

e Increasing 6; (hegemonic concern): flattens the control policy, leading
to more aggressive militarization to dominate minor states.

e Increasing 1 (peer pressure among minors): reduces variance in the
minor distribution but may raise the mean militarization.

e Lowering discount rate p: causes all countries to care more about long-
term positioning, amplifying the arms race.

The model shows how strategic deterrence, relative positioning, and in-
terdependence collectively drive long-run military stock accumulation —
even in the absence of direct conflict.

9. CONCLUSION AND POLICY OUTLOOK

This paper developed a rigorous dynamic framework to analyze global
arms races using mean field game (MFG) theory. We modeled the strategic
behavior of a continuum of minor countries, each optimizing its military
investment relative to evolving global norms, while three major powers
— the United States, China, and Russia — interacted in a finite-player
strategic setting. The result is a coupled, decentralized system in which
each country’s optimal decision depends not only on internal costs and
constraints but also on the expectations and behavior of others.

We formalized this interdependence using Hamilton—-Jacobi-Bellman (HJB)
and Fokker—Planck-Kolmogorov (FPK) equations linked through a McKean—
Vlasov fixed-point structure. The linear-quadratic-Gaussian (LQG) formu-
lation enabled analytical derivations and exact feedback controls, which we
used to simulate both time-dependent transition dynamics and long-run
stationary equilibria.

Our simulations reveal that in the absence of regulation, rational strate-
gic behavior produces excessive militarization and coordination on inflated
levels of military stock. Minor powers gradually converge toward the global
norm established by dominant states, and peer pressure compresses this
convergence into synchronized patterns of buildup. These effects are mag-
nified in high peer-pressure environments, where the incentive to conform
dominates internal preferences for moderation. In this sense, decentral-
ized equilibrium is not merely inefficient — it is path-dependent and self-
reinforcing, with the potential to entrench militarized standoffs even with-
out open conflict.
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We also compared this decentralized outcome with the planner’s op-
timal trajectory and showed that centralized coordination would lead to
less costly and more stable equilibria. However, this idealized compari-
son exposes a deeper tension: the policy implication is conceptually clear
— absent coordination, the equilibrium is distorted — but in real-world
geopolitics, centralized global planning is politically impossible. There
is no supranational authority with the legitimacy, neutrality, or enforce-
ment power to dictate defense policy across sovereign states. Even when
cooperation is theoretically beneficial, the international system lacks the
institutional scaffolding and trust necessary to enforce compliance.

As a result, global governance must proceed not through ideal coor-
dination, but through second-best approximations. Treaties, deterrence
frameworks, arms control regimes, and economic incentives can all approx-
imate aspects of the planner’s logic — if imperfectly — by embedding the
right incentives and shaping the strategic environment. These instruments
help align national objectives with system-wide stability by modifying the
feedback loop rather than solving it. But we must also acknowledge the
limits of this approach. Realpolitik is not governed solely by optimiza-
tion and cost minimization — it is shaped by fear, nationalism, historical
grievances, and domestic political pressures. Many of the mechanisms we
model as continuous and rational unfold in reality through crises, bluffs,
and cascading miscalculations.

Therefore, while our framework offers clear analytical insights into how
military equilibria form and persist, it also serves as a caution: decentral-
ized rationality in an anarchic system can lead to collectively irrational out-
comes. In this environment, even partial institutional success — through
verifiable caps, transparency mechanisms, or normative soft power — can
dramatically reduce global risk. Effective policy, then, is not about achiev-
ing optimal control, but about minimizing catastrophic feedback loops in
a world where coordination is fragile, and the consequences of failure are
severe.

Future research can extend this framework in several directions: in-
corporating asymmetric information, modeling alliance networks, analyz-
ing stochastic regime shifts, and calibrating empirical data from historical
arms races. Ultimately, the theory of mean field games offers not only a
mathematical toolset but a new lens for understanding how rational agents
trapped in irrational systems might still find strategies for peace.
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